Bonifait L, Veillette M, Letourneau V, Grenier D, Duchaine C (2014) Detection ofStreptococcussuis in bioaerosols of swine confinement buildings. Appl Environ Microbiol 80:3296–3304
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C (2014) Streptococcussuis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence 5:477–497
Article
PubMed
PubMed Central
Google Scholar
Huang J, Liu X, Chen H, Chen L, Gao X, Pan Z, Wang J, Lu C, Yao H, Wang L, Wu Z (2019) Identification of six novel capsular polysaccharide loci (NCL) from Streptococcussuis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. Transbound Emerg Dis 66:995–1003
Article
CAS
PubMed
Google Scholar
Pan Z, Ma J, Dong W, Song W, Wang K, Lu C, Yao H (2015) Novel variant serotype of streptococcussuis isolated from piglets with meningitis. Appl Environ Microbiol 81:976–985
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng H, Ji S, Liu Z, Lan R, Huang Y, Bai X, Gottschalk M, Xu J (2015) Eight novel capsular polysaccharide synthesis gene loci identified in nontypeable Streptococcussuis isolates. Appl Environ Microbiol 81:4111–4119
Article
CAS
PubMed
PubMed Central
Google Scholar
Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR, Mather AE, Hanage WP, Goldblatt D, Nosten FH, Turner C, Turner P, Bentley SD, Parkhill J (2014) Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet 10:e1004547
Article
PubMed
PubMed Central
CAS
Google Scholar
Shanker E, Morrison DA, Talagas A, Nessler S, Federle MJ, Prehna G (2016) Pheromone recognition and selectivity by ComR proteins among Streptococcus species. PLoS Pathog 12:e1005979
Article
PubMed
PubMed Central
CAS
Google Scholar
Claverys JP, Prudhomme M, Martin B (2006) Induction of competence regulons as a general response to stress in gram-positive bacteria. Annu Rev Microbiol 60:451–475
Article
CAS
PubMed
Google Scholar
Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Powell E, Keefe R, Ehrlich NE, Shen K, Hayes J, Barbadora K, Klimke W, Dernovoy D, Tatusova T, Parkhill J, Bentley SD, Post JC, Ehrlich GD, Hu FZ (2007) Comparative genomic analyses of seventeen Streptococcuspneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol 189:8186–8195
Article
CAS
PubMed
PubMed Central
Google Scholar
Eldholm V, Johnsborg O, Haugen K, Havarstein OHS, LS, (2009) Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 155:2223–2234
Article
CAS
PubMed
Google Scholar
Eldholm V, Johnsborg O, Straume D, Ohnstad HS, Berg KH, Hermoso JA, Havarstein LS (2010) Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide. Mol Microbiol 76:905–917
Article
CAS
PubMed
Google Scholar
Bateman A, Rawlings ND (2003) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 28:234–237
Article
CAS
PubMed
Google Scholar
Rigden DJ, Jedrzejas MJ, Galperin MY (2003) Amidase domains from bacterial and phage autolysins define a family of gamma-D, L-glutamate-specific amidohydrolases. Trends Biochem Sci 28:230–234
Article
CAS
PubMed
Google Scholar
Biornstad TJ, Ohnstad HS, Havarstein LS (2012) Deletion of the murein hydrolase CbpD reduces transformation efficiency in Streptococcusthermophilus. Microbiology 158:877–885
Article
PubMed
CAS
Google Scholar
Zaccaria E, Wels M, van Baarlen P, Wells JM (2016) Temporal regulation of the transformasome and competence development in Streptococcus suis. Front Microbiol 7:1922
Article
PubMed
PubMed Central
Google Scholar
Li Q, Fu Y, Ma C, He Y, Yu Y, Du D, Yao H, Lu C, Zhang W (2017) The non-conserved region of MRP is involved in the virulence of Streptococcussuis serotype 2. Virulence 8:1274–1289
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371
Article
CAS
PubMed
Google Scholar
Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8
Article
CAS
PubMed
Google Scholar
Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201
Article
CAS
PubMed
Google Scholar
Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387-392
Article
CAS
PubMed
Google Scholar
Zaccaria E, van Baarlen P, de Greeff A, Morrison DA, Smith H, Wells JM (2014) Control of competence for DNA transformation in Streptococcus suis by genetically transferable pherotypes. PLoS ONE 9:e99394
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu Y, Dong W, Ma J, Zhang Y, Pan Z, Yao H (2019) Utilization of the ComRS system for the rapid markerless deletion of chromosomal genes in Streptococcus suis. Future Microbiol 14:207–222
Article
CAS
PubMed
Google Scholar
Zhong X, Zhang Y, Zhu Y, Dong W, Ma J, Pan Z, Roy S, Lu C, Yao H (2018) The two-component signaling system VraSRss is critical for multidrug resistance and full virulence in Streptococcus suis serotype 2. Infect Immun 86:e00096-e118
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma J, Bao Y, Sun M, Dong W, Pan Z, Zhang W, Lu C, Yao H (2015) Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infect Immun 83:3867–3879
Article
CAS
Google Scholar
Zhang Y, Lu P, Pan Z, Zhu Y, Ma J, Zhong X, Dong W, Lu C, Yao H (2018) Sssp1, a Streptococcus suis fimbriae-like protein transported by SecY2/A2 system contributes to bacterial virulence. Appl Environ Microbiol e01385–18
Nelson D, Loomis L, Fischetti VA (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA 98:4107–4112
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Zhang C, Wang H, Yan Y, Sun J (2016) A novel prophage lysin Ply5218 with extended lytic activity and stability against Streptococcus suis infection. FEMS Microbiol Lett 363
Bojarska A, Molska E, Janas K, Skoczynska A, Stefaniuk E, Hryniewicz W, Sadowy E (2016) Streptococcus suis in invasive human infections in Poland: clonality and determinants of virulence and antimicrobial resistance. Eur J Clin Microbiol Infect Dis 35:917–925
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma F, Yi L, Yu N, Wang G, Ma Z, Lin H, Fan H (2017) Streptococcussuis serotype 2 biofilms inhibit the formation of neutrophil extracellular traps. Front Cell Infect Microbiol 7:86
PubMed
PubMed Central
Google Scholar
Havarstein LS, Martin B, Johnsborg O, Granadel C, Claverys JP (2006) New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol Microbiol 59:1297–1307
Article
CAS
PubMed
Google Scholar
Luo P, Morrison DA (2003) Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in Streptococcus pneumoniae. J Bacteriol 185:349–358
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnston C, Martin B, Fichant G, Polard P, Claverys JP (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12:181–196
Article
CAS
PubMed
Google Scholar
Mashburn-Warren L, Morrison DA, Federle MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606
Article
CAS
PubMed
PubMed Central
Google Scholar
Heng NC, Tagg JR, Tompkins GR (2007) Competence-dependent bacteriocin production by Streptococcusgordonii DL1 (Challis). J Bacteriol 189:1468–1472
Article
CAS
PubMed
Google Scholar
Martin B, Quentin Y, Fichant G, Claverys JP (2006) Independent evolution of competence regulatory cascades in streptococci? Trends Microbiol 14:339–345
Article
CAS
PubMed
Google Scholar
Zhang Y, Zhong X, Lu P, Zhu Y, Dong W, Roy S, Hejair HM, Pan Z, Ma J, Yao H (2019) A novel autolysin AtlASS mediates bacterial cell separation during cell division and contributes to full virulence in Streptococcus suis. Vet Microbiol 234:92–100
Article
CAS
PubMed
Google Scholar
Johnsborg O, Eldholm V, Bjornstad ML, Havarstein LS (2008) A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol Microbiol 69:245–253
Article
CAS
PubMed
Google Scholar
Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244
Article
CAS
PubMed
Google Scholar
Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li H, Mintz M, Tsegaye G, Burr PC, Do Y, Ahn S, Gilbert J, Fleischmann RD, Morrison DA (2004) Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51:1051–1070
Article
CAS
PubMed
Google Scholar
Berg KH, Biornstad TJ, Johnsborg O, Havarstein LS (2012) Properties and biological role of streptococcal fratricins. Appl Environ Microbiol 78:3515–3522
Article
CAS
PubMed
PubMed Central
Google Scholar
Berg KH, Ohnstad HS, Havarstein LS (2012) LytF, a novel competence-regulated murein hydrolase in the genus Streptococcus. J Bacteriol 194:627–635
Article
CAS
PubMed
PubMed Central
Google Scholar
Bublitz M, Polle L, Holland C, Heinz DW, Nimtz M, Schubert WD (2009) Structural basis for autoinhibition and activation of Auto, a virulence-associated peptidoglycan hydrolase of Listeria monocytogenes. Mol Microbiol 71:1509–1522
Article
CAS
PubMed
Google Scholar
Jedrzejas MJ (2001) Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65:187–207
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenz LL, Mohammadi S, Geissler A, Portnoy DA (2003) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci USA 100:12432–12437
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos-Sevillano E, Urzainqui A, Campuzano S, Moscoso M, Gonzalez-Camacho F, Domenech M, Rodriguez de Cordoba S, Sanchez-Madrid F, Brown JS, Garcia E, Yuste J (2015) Pleiotropic effects of cell wall amidase LytA on Streptococcuspneumoniae sensitivity to the host immune response. Infect Immun 83:591–603
Article
PubMed
PubMed Central
CAS
Google Scholar