De Vries A (2006) Economic value of pregnancy in dairy cattle. J Dairy Sci 89:3876–3885
Article
PubMed
Google Scholar
Barkallah M, Gharbi Y, Hassena AB, Slima AB, Mallek Z, Gautier M, Greub G, Gdoura R, Fendri I (2014) Survey of infectious etiologies of bovine abortion during mid- to late gestation in dairy herds. PLoS One 9:e91549
Article
PubMed
PubMed Central
Google Scholar
Cabell E (2007) Bovine abortion: etiology and investigations. In Practice 29:455–463
Article
Google Scholar
Vidal Lopez S, Greub G, Aeby S, Perreten V, Rodriguez-Campos S (2016) Neglected zoonotic agents in cattle abortion: molecular and serological screening of difficult to grow bacteria. In: Proceedings of the 7th World Congress on Microbiology, Valencia, November 2016. p 57. http://doi.org/10.4172/2155-9597.C1.025
Hopper RM (2015) Fetal disease and abortion: diagnosis and causes. In: Bovine reproduction, Chapter 54, 1st edn. Wiley-Blackwell, Oxford, pp 481–517
Borel N, Ruhl S, Casson N, Kaiser C, Pospischil A, Greub G (2007) Parachlamydia spp. and related Chlamydia-like organisms and bovine abortion. Emerg Infect Dis 13:1904–1907
Article
PubMed
PubMed Central
Google Scholar
Holler LD (2013) Diagnosis and control measures for opportunist infectious causes of reproductive failure. Proceedings of applied reproductive strategies in beef cattle, Staunton, Virginia October 2013. Dealing with pregnancy and birth losses, pp 205–208
Cooper VL (2012) Diagnostic pathology. Vet Clin North Am Food Anim Pract. doi:10.1016/j.cvfa.2012.07.012
PubMed
Google Scholar
Anderson ML (2007) Infectious causes of bovine abortion during mid- to late-gestation. Theriogenology 68:474–486
Article
PubMed
Google Scholar
Wheelhouse N, Mearns R, Willoughby K, Wright E, Turnbull D, Longbottom D (2015) Evidence of members of the Chlamydiales in bovine abortions in England and Wales. Vet Rec 176:465
Article
CAS
PubMed
Google Scholar
Deusch S, Tilocca B, Camarinha-Silva A, Seifert J (2014) News in livestock research—use of Omics-technologies to study the microbiota in the gastrointestinal tract of farm animals. Comput Struct Biotechnol J 13:55–63
Article
PubMed
PubMed Central
Google Scholar
Abril C, Thomann A, Brodard I, Wu N, Ryser-Degiorgis MP, Frey J, Overesch G (2011) A novel isolation method of Brucella species and molecular tracking of Brucella suis biovar 2 in domestic and wild animals. Vet Microbiol 150:405–410
Article
CAS
PubMed
Google Scholar
Babraham Bioinformatics. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Accessed 13 Jan 2017
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12
Article
Google Scholar
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461
Article
CAS
PubMed
Google Scholar
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998
Article
CAS
PubMed
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high- throughput community sequencing data. Nat Method 7:335–336
Article
CAS
Google Scholar
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeont Electronica 4:9
Google Scholar
Harwood LJ, Thomann A, Brodard I, Makaya PV, Perreten V (2009) Campylobacter fetus subspecies venerealis transport medium for enrichment and PCR. Vet Rec 165:507–508
Article
CAS
PubMed
Google Scholar
Jewell KA, McCormick CA, Odt CL, Weimer PJ, Suen G (2015) Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency. Appl Environ Microbiol 81:4697–4710
Article
CAS
PubMed
PubMed Central
Google Scholar
McCann JC, Wickersham TA, Loor JJ (2014) High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform Biol Insights 8:109–125
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandri M, Manfrin C, Pallavicini A, Stefanon B (2014) Microbial diversity of the liquid fraction of rumen content from lactating cows. Animal 8:572–579
Article
CAS
PubMed
Google Scholar
Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH (2015) Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:14567
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao S, Zhang M, Liu J, Zhu W (2015) Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci Rep 5:16116
Article
CAS
PubMed
PubMed Central
Google Scholar
Holman DB, Timsit E, Alexander TW (2015) The nasopharyngeal microbiota of feedlot cattle. Sci Rep 5:15557
Article
CAS
PubMed
PubMed Central
Google Scholar
Oikonomou G, Machado VS, Santisteban C, Schukken YH, Bicalho RC (2012) Microbial diversity of bovine mastitic milk as described by pyrosequencing of metagenomic 16 s rDNA. PLoS One 7:e47671
Article
CAS
PubMed
PubMed Central
Google Scholar
Oikonomou G, Bicalho ML, Meira E, Rossi RE, Foditsch C, Machado VS, Teixeira AG, Santisteban C, Schukken YH, Bicalho RC (2014) Microbiota of cow’s milk; distinguishing healthy, sub-clinically and clinically diseased quarters. PLoS One 9:e85904
Article
PubMed
PubMed Central
Google Scholar
Kuehn JS, Gorden PJ, Munro D, Rong R, Dong Q, Plummer PJ, Wang C, Phillips GJ (2013) Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis. PLoS One 8:e61959
Article
CAS
PubMed
PubMed Central
Google Scholar
Falentin H, Rault L, Nicolas A, Bouchard DS, Lassalas J, Lamberton P, Aubry JM, Marnet PG, Le Loir Y, Even S (2016) Bovine teat microbiome analysis revealed reduced alpha diversity and significant changes in taxonomic profiles in quarters with a history of mastitis. Front Microbiol 7:480
Article
PubMed
PubMed Central
Google Scholar
Machado VS, Oikonomou G, Bicalho ML, Knauer WA, Gilbert R, Bicalho RC (2012) Investigation of postpartum dairy cows’ uterine microbial diversity using metagenomic pyrosequencing of the 16S rRNA gene. Vet Microbiol 159:460–469
Article
CAS
PubMed
Google Scholar
Swartz JD, Lachman M, Westveer K, O’Neill T, Geary T, Kott RW, Berardinelli JG, Hatfield PG, Thomson JM, Roberts A, Yeoman CJ (2014) Characterization of the vaginal microbiota of ewes and cows reveals a unique microbiota with low levels of lactobacilli and near-neutral pH. Front Vet Sci 1:19
Article
PubMed
PubMed Central
Google Scholar
Jeon SJ, Vieira-Neto A, Gobikrushanth M, Daetz R, Mingoti RD, Parize AC, de Freitas SL, da Costa AN, Bicalho RC, Lima S, Jeong KC, Galvão KN (2015) Uterine microbiota progression from calving until establishment of metritis in dairy cows. Appl Environ Microbiol 8:6324–6332
Article
Google Scholar
Rodrigues NF, Kästle J, Coutinho TJ, Amorim AT, Campos GB, Santos VM, Marques LM, Timenetsky J, de Farias ST (2015) Qualitative analysis of the vaginal microbiota of healthy cattle and cattle with genital-tract disease. Genet Mol Res 14:6518–6528
Article
CAS
PubMed
Google Scholar
Blumer S, Greub G, Waldvogel A, Hässig M, Thoma R, Tschuor A, Pospischil A, Borel N (2011) Waddlia, Parachlamydia and Chlamydiaceace in bovine abortion. Vet Microbiol 152:385–393
Article
CAS
PubMed
Google Scholar
Berri M, Rekiki A, Boumedine KS, Rodolakis A (2009) Simultaneous differential detection of Chlamydophila abortus, Chlamydophila pecorum and Coxiella burnetii from aborted ruminant’s clinical samples using multiplex PCR. BMC Microbiol 9:130
Article
PubMed
PubMed Central
Google Scholar
Clemente L, Barahona MJ, Andrade MF, Botelho A (2009) Diagnosis by PCR of Coxiella burnetii in aborted foetuses of domestic ruminants in Portugal. Vet Rec 164:373–374
Article
CAS
PubMed
Google Scholar
Selim AM, Elhaig MM, Gaede W (2014) Development of multiplex real-time PCR assay for the detection of Brucella spp., Leptospira spp. and Campylobacter foetus. Vet Ital 50:269–275
PubMed
Google Scholar
Yaeger MJ, Holler LD (2007) Bacterial causes of bovine infertility and abortion. In: Current therapy in large animal theriogenology, Section II, Chapter 49, 2nd edn. Elsevier, St. Louis, pp 389–399
Anderson ML (2012) Disorders of cattle. In: Kirkbride’s diagnosis of abortion and neonatal loss in animals, Chapter 2, 4th edn. Wiley-Blackwell, Oxford, pp 13–48
Borel N, Frey CF, Gottstein B, Hilbe M, Pospischil A, Franzoso FD, Waldvogel A (2014) Laboratory diagnosis of ruminant abortion in Europe. Vet J 200:218–229
Article
PubMed
Google Scholar
Syrjälä P, Anttila M, Dillard K, Fossi M, Collin K, Nylund M, Autio T (2007) Causes of bovine abortion, stillbirth and neonatal death in Finland 1999–2006. Acta Vet Scand 49:S3
Article
Google Scholar
Delooz L, Czaplicki G, Gregoire F, Dal Pozzo F, Pez F, Kodjo A, Saegerman C (2017) Serogroups and genotypes of Leptospira spp. strains from bovine aborted fetuses. Transbound Emerg Dis. doi:10.1111/tbed.12643
Google Scholar
Clothier K, Anderson M (2016) Evaluation of bovine abortion cases and tissue suitability for identification of infectious agents in California diagnostic laboratory cases from 2007 to 2012. Theriogenology 85:933–938
Article
CAS
PubMed
Google Scholar
Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P (2013) Metagenomics for pathogen detection in public health. Genome Med 5:81
Article
PubMed
PubMed Central
Google Scholar
Hilton SK, Castro-Nallar E, Pérez-Losada M, Toma I, McCaffrey TA, Hoffman EP, Siegel MO, Simon GL, Johnson WE, Crandall KA (2016) Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology. Front Microbiol 7:484
Article
PubMed
PubMed Central
Google Scholar
Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidi KT (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 9:e93827
Article
PubMed
PubMed Central
Google Scholar
Linde HJ, Kobuch R, Jayasinghe S, Reischl U, Lehn N, Kaulfuss S, Beutin L (2004) Vibrio metschnikovii, a rare cause of wound infection. J Clin Microbiol 42:4909–4911
Article
PubMed
PubMed Central
Google Scholar
Plumed-Ferrer C, Uusikylä K, Korhonen J, von Wright A (2013) Characterization of Lactococcus lactis isolates from bovine mastitis. Vet Microbiol 16:592–599
Article
Google Scholar
King JS (1981) Streptococcus uberis: a review of its role as a causative organism of bovine mastitis. I. Characteristics of the organism. Br Vet J 137:36–52
CAS
PubMed
Google Scholar
Kirkbride CA (1993) Bacterial agents detected in a 10-year study of bovine abortions and stillbirths. J Vet Diagn Invest 5:64–68
Article
CAS
PubMed
Google Scholar
Bizzarro S, Loos BG, Laine ML, Crielaard W, Zaura EJ (2013) Subgingival microbiome in smokers and non-smokers in periodontitis: an exploratory study using traditional targeted techniques and a next-generation sequencing. Clin Periodontol 40:483–492
Article
Google Scholar
Wohlgemuth K, Pierce RL, Kirkbride CA (1972) Bovine abortion associated with Aeromonas hydrophila. J Am Vet Med Assoc 160:1001–1002
CAS
PubMed
Google Scholar
Brodzki P, Bochniarz M, Brodzki A, Wrona Z, Wawron W (2014) Trueperella pyogenes and Escherichia coli as an etiological factor of endometritis in cows and the susceptibility of these bacteria to selected antibiotics. Pol J Vet Sci 17:657–664
CAS
PubMed
Google Scholar
Bicalho RC, Machado VS, Bicalho ML, Gilbert RO, Teixeria AG, Caixeta LS, Pereira RV (2010) Molecular and epidemiological characterization of bovine intrauterine Escherichia coli. J Dairy Sci 93:5818–5830
Article
CAS
PubMed
Google Scholar
Gautam G, Nakao T, Koike K, Long ST, Yusuf M, Ranasinghe RM, Hayashi A (2010) Spontaneous recovery or persistence of postpartum endometritis and risk factors for its persistence in Holstein cows. Theriogenology 73:168–179
Article
CAS
PubMed
Google Scholar
Kirkbride CA, Gates CE, Libal MC (1989) Ovine and bovine abortion associated with Fusobacterium nucleatum. J Vet Diagn Invest 1:272–273
Article
CAS
PubMed
Google Scholar
Otter A (1996) Fusobacterium necrophorum abortion in a cow. Vet Rec 139:318–319
Article
CAS
PubMed
Google Scholar
Razzauti M, Galan M, Bernard M, Maman S, Klopp C, Charbonnel N, Vayssier-Taussat M, Eloit M, Cosson JF (2015) A comparison between transcriptome sequencing and 16S metagenomics for detection of bacterial pathogens in wildlife. PLoS Negl Trop Dis 9:e0003929
Article
PubMed
PubMed Central
Google Scholar
Salzberg SL, Breitwieser FP, Kumar A, Hao H, Burger P, Rodriguez FJ, Lim M, Quiñones-Hinojosa A, Gallia GL, Tornheim JA, Melia MT, Sears CL, Pardo CA (2016) Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system. Neurol Neuroimmunol Neuroinflamm 3:e251
Article
PubMed
PubMed Central
Google Scholar
Wesolowska-Andersen A, Bahl MI, Carvalho V, Kristiansen K, Sicheritz-Pontén T, Gupta R, Licht TR (2014) Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome 2:19
Article
PubMed
PubMed Central
Google Scholar
Rintala A, Pietilä S, Munukka E, Eerola E, Pursiheimo JP, Laiho A, Pekkala S, Huovinen P (2017) Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor. J Biomol Tech 28:19–30
PubMed
PubMed Central
Google Scholar
Stellato G, La Storia A, De Filippis F, Borriello G, Villani F, Ercolini D (2016) Overlap of spoilage-associated microbiota between meat and the meat processing environment in small-scale and large-scale retail distributions. Appl Environ Microbiol 82:4045–4054
Article
CAS
PubMed
PubMed Central
Google Scholar
Erkmen O, Bozoglu TF (2016) Food microbiology: Principles into practice. Wiley-Blackwell, Oxford, Volume 1, Section 5 pp 267–418
Clothier KA, Villanueva M, Torain A, Hult C, Wallace R (2015) Effects of bacterial contamination of media on the diagnosis of Tritrichomonas foetus by culture and real-time PCR. Vet Parasitol 208:143–149
Article
CAS
PubMed
Google Scholar
Moore SG, Ericsson AC, Poock SE, Melendez P, Lucy MC (2017) Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus. J Dairy Sci 100:4953–4960
Article
CAS
PubMed
Google Scholar
Kulichevskaya IS, Serkebaeva YM, Kim Y, Rijpstra WIC, Damsté SS, Liesack W, Dedysh SN (2012) Telmatocolasphagniphila gen nov., sp. nov., a novel dendriform planctomycete from northern wetlands. Front Microbiol 3:146
Article
PubMed
PubMed Central
Google Scholar
Horz HP, Conrads G (2010) The Discussion goes on: what is the role of Euryarchaeota in humans? Archaea 2010:967271
Article
PubMed
PubMed Central
Google Scholar
Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65
Article
PubMed
PubMed Central
Google Scholar
Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, Leite R, Elovitz MA, Parry S (2016) Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 4:29
Article
PubMed
PubMed Central
Google Scholar