World Health Organization (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva
Google Scholar
Wall BA, Mateus A, Marshall L, Pfeiffer DU, Lubroth J, Ormel HJ, Otto P, Patriarchi A (2016) Drivers, dynamics and epidemiology of antimicrobial resistance in animal production. FAO, Rome
Google Scholar
Acar JF, Moulin G, Page SW, Pastoret PP (2012) Antimicrobial resistance in animal and public health: introduction and classification of antimicrobial agents. Rev Sci Tech 31:15–21
Article
PubMed
CAS
Google Scholar
Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E, Coukell A (2017) Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence? BMC Vet Res 13:211
Article
PubMed
PubMed Central
Google Scholar
Aarestrup FM (1999) Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Int J Antimicrob Agents 12:279–285
Article
PubMed
CAS
Google Scholar
Woolhouse MEJ, Ward MJ (2013) Sources of antimicrobial resistance. Science 341:1460–1461
Article
PubMed
CAS
Google Scholar
World Organisation for Animal Health (2017) Responsible and prudent use of antimicrobials. World Organisation for Animal Health. http://www.oie.int/en/for-the-media/amr/related-links/. Accessed 13 Dec 2017
Seal BS, Lillehoj HS, Donovan DM, Gay CG (2013) Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim Health Res Rev 14:78–87
Article
PubMed
Google Scholar
United States Department of Agriculture (2016) Alternatives to Antibiotics (ATA) Symposium Resources. United States Department of Agriculture- Agricultural Research Service. https://www.ars.usda.gov/alternativestoantibiotics/Symposium2016/resources.html. Accessed 13 Dec 2017
Postma M, Stärk KDC, Sjölund M, Backhans A, Beilage EG, Lösken S, Belloc C, Collineau L, Iten D, Visschers V, Nielsen EO, Dewulf J, MINAPIG Consortium (2015) Alternatives to the use of antimicrobial agents in pig production: a multi-country expert-ranking of perceived effectiveness, feasibility and return on investment. Prev Vet Med 118:457–466
Article
PubMed
Google Scholar
Rojo-Gimeno C, Postma M, Dewulf J, Hogeveen H, Lauwers L, Wauters E (2016) Farm-economic analysis of reducing antimicrobial use whilst adopting improved management strategies on farrow-to-finish pig farms. Prev Vet Med 129:74–87
Article
PubMed
Google Scholar
Postma M, Vanderhaeghen W, Sarrazin S, Maes D, Dewulf J (2017) Reducing antimicrobial usage in pig production without jeopardizing production parameters. Zoonoses Public Health 64:63–74
Article
PubMed
CAS
Google Scholar
Murphy D, Ricci A, Auce Z, Beechinor JG, Bergendahl H, Breathnach R, Bureš J, Da Silva D, Pedro J, Hederová J (2017) EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 15:4666
Google Scholar
World Health Organization (2006) Report of a joint FAO/OIE/WHO expert consultation on antimicrobial use in aquaculture and antimicrobial resistance. Republic of Korea, Seoul
Google Scholar
Morrison DB, Saksida S (2013) Trends in antimicrobial use in Marine Harvest Canada farmed salmon production in British Columbia (2003–2011). Can Vet J 54:1160–1163
PubMed
PubMed Central
Google Scholar
Bak H, Rathkjen PH (2009) Reduced use of antimicrobials after vaccination of pigs against porcine proliferative enteropathy in a Danish SPF herd. Acta Vet Scand 51:1
Article
PubMed
PubMed Central
Google Scholar
Bak H (2011) A new advisory tool to help practitioners reduce antibiotic consumption in pig herds. In: Safe pork conference proceedings, Netherlands, 2011
Adam M (2009) A meta-analysis on field experiences with vaccination against Ileitis showing a reduction on antibiotics use. In: safe Pork conference proceedings, Quebec, Canada, 2009
Bak H, Rathkjen PH, Adam M (2009) Strategy to reduce antibiotic use in Danish nurseries and finishing units. In: Safe pork conference proceedings, Quebec, Canada, 2009
Raith J, Trauffler M, Firth CL, Lebl K, Schleicher C, Köfer J (2016) Influence of porcine circovirus type 2 vaccination on the level of antimicrobial consumption on 65 Austrian pig farms. Vet Rec 178:504
Article
PubMed
CAS
Google Scholar
van Dommelen I, Wertenbroek N (2011) Reduction of antibiotics after implementing PCV2 vaccination on 460 sow Dutch pigfarm. In: Safe pork conference proceedings, Netherlands, 2011
Brockhoff E, Cunningham G, Misutka C (2009) A retrospective analysis of a high health commercial pig production system showing improved production and reduced antibiotic use after implementation of a PCV2 vaccination. In: Safe pork conference proceedings, Quebec, Canada, 2009
Bak H, Havn K (2011) Significantly reduced use of antimicrobials with PCV2 and ileitis vaccination in a Danish herd. In: Safe pork conference proceedings, Netherlands, 2011
Kruse AB, Nielsen LR, Alban L (2015) Vaccination against Actinobacillus pleuropneumoniae as an alternative strategy to antimicrobial use in Danish pig herds. In: Safe pork conference proceedings, Porto, Portugal, 2015
Van Looveren F, De Jonghe E, Maass P, De Backer P (2015) Reduction of antibiotic use after implementation of Ingelvac® PRRS MLV piglet vaccination in a Belgian wean to finish farm. In: Safe pork conference proceedings, Porto, Portugal, 2015
Mombarg M, Bouzoubaa K, Andrews S, Vanimisetti HB, Rodenberg J, Karaca K (2014) Safety and efficacy of an aroA-deleted live vaccine against avian colibacillosis in a multicentre field trial in broilers in Morocco. Avian Pathol 43:276–281
Article
PubMed
CAS
Google Scholar
Dalloul RA, Lillehoj HS (2006) Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines 5:143–163
Article
PubMed
CAS
Google Scholar
Williams RB (2002) Anticoccidial vaccines for broiler chickens: pathways to success. Avian Pathol 31:317–353
Article
PubMed
CAS
Google Scholar
Temtem C, Kruse AB, Nielsen LR, Pedersen KS, Alban L (2016) Comparison of the antimicrobial consumption in weaning pigs in Danish sow herds with different vaccine purchase patterns during 2013. Porcine Health Manag 2:23
Article
PubMed
PubMed Central
Google Scholar
Postma M, Backhans A, Collineau L, Loesken S, Sjölund M, Belloc C, Emanuelson U, Grosse Beilage E, Nielsen EO, Stärk KDC, Dewulf J (2016) Evaluation of the relationship between the biosecurity status, production parameters, herd characteristics and antimicrobial usage in farrow-to-finish pig production in four EU countries. Porcine Health Manag 2:9
Article
PubMed
PubMed Central
Google Scholar
Kristensen CS, Vinther J, Svensmark B, Bækbo P (2014) A field evaluation of two vaccines against Mycoplasma hyopneumoniae infection in pigs. Acta Vet Scand 56:24
Article
PubMed
PubMed Central
CAS
Google Scholar
Meeusen ENT, Walker J, Peters A, Pastoret P-P, Jungersen G (2007) Current status of veterinary vaccines. Clin Microbiol Rev 20:489–510
Article
PubMed
PubMed Central
CAS
Google Scholar
Holt PS, Gast RK (2004) Effects of prior coinfection with different Salmonella serovars on the progression of a Salmonella enterica serovar enteritidis infection in hens undergoing induced molt. Avian Dis 48:160–166
Article
PubMed
Google Scholar
Van Immerseel F, Methner U, Rychlik I, Nagy B, Velge P, Martin G, Foster N, Ducatelle R, Barrow PA (2005) Vaccination and early protection against non-host-specific Salmonella serotypes in poultry: exploitation of innate immunity and microbial activity. Epidemiol Infect 133:959–978
Article
PubMed
PubMed Central
Google Scholar
Barrow PA (2007) Salmonella infections: immune and non-immune protection with vaccines. Avian Pathol 36:1–13
Article
PubMed
CAS
Google Scholar
Mastroeni P, Chabalgoity JA, Dunstan SJ, Maskell DJ, Dougan G (2001) Salmonella: immune responses and vaccines. Vet J 161:132–164
Article
PubMed
CAS
Google Scholar
Nakamura M, Nagata T, Okamura S, Takehara K, Holt PS (2004) The effect of killed Salmonella enteritidis vaccine prior to induced molting on the shedding of S. enteritidis in laying hens. Avian Dis 48:183–188
Article
PubMed
Google Scholar
Deguchi K, Yokoyama E, Honda T, Mizuno K (2009) Efficacy of a novel trivalent inactivated vaccine against the shedding of Salmonella in a chicken challenge model. Avian Dis 53:281–286
Article
PubMed
Google Scholar
Chacana PA, Terzolo HR (2006) Protection conferred by a live Salmonella Enteritidis vaccine against fowl typhoid in laying hens. Avian Dis 50:280–283
Article
PubMed
CAS
Google Scholar
El Ghany MA, Jansen A, Clare S, Hall L, Pickard D, Kingsley RA, Dougan G (2007) Candidate live, attenuated Salmonella enterica serotype Typhimurium vaccines with reduced fecal shedding are immunogenic and effective oral vaccines. Infect Immun 75:1835–1842
Article
CAS
Google Scholar
Young SD, Olusanya O, Jones KH, Liu T, Liljebjelke KA, Hofacre CL (2007) Salmonella incidence in broilers from breeders vaccinated with live and killed Salmonella. J Appl Poultry Res 16:521–528
Article
Google Scholar
Roeder PL (2011) Rinderpest: the end of cattle plague. Prev Vet Med 102:98–106
Article
PubMed
Google Scholar
Lipsitch M, Siber GR (2016) How can vaccines contribute to solving the antimicrobial resistance problem? MBio 7:e00428–e00516
Article
PubMed
PubMed Central
CAS
Google Scholar
Jores J, Mariner JC, Naessens J (2013) Development of an improved vaccine for contagious bovine pleuropneumonia: an African perspective on challenges and proposed actions. Vet Res 44:122
Article
PubMed
PubMed Central
Google Scholar
European Commission (2013) Final Report Summary—CSFV_GODIVA (Improve tools and strategies for the prevention and control of classical swine fever). Belgium
European Commission (2017) Blueprint and Roadmap (BRMP) on the possible development of an African Swine Fever (ASF) vaccine. Belgium, Brussels
Google Scholar
O’Brien D, Scudamore J, Charlier J, Delavergne M (2016) DISCONTOOLS: a database to identify research gaps on vaccines, pharmaceuticals and diagnostics for the control of infectious diseases of animals. BMC Vet Res 13:1
Article
CAS
Google Scholar
World Organisation for Animal Health Ad hoc Groups & Reports. http://www.oie.int/standard-setting/specialists-commissions-working-groups/scientific-commission-reports/ad-hoc-groups-reports/. Accessed 30 Jan 2018
World Organisation for Animal Health (2015) Report of the Meeting of the OIE Scientific Commission for Animal Diseases. http://www.oie.int/fileadmin/Home/eng/Internationa_Standard_Setting/docs/pdf/SCAD/A_SCAD_Sept2015.pdf. Accessed 29 Jan 2018