Herberman RB, Nunn ME, Holden HT, Lavrin DH: Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 1975, 16: 230-239. 10.1002/ijc.2910160205.
Article
CAS
PubMed
Google Scholar
Kiessling R, Klein E, Pross H, Wigzell H: “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 1975, 5: 117-121. 10.1002/eji.1830050209.
Article
CAS
PubMed
Google Scholar
Fauriat C, Long EO, Ljunggren HG, Bryceson YT: Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010, 115: 2167-2176. 10.1182/blood-2009-08-238469.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lodoen MB, Lanier LL: Natural killer cells as an initial defense against pathogens. Curr Opin Immunol. 2006, 18: 391-398. 10.1016/j.coi.2006.05.002.
Article
CAS
PubMed
Google Scholar
Inngjerdingen M, Kveberg L, Naper C, Vaage JT: Natural killer cell subsets in man and rodents. Tissue Antigens. 2011, 78: 81-88. 10.1111/j.1399-0039.2011.01714.x.
Article
CAS
PubMed
Google Scholar
Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA: Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood. 2001, 97: 3146-3151. 10.1182/blood.V97.10.3146.
Article
CAS
PubMed
Google Scholar
Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, Behrens G, Sykora KW, Schmidt RE: CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol. 2001, 31: 3121-3127. 10.1002/1521-4141(2001010)31:10<3121::AID-IMMU3121>3.0.CO;2-4.
Article
CAS
PubMed
Google Scholar
Fu B, Wang F, Sun R, Ling B, Tian Z, Wei H: CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells. Immunology. 2011, 133: 350-359. 10.1111/j.1365-2567.2011.03446.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hayakawa Y, Smyth MJ: CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol. 2006, 176: 1517-1524.
Article
CAS
PubMed
Google Scholar
Marquardt N, Wilk E, Pokoyski C, Schmidt RE, Jacobs R: Murine CXCR3+CD27bright NK cells resemble the human CD56bright NK-cell population. Eur J Immunol. 2010, 40: 1428-1439. 10.1002/eji.200940056.
Article
CAS
PubMed
Google Scholar
Pescovitz MD, Lowman MA, Sachs DH: Expression of T-cell associated antigens by porcine natural killer cells. Immunology. 1988, 65: 267-271.
PubMed Central
CAS
PubMed
Google Scholar
Saalmüller A, Hirt W, Maurer S, Weiland E: Discrimination between two subsets of porcine CD8+ cytolytic T lymphocytes by the expression of CD5 antigen. Immunology. 1994, 81: 578-583.
PubMed Central
PubMed
Google Scholar
Denyer MS, Wileman TE, Stirling CM, Zuber B, Takamatsu HH: Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted cytotoxic T-cells. Vet Immunol Immunopathol. 2006, 110: 279-292. 10.1016/j.vetimm.2005.10.005.
Article
CAS
PubMed
Google Scholar
Richerson JT, Misfeldt ML: Host environment as a modulating factor of swine natural killer cell activity. Vet Immunol Immunopathol. 1989, 23: 309-319. 10.1016/0165-2427(89)90143-8.
Article
CAS
PubMed
Google Scholar
Worliczek HL, Buggelsheim M, Alexandrowicz R, Witter K, Schmidt P, Gerner W, Saalmüller A, Joachim A: Changes in lymphocyte populations in suckling piglets during primary infections with Isospora suis. Parasite Immunol. 2010, 32: 232-244. 10.1111/j.1365-3024.2009.01184.x.
Article
CAS
PubMed
Google Scholar
Pauly T, König M, Thiel HJ, Saalmüller A: Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes. J Gen Virol. 1998, 79: 31-40.
Article
CAS
PubMed
Google Scholar
Toka FN, Nfon C, Dawson H, Golde WT: Natural killer cell dysfunction during acute infection with foot-and-mouth disease virus. Clin Vaccine Immunol. 2009, 16: 1738-1749. 10.1128/CVI.00280-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Renukaradhya GJ, Alekseev K, Jung K, Fang Y, Saif LJ: Porcine reproductive and respiratory syndrome virus-induced immunosuppression exacerbates the inflammatory response to porcine respiratory coronavirus in pigs. Viral Immunol. 2010, 23: 457-466. 10.1089/vim.2010.0051.
Article
PubMed Central
CAS
PubMed
Google Scholar
Manickam C, Dwivedi V, Patterson R, Papenfuss T, Renukaradhya GJ: Porcine reproductive and respiratory syndrome virus induces pronounced immune modulatory responses at mucosal tissues in the parental vaccine strain VR2332 infected pigs. Vet Microbiol. 2013, 162: 68-77. 10.1016/j.vetmic.2012.08.021.
Article
CAS
PubMed
Google Scholar
Mair KH, Essler SE, Patzl M, Storset AK, Saalmüller A, Gerner W: NKp46 expression discriminates porcine NK cells with different functional properties. Eur J Immunol. 2012, 42: 1261-1271. 10.1002/eji.201141989.
Article
CAS
PubMed
Google Scholar
Halfteck GG, Elboim M, Gur C, Achdout H, Ghadially H, Mandelboim O: Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J Immunol. 2009, 182: 2221-2230. 10.4049/jimmunol.0801878.
Article
CAS
PubMed
Google Scholar
Glasner A, Ghadially H, Gur C, Stanietsky N, Tsukerman P, Enk J, Mandelboim O: Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J Immunol. 2012, 188: 2509-2515. 10.4049/jimmunol.1102461.
Article
CAS
PubMed
Google Scholar
Krämer B, Körner C, Kebschull M, Glässner A, Eisenhardt M, Nischalke HD, Alexander M, Sauerbruch T, Spengler U, Nattermann J: Natural killer p46(High) expression defines a natural killer cell subset that is potentially involved in control of hepatitis C virus replication and modulation of liver fibrosis. Hepatology. 2012, 56: 1201-1213.
Article
PubMed
Google Scholar
Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, Zakay-Rones Z, Porgador A, Mandelboim O: Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol. 2006, 7: 517-523.
Article
CAS
PubMed
Google Scholar
Achdout H, Meningher T, Hirsh S, Glasner A, Bar-On Y, Gur C, Porgador A, Mendelson M, Mandelboim M, Mandelboim O: Killing of avian and Swine influenza virus by natural killer cells. J Virol. 2010, 84: 3993-4001. 10.1128/JVI.02289-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jost S, Reardon J, Peterson E, Poole D, Bosch R, Alter G, Altfeld M: Expansion of 2B4+ natural killer (NK) cells and decrease in NKp46+ NK cells in response to influenza. Immunology. 2011, 132: 516-526. 10.1111/j.1365-2567.2010.03394.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A: P46, a Novel Natural Killer Cell-Specific Surface Molecule that Mediates Cell Activation. J Exp Med. 1997, 186: 1129-1136. 10.1084/jem.186.7.1129.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pessino A, Sivori S, Bottino C, Malaspina A, Morelli L, Moretta L, Biassoni R, Moretta A: Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med. 1998, 188: 953-960. 10.1084/jem.188.5.953.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Maria A, Biassoni R, Fogli M, Rizzi M, Cantoni C, Costa P, Conte R, Mavilio D, Ensoli B, Cafaro A, Moretta A, Moretta L: Identification, molecular cloning and functional characterization of NKp46 and NKp30 natural cytotoxicity receptors in Macaca fascicularis NK cells. Eur J Immunol. 2001, 31: 3546-3556. 10.1002/1521-4141(200112)31:12<3546::AID-IMMU3546>3.0.CO;2-W.
Article
CAS
PubMed
Google Scholar
Walzer T, Bléry M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, André P, Gauthier L, Daniel L, Chemin K, Morel Y, Dalod M, Imbert J, Pierres M, Moretta A, Romagné F, Vivier E: Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci U S A. 2007, 104: 3384-3389. 10.1073/pnas.0609692104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Biassoni R, Pessino A, Bottino C, Pende D, Moretta L, Moretta A: The murine homologue of the human NKp46, a triggering receptor involved in the induction of natural cytotoxicity. Eur J Immunol. 1999, 29: 1014-1020. 10.1002/(SICI)1521-4141(199903)29:03<1014::AID-IMMU1014>3.0.CO;2-O.
Article
CAS
PubMed
Google Scholar
Westgaard IH, Berg SF, Vaage JT, Wang LL, Yokoyama WM, Dissen E, Fossum S: Rat NKp46 activates natural killer cell cytotoxicity and is associated with FcεRIγ and CD3ζ. J Leukoc Biol. 2004, 76: 1200-1206. 10.1189/jlb.0903428.
Article
CAS
PubMed
Google Scholar
Storset AK, Kulberg S, Berg I, Boysen P, Hope JC, Dissen E: NKp46 defines a subset of bovine leukocytes with natural killer cell characteristics. Eur J Immunol. 2004, 34: 669-676. 10.1002/eji.200324504.
Article
CAS
PubMed
Google Scholar
Connelley T, Storset AK, Pemberton A, Machugh N, Brown J, Lund H, Morrison IW: NKp46 defines ovine cells that have characteristics corresponding to NK cells. Vet Res. 2011, 42: 37-10.1186/1297-9716-42-37.
Article
PubMed Central
CAS
PubMed
Google Scholar
Noronha LE, Harman RM, Wagner B, Antczak DF: Generation and characterization of monoclonal antibodies to equine NKp46. Vet Immunol Immunopathol. 2012, 147: 60-68. 10.1016/j.vetimm.2012.04.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saalmüller A, Jonjic S, Bühring HJ, Reddehase MJ, Koszinowski UH: Monoclonal antibodies reactive with swine lymphocytes. II. Detection of an antigen on resting T cells down-regulated after activation. J Immunol. 1987, 138: 1852-1857.
PubMed
Google Scholar
Reutner K, Leitner J, Essler SE, Witter K, Patzl M, Steinberger P, Saalmüller A, Gerner W: Porcine CD27: Identification, expression and functional aspects in lymphocyte subsets in swine. Dev Comp Immunol. 2012, 38: 321-331. 10.1016/j.dci.2012.06.011.
Article
CAS
PubMed
Google Scholar
Saalmüller A: Characterization of swine leukocyte differentiation antigens. Immunol Today. 1996, 17: 352-354. 10.1016/S0167-5699(96)90273-X.
Article
PubMed
Google Scholar
Holmes K, Lantz LM, Fowlkes BJ, Schmid I, Giorgi JV: Preparation of cells and reagents for flow cytometry. Curr Protoc Immunol. Edited by: Coligan JE, Bierer BE, Margulies DH, Shevach EM, Stober W. 2001, Somerset, NJ: Wiley, Chapter 5, pp Unit 3
Google Scholar
Gerner W, Käser T, Pintaric M, Groiss S, Saalmüller A: Detection of intracellular antigens in porcine PBMC by flow cytometry: a comparison of fixation and permeabilisation reagents. Vet Immunol Immunopathol. 2008, 121: 251-259. 10.1016/j.vetimm.2007.09.019.
Article
CAS
PubMed
Google Scholar
Al-Hubeshy ZB, Coleman A, Nelson M, Goodier MR: A rapid method for assessment of natural killer cell function after multiple receptor crosslinking. J Immunol Methods. 2011, 366: 52-59. 10.1016/j.jim.2011.01.007.
Article
CAS
PubMed
Google Scholar
Käser T, Müllebner A, Hartl RT, Essler SE, Saalmüller A, Catharina Duvigneau J: Porcine T-helper and regulatory T cells exhibit versatile mRNA expression capabilities for cytokines and co-stimulatory molecules. Cytokine. 2012, 60: 400-409. 10.1016/j.cyto.2012.07.007.
Article
PubMed
Google Scholar
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000, 132: 365-386.
CAS
PubMed
Google Scholar
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL: Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012, 13: 134-10.1186/1471-2105-13-134.
Article
PubMed Central
CAS
PubMed
Google Scholar
Duvigneau JC, Hartl RT, Groiss S, Gemeiner M: Quantitative simultaneous multiplex real-time PCR for the detection of porcine cytokines. J Immunol Methods. 2005, 306: 16-27. 10.1016/j.jim.2005.06.021.
Article
CAS
PubMed
Google Scholar
Vossen MT, Matmati M, Hertoghs KM, Baars PA, Gent MR, Leclercq G, Hamann J, Kuijpers TW, van Lier RA: CD27 defines phenotypically and functionally different human NK cell subsets. J Immunol. 2008, 180: 3739-3745.
Article
CAS
PubMed
Google Scholar
Silva A, Andrews DM, Brooks AG, Smyth MJ, Hayakawa Y: Application of CD27 as a marker for distinguishing human NK cell subsets. Int Immunol. 2008, 20: 625-630. 10.1093/intimm/dxn022.
Article
CAS
PubMed
Google Scholar
Sivori S, Pende D, Bottino C, Marcenaro E, Pessino A, Biassoni R, Moretta L, Moretta A: NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol. 1999, 29: 1656-1666. 10.1002/(SICI)1521-4141(199905)29:05<1656::AID-IMMU1656>3.0.CO;2-1.
Article
CAS
PubMed
Google Scholar
Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, Liu S, McClory S, Marcucci G, Trotta R, Caligiuri MA: CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood. 2010, 115: 274-281. 10.1182/blood-2009-04-215491.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vitale M, Zimmer J, Castriconi R, Hanau D, Donato L, Bottino C, Moretta L, de la Salle H, Moretta A: Analysis of natural killer cells in TAP2-deficient patients: expression of functional triggering receptors and evidence for the existence of inhibitory receptor(s) that prevent lysis of normal autologous cells. Blood. 2002, 99: 1723-1729. 10.1182/blood.V99.5.1723.
Article
CAS
PubMed
Google Scholar
Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T: Maturation of mouse NK cells is a 4-stage developmental program. Blood. 2009, 113: 5488-5496. 10.1182/blood-2008-10-187179.
Article
CAS
PubMed
Google Scholar
Bryceson YT, March ME, Ljunggren HG, Long EO: Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 2006, 107: 159-166. 10.1182/blood-2005-04-1351.
Article
PubMed Central
CAS
PubMed
Google Scholar
Raulet DH: Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003, 3: 781-790. 10.1038/nri1199.
Article
CAS
PubMed
Google Scholar
Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F: Induced recruitment of NK cells to lymph nodes provides IFN-γ for T(H)1 priming. Nat Immunol. 2004, 5: 1260-1265. 10.1038/ni1138.
Article
PubMed
Google Scholar
Wendel M, Galani IE, Suri-Payer E, Cerwenka A: Natural killer cell accumulation in tumors is dependent on IFN-γ and CXCR3 ligands. Cancer Res. 2008, 68: 8437-8445. 10.1158/0008-5472.CAN-08-1440.
Article
CAS
PubMed
Google Scholar
Gregoiré C, Cognet C, Chasson L, Coupet CA, Dalod M, Reboldi A, Marvel J, Sallusto F, Vivier E, Walzer T: Intrasplenic trafficking of natural killer cells is redirected by chemokines upon inflammation. Eur J Immunol. 2008, 38: 2076-2084. 10.1002/eji.200838550.
Article
PubMed
Google Scholar
Wald O, Weiss ID, Wald H, Shoham H, Bar-Shavit Y, Beider K, Galun E, Weiss L, Flaishon L, Shachar I, Nagler A, Lu B, Gerard C, Gao JL, Mishani E, Farber J, Peled A: IFN-γ acts on T cells to induce NK cell mobilization and accumulation in target organs. J Immunol. 2006, 176: 4716-4729.
Article
CAS
PubMed
Google Scholar