Rozas M, Enríquez R (2014) Piscirickettsiosis and Piscirickettsia salmonis in fish: a review. J Fish Dis 37:163–188. https://doi.org/10.1111/jfd.12211
Article
CAS
Google Scholar
Yáñez JM, Yoshida GM, Parra Á, Correa K, Barría A, Bassini LN et al (2019) Comparative genomic analysis of three salmonid species identifies functional candidate genes involved in resistance to the intracellular bacterium Piscirickettsia salmonis. Front Genet. 10:665. https://doi.org/10.3389/fgene.2019.00665
Article
CAS
Google Scholar
Cvitanich JD, Garate NO, Smith CE (1991) The isolation of a rickettsia-like organism causing disease and mortality in Chilean salmonids and its confirmation by Koch’s postulate. J Fish Dis 14:121–145
Article
Google Scholar
Pulgar R, Travisany D, Zuñiga A, Maass A, Cambiazo V (2015) Complete genome sequence of Piscirickettsia salmonis LF-89 (ATCC VR-1361) a major pathogen of farmed salmonid fish. J Biotechnol 212:30–31
Article
CAS
Google Scholar
McCarthy UM, Bron JE, Brown L, Pourahmad F, Bricknell IR, Thompson KD et al (2008) Survival and replication of Piscirickettsia salmonis in rainbow trout head kidney macrophages. Fish Shellfish Immunol 25:477–484. https://doi.org/10.1016/j.fsi.2008.07.005
Article
CAS
Google Scholar
Bravo S. Environmental impacts and management of veterinary medicines in aquaculture: the case of salmon aquaculture in Chile. FAO Fisheries and Aquaculture Technical Paper. 2012; 11–24. https://www.cabdirect.org/cabdirect/abstract/20133060786. Accessed 12 Jun 2020.
Laws M, Shaaban A, Rahman KM (2019) Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev 43:490–516. https://doi.org/10.1093/femsre/fuz014
Article
CAS
Google Scholar
Henríquez P, Kaiser M, Bohle H, Bustos P, Mancilla M (2016) Comprehensive antibiotic susceptibility profiling of Chilean Piscirickettsia salmonis field isolates. J Fish Dis 39:441–448
Article
Google Scholar
Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R (2018) Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discovery 17:35–56
Article
CAS
Google Scholar
Czyż DM, Potluri LP, Jain-Gupta N, Riley SP, Martinez JJ, Steck TL et al (2014) Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens. mBio 5:1–14
Article
Google Scholar
Setoain J, Franch M, Martínez M, Tabas-Madrid D, Sorzano COS, Bakker A et al (2015) NFFinder: an online bioinformatics tool for searching similar transcriptomics experiments in the context of drug repositioning. Nucleic Acids Res 43:W193–W199. https://doi.org/10.1093/nar/gkv445
Article
CAS
Google Scholar
Vera T, Isla A, Cuevas A, Figueroa J (2012) Un nuevo medio de cultivo líquido para el patógeno Piscirickettsia salmonis. Arch Med Vet 44:273–277
Article
CAS
Google Scholar
Yañez J, Valenzuela K, Silva H, Retamales J, Romero A, Enriquez R et al (2012) Broth medium for the successful culture of the fish pathogen Piscirickettsia salmonis. Dis Aquat Organ. 97:197–205. https://doi.org/10.3354/dao02403
Article
Google Scholar
Henríquez M, González E, Marshall SH, Henríquez V, Gómez FA, Martínez I et al (2013) A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions. PLoS One 8:e71830. https://doi.org/10.1371/journal.pone.0071830
Article
CAS
Google Scholar
Pulgar R, Hödar C, Travisany D, Zuñiga A, Domínguez C, Maass A et al (2015) Transcriptional response of Atlantic salmon families to Piscirickettsia salmonis infection highlights the relevance of the iron-deprivation defence system. BMC Genomics 16:495. https://doi.org/10.1186/s12864-015-1716-9
Article
CAS
Google Scholar
Calquín P, Ruiz P, Oliver C, Sánchez P, Haro R, Oliva H et al (2018) Physiological evidence that Piscirickettsia salmonis produces siderophores and uses iron from different sources. J Fish Dis 41:553–558
Article
Google Scholar
Cianciulli P (2009) Iron chelation therapy in thalassemia syndromes. Mediterr J Hematol Infect Dis 1:1–7
Article
Google Scholar
Naser M, Mehrnoosh S, Hassan E, Hajar N, Mehdi S, Mohsen S et al (2016) A review on iron chelators in treatment of iron overload syndromes. Int J Hematol Stem Cell Res 10:239–247
Google Scholar
Kwiatkowski J (2011) Management of transfusional iron overload – differential properties and efficacy of iron chelating agents. J Blood Med 2:135
Article
CAS
Google Scholar
Kuo KHM, Mrkobrada M (2014) A systematic review and meta-analysis of deferiprone monotherapy and in combination with deferoxamine for reduction of iron overload in chronically transfused patients with β-thalassemia. Hemoglobin 38:409–421
Article
CAS
Google Scholar
Saliba AN, Harb AR, Taher AT (2015) Iron chelation therapy in transfusion-dependent thalassemia patients: current strategies and future directions. J Blood Med 6:197–209
CAS
Google Scholar
Li J, Lin Y, Li X, Zhang J. Economic evaluation of chelation regimens for β-Thalassemia Major: a systematic review. Mediterran J Hematol Infect Dis. 2019;11.
Georgiou NA, van der Bruggen T, Oudshoorn M, Nottet HSLM, Marx JJM, van Asbeck BS (2000) Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J Infect Dis 181:484–490. https://doi.org/10.1086/315223
Article
CAS
Google Scholar
Soummer A, Mathonnet A, Scatton O, Massault PP, Paugam A, Lemiale V et al (2008) Failure of deferasirox, an iron chelator agent, combined with antifungals in a case of severe zygomycosis. Antimicrob Agents Chemother 52:1585–1586
Article
CAS
Google Scholar
Kontoghiorghes GJ, Kolnagou A, Skiada A, Petrikkos G (2010) The role of iron and chelators on infections in iron overload and non iron loaded conditions: prospects for the design of new antimicrobial therapies. Hemoglobin 34:227–239
Article
CAS
Google Scholar
Gehrke SS, Pinto EG, Steverding D, Pleban K, Tempone AG, Hider RC et al (2013) Conjugation to 4-aminoquinoline improves the anti-trypanosomal activity of Deferiprone-type iron chelators. Bioorganic Med Chem 21:805–813. https://doi.org/10.1016/j.bmc.2012.11.009
Article
CAS
Google Scholar
Chitasombat MN, Niparuck P (2018) Deferiprone as adjunctive treatment for patients with invasive mucormycosis: A retrospective case series. Infect Dis Rep 10:30–35
Article
Google Scholar
Strober W (2015) Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 111:A3B1–A3B3
Article
Google Scholar
Mandakovic D, Glasner B, Maldonado J, Aravena P, González M, Cambiazo V, et al. Genomic-based restriction enzyme selection for specific detection of Piscirickettsia salmonis by 16S rDNA PCR-RFLP. Front Microbiol. 2016;7.
Zúñiga A, Aravena P, Pulgar R, Travisany D, Ortiz-Severín J, Chávez FP, et al. Transcriptomic Changes of Piscirickettsia salmonis during intracellular growth in a salmon macrophage-like cell line. Front Cell Infect Microbiol. 2020;9.
Elkablawy MA, Maxwell P, Williamson K, Anderson N, Hamilton PW (2001) Apoptosis and cell-cycle regulatory proteins in colorectal carcinoma: relationship to tumour stage and patient survival. J Pathol 194:436–443. https://doi.org/10.1002/path.894
Article
CAS
Google Scholar
Council NR (2011) Nutrient requirements of fish and shrimp. National Academies Press, New York
Google Scholar
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45
Article
CAS
Google Scholar
Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167
Article
CAS
Google Scholar
Varma DM, Zahid MSH, Bachelder EM, Ainslie KM. Formulation of host-targeted therapeutics against bacterial infections. Transl Res. 2020.
Rise ML, Jones SRM, Brown GD, von Schalburg KR, Davidson WS, Koop BF (2004) Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response to Piscirickettsia salmonis infection. Physiol Genomics 20:21–35. https://doi.org/10.1152/physiolgenomics.00036.2004
Article
CAS
Google Scholar
Tacchi L, Bron JE, Taggart JB, Secombes CJ, Bickerdike R, Adler M et al (2011) Multiple tissue transcriptomic responses to Piscirickettsia salmonis in Atlantic salmon (Salmo salar). Physiol Genomics. 43:1241–54. https://doi.org/10.1152/physiolgenomics.00086.2011
Article
CAS
Google Scholar
Valenzuela-Miranda D, Gallardo-Escárate C (2016) Novel insights into the response of Atlantic salmon (Salmo salar) to Piscirickettsia salmonis: interplay of coding genes and lncRNAs during bacterial infection. Fish Shellfish Immunol 59:427–438
Article
CAS
Google Scholar
Valenzuela-Miranda D, Gallardo-Escárate C (2018) Dual RNA-Seq Uncovers metabolic amino acids dependency of the intracellular bacterium Piscirickettsia salmonis infecting atlantic salmon. Front Microbiol 9:2877. https://doi.org/10.3389/fmicb.2018.02877
Article
Google Scholar
Rise ML, von Schalburg KR, Brown GD, Mawer MA, Devlin RH, Kuipers N et al (2004) Development and application of a salmonid EST database and cDNA microarray: Data mining and interspecific hybridization characteristics. Genome Res 14:478–490
Article
Google Scholar
Glickstein H, Ben R, Link G, Breuer W, Konijn AM, Hershko C et al (2006) Action of chelators in iron-loaded cardiac cells: accessibility to intracellular labile iron and functional consequences. Blood 108:3195–3203
Article
CAS
Google Scholar
Vlachodimitropoulou Koumoutsea E, Garbowski M, Porter J (2015) Synergistic intracellular iron chelation combinations: Mechanisms and conditions for optimizing iron mobilization. Br J Haematol 170:874–883
Article
CAS
Google Scholar
Andersen F, Lorentzen M, Waagbo R, Maage A (1997) Bioavailability and interactions with other micronutrients of three dietary iron sources in Atlantic salmon, Salmo salar, smolts. Aquac Nutr 3:239–246. https://doi.org/10.1046/j.1365-2095.1997.00096.x
Article
CAS
Google Scholar
Chan GCF, Chan S, Ho PL, Ha SY (2009) Effects of chelators (Deferoxamine, deferiprone and deferasirox) on the growth of klebsiella pneumoniae and aeromonas hydrophila isolated from transfusion-dependent thalassemia patients. Hemoglobin 33:352–360
Article
CAS
Google Scholar
Fernandes SS, Nunes A, Gomes AR, de Castro B, Hider RC, Rangel M et al (2010) Identification of a new hexadentate iron chelator capable of restricting the intramacrophagic growth of Mycobacterium avium. Microbes Infect 12:287–294
Article
CAS
Google Scholar
Kim CM, Shin SH (2009) Effect of iron-chelator deferiprone on the in vitro growth of staphylococci. J Korean Med Sci 24:289–295
Article
CAS
Google Scholar
Qiu DH, Huang ZL, Zhou T, Shen C, Hider RC (2011) In vitro inhibition of bacterial growth by iron chelators. FEMS Microbiol Lett 314:107–111
Article
CAS
Google Scholar
Van Asbeck BS, Georgiou NA, Van der Bruggen T, Oudshoorn M, Nottet HSLM, Marx JJM (2001) Anti-HIV effect of iron chelators: different mechanisms involved. J Clin Virol 20:141–147
Article
Google Scholar
Zarember KA, Cruz AR, Huang CY, Gallin JI (2009) Antifungal activities of natural and synthetic iron chelators alone and in combination with azole and polyene antibiotics against Aspergillus fumigatus. Antimicrob Agents Chemother 53:2654–2656
Article
CAS
Google Scholar
Lesic B, Foulon J, Carniel E (2002) Comparison of the effects of deferiprone versus deferoxamine on growth and virulence of Yersinia enterocolitica. Antimicrob Agents Chemother 46:1741–1745
Article
CAS
Google Scholar
Kim C, Park R, Choi M, Sun H, Shin S (2007) Ferrophilic Characteristics of Vibrio vulnificus and potential usefulness of iron chelation therapy. J Infect Dis 195:90–98. https://doi.org/10.1086/509822
Article
CAS
Google Scholar
Haider BA, Spiegelman D, Hertzmark E, Sando D, Duggan C, Makubi A et al (2019) Anemia, iron deficiency, and iron supplementation in relation to mortality among HIV-infected patients receiving highly active antiretroviral therapy in Tanzania. Am J Trop Med Hyg 100:1512–1520
Article
CAS
Google Scholar
Ibrahim A, Edwards J, Fu Y, Spellberg B (2006) Deferiprone iron chelation as a novel therapy for experimental mucormycosis. J Antimicrob Chemother 58:1070–1073
Article
CAS
Google Scholar
Smith HJ, Meremikwu MM. Iron-chelating agents for treating malaria. Cochrane Database Syst Rev. 2003.
Collins HL, Kaufmann SHE, Schaible UE (2002) Iron chelation via deferoxamine exacerbates experimental salmonellosis via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase-dependent respiratory burst. J Immunol 168:3458–3463
Article
CAS
Google Scholar
Neupane GP, Kim D-M (2009) Comparison of the effects of deferasirox, deferiprone, and deferoxamine on the growth and virulence of Vibrio vulnificus. Transfusion 49:1762–1769. https://doi.org/10.1111/j.1537-2995.2009.02186.x
Article
CAS
Google Scholar
Schupp T, Toupet C, Divers M (1988) Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene 64:179–188
Article
CAS
Google Scholar
Valenzuela-Muñoz V, Valenzuela-Miranda D, Gonçalves AT, Novoa B, Figueras A, Gallardo-Escárate C (2020) Induced-iron overdose modulate the immune response in Atlantic salmon increasing the susceptibility to Piscirickettsia salmonis infection. Aquaculture 521:735058
Article
Google Scholar
Puglisi A, Spencer J, Oliveri V, Vecchio G, Kong X, Clarke J et al (2012) Synthesis, physicochemical properties and antioxidant activity of deferiprone-cyclodextrin conjugates and their iron(iii) complexes. Dalt Trans 41:2877–2883
Article
CAS
Google Scholar
Tarifeño-Saldivia E, Aguilar A, Contreras D, Mercado L, Morales-Lange B, Márquez K et al (2018) Iron overload is associated with oxidative stress and nutritional immunity during viral infection in fish. Front Immunol. 9:1296
Article
Google Scholar