Johnson RH, Collings DF (1969) Experimental infection of piglets and pregnant gilts with a parvovirus. Vet Rec 85:446–447
Article
CAS
PubMed
Google Scholar
Meszaros I, Toth R, Olasz F, Tijssen P, Zadori Z (2017) The SAT protein of porcine parvovirus accelerates viral spreading through induction of irreversible endoplasmic reticulum stress. J Virol 91:e00627-e717
Article
CAS
PubMed
PubMed Central
Google Scholar
Majumder K, Boftsi M, Whittle FB, Wang J, Fuller MS, Joshi T, Pintel DJ (2020) The NS1 protein of the parvovirus MVM Aids in the localization of the viral genome to cellular sites of DNA damage. PLoS Pathog 16:e1009002
Article
CAS
PubMed
PubMed Central
Google Scholar
Niskanen EA, Kalliolinna O, Ihalainen TO, Hakkinen M, Vihinen-Ranta M (2013) Mutations in DNA binding and transactivation domains affect the dynamics of parvovirus NS1 protein. J Virol 87:11762–11774
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin P, Cheng Y, Song S, Qiu J, Yi L, Cao Z, Li J, Cheng S, Wang J (2019) Viral nonstructural protein 1 induces mitochondrion-mediated apoptosis in mink enteritis virus infection. J Virol 93:e01249-e1319
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Fan J, Li Y, Liang S, Huo S, Wang X, Zuo Y, Cui D, Li W, Zhong Z, Zhong F (2019) Porcine parvovirus infection causes pig placenta tissue damage involving nonstructural protein 1 (NS1)-induced intrinsic ROS/mitochondria-mediated apoptosis. Viruses 11:389
Article
CAS
PubMed Central
Google Scholar
Xu P, Zhou Z, Xiong M, Zou W, Deng X, Ganaie SS, Kleiboeker S, Peng J, Liu K, Wang S, Ye SQ, Qiu J (2017) Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog 13:e1006266
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang X, Wang J, Mao Y, Xi J, Yu Y, Liu W (2017) Induction and suppression of type I interferon responses by mink enteritis virus in CRFK cells. Vet Microbiol 199:8–14
Article
CAS
PubMed
Google Scholar
Lin W, Qiu Z, Liu Q, Cui S (2013) Interferon induction and suppression in swine testicle cells by porcine parvovirus and its proteins. Vet Microbiol 163:157–161
Article
CAS
PubMed
Google Scholar
Miller CL, Pintel DJ (2002) Interaction between parvovirus NS2 protein and nuclear export factor Crm1 is important for viral egress from the nucleus of murine cells. J Virol 76:3257–3266
Article
CAS
PubMed
PubMed Central
Google Scholar
McDermott SM, Yang L, Halstead JM, Hamilton RS, Meignin C, Davis I (2014) Drosophila Syncrip modulates the expression of mRNAs encoding key synaptic proteins required for morphology at the neuromuscular junction. RNA 20:1593–1606
Article
CAS
PubMed
PubMed Central
Google Scholar
Vu LP, Prieto C, Amin EM, Chhangawala S, Krivtsov A, Calvo-Vidal MN, Chou T, Chow A, Minuesa G, Park SM, Barlowe TS, Taggart J, Tivnan P, Deering RP, Chu LP, Kwon JA, Meydan C, Perales-Paton J, Arshi A, Gonen M, Famulare C, Patel M, Paietta E, Tallman MS, Lu Y, Glass J, Garret-Bakelman FE, Melnick A, Levine R, Al-Shahrour F et al (2017) Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells. Nat Genet 49:866–875
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuchler L, Giegerich AK, Sha LK, Knape T, Wong MS, Schroder K, Brandes RP, Heide H, Wittig I, Brune B, von Knethen A (2014) SYNCRIP-dependent Nox2 mRNA destabilization impairs ROS formation in M2-polarized macrophages. Antioxid Redox Signal 21:2483–2497
Article
CAS
PubMed
Google Scholar
Le Roux C, Del Prete S, Boutet-Mercey S, Perreau F, Balague C, Roby D, Fagard M, Gaudin V (2014) The hnRNP-Q protein LIF2 participates in the plant immune response. PLoS One 9:e99343
Article
PubMed
PubMed Central
CAS
Google Scholar
Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G (2001) SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 20:5443–5452
Article
CAS
PubMed
PubMed Central
Google Scholar
Halstead JM, Lin YQ, Durraine L, Hamilton RS, Ball G, Neely GG, Bellen HJ, Davis I (2014) Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse. Biol Open 3:839–849
Article
PubMed
PubMed Central
Google Scholar
Kabat JL, Barberan-Soler S, Zahler AM (2009) HRP-2, the Caenorhabditis elegans homolog of mammalian heterogeneous nuclear ribonucleoproteins Q and R, is an alternative splicing factor that binds to UCUAUC splicing regulatory elements. J Biol Chem 284:28490–28497
Article
CAS
PubMed
PubMed Central
Google Scholar
Svitkin YV, Yanagiya A, Karetnikov AE, Alain T, Fabian MR, Khoutorsky A, Perreault S, Topisirovic I, Sonenberg N (2013) Control of translation and miRNA-dependent repression by a novel poly(A) binding protein, hnRNP-Q. PLoS Biol 11:e1001564
Article
CAS
PubMed
PubMed Central
Google Scholar
Hobor F, Dallmann A, Ball NJ, Cicchini C, Battistelli C, Ogrodowicz RW, Christodoulou E, Martin SR, Castello A, Tripodi M, Taylor IA, Ramos A (2018) A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets. Nat Commun 9:831
Article
PubMed
PubMed Central
CAS
Google Scholar
McDermott SM, Meignin C, Rappsilber J, Davis I (2012) Drosophila Syncrip binds the gurken mRNA localisation signal and regulates localised transcripts during axis specification. Biol Open 1:488–497
Article
CAS
PubMed
PubMed Central
Google Scholar
Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, Battistelli C, Alonzi T, Weisz A, Tripodi M (2016) The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling MicroRNA sorting. Cell Rep 17:799–808
Article
CAS
PubMed
Google Scholar
Blanc V, Navaratnam N, Henderson JO, Anant S, Kennedy S, Jarmuz A, Scott J, Davidson NO (2001) Identification of GRY-RBP as an apolipoprotein B RNA-binding protein that interacts with both apobec-1 and apobec-1 complementation factor to modulate C to U editing. J Biol Chem 276:10272–10283
Article
CAS
PubMed
Google Scholar
Mizutani A, Fukuda M, Ibata K, Shiraishi Y, Mikoshiba K (2000) SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms. J Biol Chem 275:9823–9831
Article
CAS
PubMed
Google Scholar
Ganaie SS, Chen AY, Huang C, Xu P, Kleiboeker S, Du A, Qiu J (2018) RNA binding protein RBM38 regulates expression of the 11-kilodalton protein of parvovirus B19, which facilitates viral DNA replication. J Virol 92:e02050-e2117
Article
PubMed
PubMed Central
Google Scholar
Wang J, Ganaie SS, Cheng F, Xu P, Ning K, Wang X, Kleiboeker S, Cheng S, Qiu J (2020) RNA binding motif protein RBM45 regulates expression of the 11-kilodalton protein of parvovirus B19 through binding to novel intron splicing enhancers. mBio 11:e00192-20
PubMed
PubMed Central
Google Scholar
Choi KS, Mizutani A, Lai MM (2004) SYNCRIP, a member of the heterogeneous nuclear ribonucleoprotein family, is involved in mouse hepatitis virus RNA synthesis. J Virol 78:13153–13162
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu HM, Aizaki H, Choi KS, Machida K, Ou JJ, Lai MM (2009) SYNCRIP (synaptotagmin-binding, cytoplasmic RNA-interacting protein) is a host factor involved in hepatitis C virus RNA replication. Virology 386:249–256
Article
CAS
PubMed
Google Scholar
Zhang X, Xiong Y, Zhang J, Shao T, Chen S, Miao B, Wang Z, Du Q, Huang Y, Tong D (2019) Autophagy promotes porcine parvovirus replication and induces non-apoptotic cell death in porcine placental trophoblasts. Viruses 12:15
Article
CAS
PubMed Central
Google Scholar
Guan W, Huang Q, Cheng F, Qiu J (2011) Internal polyadenylation of the parvovirus B19 precursor mRNA is regulated by alternative splicing. J Biol Chem 286:24793–24805
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan R, Nakajima S, Wang Q, Sun H, Xue J, Wu J, Hellwig S, Zeng X, Yates NA, Smithgall TE, Lei M, Jiang Y, Levine AS, Su B, Lan L (2017) Nek7 protects telomeres from oxidative DNA damage by phosphorylation and stabilization of TRF1. Mol Cell 65:818–831
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang T, Du Q, Wu X, Niu Y, Guan L, Wang Z, Zhao X, Liu SL, Tong D, Huang Y (2018) Porcine MKRN1 modulates the replication and pathogenesis of porcine circovirus type 2 by inducing capsid protein ubiquitination and degradation. J Virol 92:e00100-e118
CAS
PubMed
PubMed Central
Google Scholar
Luo Y, Kleiboeker S, Deng X, Qiu J (2013) Human parvovirus B19 infection causes cell cycle arrest of human erythroid progenitors at late S phase that favors viral DNA replication. J Virol 87:12766–12775
Article
CAS
PubMed
PubMed Central
Google Scholar
Marin-Bejar O, Huarte M (2015) RNA pulldown protocol for in vitro detection and identification of RNA-associated proteins. Methods Mol Biol 1206:87–95
Article
CAS
PubMed
Google Scholar
Pillay S, Zou W, Cheng F, Puschnik AS, Meyer NL, Ganaie SS, Deng X, Wosen JE, Davulcu O, Yan Z, Engelhardt JF, Brown KE, Chapman MS, Qiu J, Carette JE (2017) AAV serotypes have distinctive interactions with domains of the cellular receptor AAVR. J Virol 91:e00391-e417
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergeron J, Menezes J, Tijssen P (1993) Genomic organization and mapping of transcription and translation products of the NADL-2 strain of porcine parvovirus. Virology 197:86–98
Article
CAS
PubMed
Google Scholar
Zadori Z, Szelei J, Tijssen P (2005) SAT: a late NS protein of porcine parvovirus. J Virol 79:13129–13138
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta SK, Yadav PK, Gandham RK, Sahoo AP, Harish DR, Singh AK, Tiwari AK (2016) Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model. Virus Res 213:289–298
Article
CAS
PubMed
Google Scholar
Sanchez JL, Romero Z, Quinones A, Torgeson KR, Horton NC (2016) DNA binding and cleavage by the human parvovirus B19 NS1 nuclease domain. Biochemistry 55:6577–6593
Article
CAS
PubMed
Google Scholar
Gupta SK, Sahoo AP, Rosh N, Gandham RK, Saxena L, Singh AK, Harish DR, Tiwari AK (2016) Canine parvovirus NS1 induced apoptosis involves mitochondria, accumulation of reactive oxygen species and activation of caspases. Virus Res 213:46–61
Article
CAS
PubMed
Google Scholar
Eichwald V, Daeffler L, Klein M, Rommelaere J, Salome N (2002) The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells. J Virol 76:10307–10319
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu P, Chen AY, Ganaie SS, Cheng F, Shen W, Wang X, Kleiboeker S, Li Y, Qiu J (2019) The 11-kilodalton nonstructural protein of human parvovirus B19 facilitates viral DNA replication by interacting with Grb2 through its proline-rich motifs. J Virol 93:e01464-e1518
Article
CAS
PubMed
Google Scholar
Beuck C, Williamson JR, Wuthrich K, Serrano P (2016) The acidic domain is a unique structural feature of the splicing factor SYNCRIP. Protein Sci 25:1545–1550
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulkarni S, Ramsuran V, Rucevic M, Singh S, Lied A, KulkarniO’HUigin C, Le Gall S, Carrington M, V (2017) Posttranscriptional regulation of HLA-A protein expression by alternative polyadenylation signals involving the RNA-binding protein Syncrip. J Immunol 199:3892–3899
Article
CAS
PubMed
Google Scholar
Zhang K, Shang G, Padavannil A, Wang J, Sakthivel R, Chen X, Kim M, Thompson MG, Garcia-Sastre A, Lynch KW, Chen ZJ, Chook YM, Fontoura BMA (2018) Structural-functional interactions of NS1-BP protein with the splicing and mRNA export machineries for viral and host gene expression. Proc Natl Acad Sci U S A 115:12218–12227
Article
CAS
Google Scholar
Sakuma K, Sasaki E, Kimura K, Komori K, Shimizu Y, Yatabe Y, Aoki M (2018) HNRNPLL, a newly identified colorectal cancer metastasis suppressor, modulates alternative splicing of CD44 during epithelial-mesenchymal transition. Gut 67:1103–1111
Article
CAS
PubMed
Google Scholar