Lee S, Lee C (2014) Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013. Emerg Infect Dis 20:1223–1226. https://doi.org/10.3201/eid2007.140294
Article
PubMed
PubMed Central
Google Scholar
Schulz LL, Tonsor GT (2015) Assessment of the economic impacts of porcine epidemic diarrhea virus in the United States. J Anim Sci 93:5111–5118. https://doi.org/10.2527/jas.2015-9136
Article
CAS
PubMed
Google Scholar
Song D, Park B (2012) Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44:167–175. https://doi.org/10.1007/s11262-012-0713-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Walls AC, Tortorici MA, Bosch B-J, Frenz B, Rottier PJM, DiMaio F, Rey FA, Veesler D (2016) Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531:114–117. https://doi.org/10.1038/nature16988
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoo D, Parker MD, Babiuk LA (1991) The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. Virology 180:395–399. https://doi.org/10.1016/0042-6822(91)90045-D
Article
CAS
PubMed
Google Scholar
Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811. https://doi.org/10.1128/JVI.77.16.8801-8811.2003
Article
CAS
PubMed
PubMed Central
Google Scholar
Delmas B, Gelfi J, L’Haridon R, Vogel SH, Norén LH (1992) Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357:417–420. https://doi.org/10.1038/357417a0
Article
CAS
PubMed
PubMed Central
Google Scholar
Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S (2005) Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102:7988–7993. https://doi.org/10.1073/pnas.0409465102
Article
CAS
PubMed
PubMed Central
Google Scholar
Li F (2015) Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 89:1954–1964. https://doi.org/10.1128/JVI.02615-14
Article
CAS
PubMed
Google Scholar
Chang S-H, Bae J-L, Kang T-J, Kim J, Chung G-H, Lim C-W, Laude H, Yang M-S, Jang Y-S (2002) Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol Cells 14:295–299
CAS
PubMed
Google Scholar
Chang C-Y, Cheng I-C, Chang Y-C, Tsai P-S, Lai S-Y, Huang Y-L, Jeng C-R, Pang VF, Chang H-W (2019) Identification of neutralizing monoclonal antibodies targeting novel conformational epitopes of the porcine epidemic diarrhoea virus spike protein. Sci Rep 9:2529. https://doi.org/10.1038/s41598-019-39844-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Li W, Lucio de Esesarte E, Guo H, van den Elzen P, Aarts E, van den Born E, Rottier PJM, Bosch B-J (2017) Cell attachment domains of the porcine epidemic diarrhea virus spike protein are key targets of neutralizing antibodies. J Virol 91:e00273-e317. https://doi.org/10.1128/JVI.00273-17
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao P, Wang B, Ji C-M, Cong X, Wang M, Huang Y-W (2018) Identification of a peptide derived from the heptad repeat 2 region of the porcine epidemic diarrhea virus (PEDV) spike glycoprotein that is capable of suppressing PEDV entry and inducing neutralizing antibodies. Antiviral Res 150:1–8. https://doi.org/10.1016/j.antiviral.2017.11.021
Article
CAS
PubMed
Google Scholar
Ho TT, Nguyen GT, Pham NB, Le VP, Trinh TBN, Vu TH, Phan HT, Conrad U, Chu HH (2020) Plant-derived trimeric CO-26K-equivalent epitope induced neutralizing antibodies against porcine epidemic diarrhea virus. Front Immunol 11:2152. https://doi.org/10.3389/fimmu.2020.02152
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, van Kuppeveld FJM, He Q, Rottier PJM, Bosch B-J (2016) Cellular entry of the porcine epidemic diarrhea virus. Virus Res 226:117–127. https://doi.org/10.1016/j.virusres.2016.05.031
Article
CAS
PubMed
PubMed Central
Google Scholar
Okda FA, Lawson S, Singrey A, Nelson J, Hain KS, Joshi LR, Christopher-Hennings J, Nelson EA, Diel DG (2017) The S2 glycoprotein subunit of porcine epidemic diarrhea virus contains immunodominant neutralizing epitopes. Virology 509:185–194. https://doi.org/10.1016/j.virol.2017.06.013
Article
CAS
PubMed
Google Scholar
Oh J, Lee K-W, Choi H-W, Lee C (2014) Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Arch Virol 159:2977–2987. https://doi.org/10.1007/s00705-014-2163-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang C, Yan F, Zheng X, Wang H, Jin H, Wang C, Zhao Y, Feng N, Wang T, Gao Y, Yang S, Xia X (2017) Porcine epidemic diarrhea virus virus-like particles produced in insect cells induce specific immune responses in mice. Virus Genes 53:548–554. https://doi.org/10.1007/s11262-017-1450-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Walls AC, Tortorici MA, Frenz B, Snijder J, Li W, Rey FA, DiMaio F, Bosch BJ, Veesler D (2016) Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 23:899–905. https://doi.org/10.1038/nsmb.3293
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Luo C, Zhang W, Li F (2018) Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. PLoS Pathog 14:e1007009. https://doi.org/10.1371/journal.ppat.1007009
Article
CAS
PubMed
PubMed Central
Google Scholar
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263. https://doi.org/10.1126/science.abb2507
Article
CAS
PubMed
PubMed Central
Google Scholar
Wrapp D, McLellan JS (2019) The 3.1-angstrom cryo-electron microscopy structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation. J Virol 93:e00923-e1019. https://doi.org/10.1128/JVI.00923-19
Article
CAS
PubMed
PubMed Central
Google Scholar
Kato T, Kajikawa M, Maenaka K, Park EY (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85:459–470. https://doi.org/10.1007/s00253-009-2267-2
Article
CAS
PubMed
Google Scholar
Yamashita M, Xu J, Morokuma D, Hirata K, Hino M, Mon H, Takahashi M, Hamdan SM, Sakashita K, Iiyama K, Banno Y, Kusakabe T, Lee JM (2017) Characterization of recombinant Thermococcus kodakaraensis (KOD) DNA polymerases produced using silkworm-baculovirus expression vector system. Mol Biotechnol 59:221–233. https://doi.org/10.1007/s12033-017-0008-9
Article
CAS
PubMed
Google Scholar
Kobayashi M, Xu J, Kakino K, Masuda A, Hino M, Fujimoto N, Minamihata K, Kamiya N, Mon H, Iida H, Takahashi M, Kusakabe T, Man Lee J (2020) Optimal silkworm larva host for high-level production of Mus musculus IL-4 using a baculovirus expression vector system. J Asia Pac Entomol 23:268–273. https://doi.org/10.1016/j.aspen.2019.12.014
Article
Google Scholar
Masuda A, Lee JM, Miyata T, Sato T, Hayashi S, Hino M, Morokuma D, Karasaki N, Mon H, Kusakabe T (2018) Purification and characterization of immunogenic recombinant virus-like particles of porcine circovirus type 2 expressed in silkworm pupae. J Gen Virol 99:917–926. https://doi.org/10.1099/jgv.0.001087
Article
CAS
PubMed
Google Scholar
Kawakami N, Lee JM, Mon H, Kubo Y, Banno Y, Kawaguchi Y, Maenaka K, Park EY, Koga K, Kusakabe T (2008) Efficient protein expression in Bombyx mori larvae of the strain d17 highly sensitive to B. mori nucleopolyhedrovirus. Mol Biotechnol 40:180–185. https://doi.org/10.1007/s12033-008-9074-3
Article
CAS
PubMed
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315
Article
CAS
PubMed
Google Scholar
Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379. https://doi.org/10.1093/bioinformatics/14.4.378
Article
CAS
PubMed
Google Scholar
Sato T, Takeyama N, Katsumata A, Tuchiya K, Kodama T, Kusanagi K (2011) Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo. Virus Genes 43:72–78. https://doi.org/10.1007/s11262-011-0617-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Dames SA, Kammerer RA, Wiltscheck R, Engel J, Alexandrescu AT (1998) NMR structure of a parallel homotrimeric coiled coil. Nat Struct Mol Biol 5:687–691. https://doi.org/10.1038/90444
Article
CAS
Google Scholar
Ono C, Nakatsukasa T, Nishijima Y, Asano S, Sahara K, Bando H (2007) Construction of the BmNPV T3 bacmid system and its application to the functional analysis of BmNPV he65. J Insect Biotechnol Sericol 76:161–167. https://doi.org/10.11416/jibs.76.3_161
Article
CAS
Google Scholar
Park EY, Abe T, Kato T (2008) Improved expression of fusion protein using a cysteine- protease- and chitinase-deficient Bombyx mori (silkworm) multiple nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnol Appl Biochem 49:135. https://doi.org/10.1042/BA20070098
Article
CAS
PubMed
Google Scholar
Guo X-Y, Guo T-Q, Wang S-P, Wang J-Y, Lu C-D (2005) Silk gland specific secretory expression of egfp gene in silkworm Bombyx mori with rAcMNPV system. Arch Virol 150:1151–1160. https://doi.org/10.1007/s00705-004-0479-4
Article
CAS
PubMed
Google Scholar
Hitchman RB, Possee RD, Crombie AT, Chambers A, Ho K, Siaterli E, Lissina O, Sternard H, Novy R, Loomis K, Bird LE, Owens RJ, King LA (2010) Genetic modification of a baculovirus vector for increased expression in insect cells. Cell Biol Toxicol 26:57–68. https://doi.org/10.1007/s10565-009-9133-y
Article
CAS
PubMed
Google Scholar
Van Diep N, Sueyoshi M, Norimine J, Hirai T, Myint O, Teh APP, Izzati UZ, Fuke N, Yamaguchi R (2018) Molecular characterization of US-like and Asian non-S INDEL strains of porcine epidemic diarrhea virus (PEDV) that circulated in Japan during 2013–2016 and PEDVs collected from recurrent outbreaks. BMC Vet Res 14:96. https://doi.org/10.1186/s12917-018-1409-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Petit CM, Chouljenko VN, Iyer A, Colgrove R, Farzan M, Knipe DM, Kousoulas KG (2007) Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology 360:264–274. https://doi.org/10.1016/j.virol.2006.10.034
Article
CAS
PubMed
Google Scholar
Harakuni T, Andoh K, Sakamoto R, Tamaki Y, Miyata T, Uefuji H, Yamazaki K, Arakawa T (2016) Fiber knob domain lacking the shaft sequence but fused to a coiled coil is a candidate subunit vaccine against egg-drop syndrome. Vaccine 34:3184–3190. https://doi.org/10.1016/j.vaccine.2016.04.005
Article
CAS
PubMed
Google Scholar
Makadiya N, Brownlie R, van den Hurk J, Berube N, Allan B, Gerdts V, Zakhartchouk A (2016) S1 domain of the porcine epidemic diarrhea virus spike protein as a vaccine antigen. Virol J 13:57. https://doi.org/10.1186/s12985-016-0512-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang C-Y, Hsu W-T, Tsai P-S, Chen C-M, Cheng I-C, Chao Y-C, Chang H-W (2020) Oral administration of porcine epidemic diarrhea virus spike protein expressing in silkworm pupae failed to elicit immune responses in pigs. AMB Expr 10:20. https://doi.org/10.1186/s13568-020-0952-9
Article
CAS
Google Scholar
Chang C-Y, Hsu W-T, Chao Y-C, Chang H-W (2018) Display of porcine epidemic diarrhea virus spike protein on baculovirus to improve immunogenicity and protective efficacy. Viruses 10:346. https://doi.org/10.3390/v10070346
Article
CAS
PubMed Central
Google Scholar
Selvarajah S, Puffer BA, Lee F-H, Zhu P, Li Y, Wyatt R, Roux KH, Doms RW, Burton DR (2008) Focused dampening of antibody response to the immunodominant variable loops by engineered soluble gp140. AIDS Res Hum Retroviruses 24:301–314. https://doi.org/10.1089/aid.2007.0158
Article
CAS
PubMed
Google Scholar
Kirchdoerfer RN, Bhandari M, Martini O, Sewall LM, Bangaru S, Yoon K-J, Ward AB (2020) Structure and immune recognition of the porcine epidemic diarrhea virus spike protein. Structure 29:385-392.e5. https://doi.org/10.1016/j.str.2020.12.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang YC, Chang CY, Tsai PS, Chiou HY, Jeng CR, Pang VF, Chang HW (2018) Efficacy of heat-labile enterotoxin B subunit-adjuvanted parenteral porcine epidemic diarrhea virus trimeric spike subunit vaccine in piglets. Appl Microbiol Biotechnol 102:7499–7507. https://doi.org/10.1007/s00253-018-9110-6
Article
CAS
PubMed
Google Scholar
Lee JM, Mon H, Takahashi M, Kawakami N, Mitsunobu H, Banno Y, Koga K, Uchino K, Kawaguchi Y, Kusakabe T (2007) Screening of high-permissive silkworm strains for efficient recombinant protein production in Autographa californica nuclear polyhedrosis virus (AcNPV). J Insect Biotechnol Sericol 76:101–105. https://doi.org/10.11416/jibs.76.2_101
Article
CAS
Google Scholar
Gillam F, Zhang J, Zhang C (2018) Hepatitis B core antigen based novel vaccine against porcine epidemic diarrhea virus. J Virol Methods 253:61–69. https://doi.org/10.1016/j.jviromet.2017.11.003
Article
CAS
PubMed
Google Scholar
Thomas JT, Chen Q, Gauger PC, Giménez-Lirola LG, Sinha A, Harmon KM, Madson DM, Burrough ER, Magstadt DR, Salzbrenner HM, Welch MW, Yoon K-J, Zimmerman JJ, Zhang J (2015) Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naïve conventional neonatal and weaned pigs. PLoS One 10:e0139266. https://doi.org/10.1371/journal.pone.0139266
Article
CAS
PubMed
PubMed Central
Google Scholar
Langel SN, Paim FC, Lager KM, Vlasova AN, Saif LJ (2016) Lactogenic immunity and vaccines for porcine epidemic diarrhea virus (PEDV): historical and current concepts. Virus Res 226:93–107. https://doi.org/10.1016/j.virusres.2016.05.016
Article
CAS
PubMed
PubMed Central
Google Scholar