Skip to main content
Figure 1 | Veterinary Research

Figure 1

From: Modelling effectiveness of herd level vaccination against Q fever in dairy cattle

Figure 1

Flow diagram describing the modelled spread of C. burnetii within a cattle herd. The health states are the following: S, non-shedder apparently susceptible cow, I 1 , shedder which still has the possibility to eliminate the bacterium and to become S again, I 2 , shedder which no longer has the possibility to become S again, I 3 , shedder which no longer has the possibility to become S again and sheds in milk in a persistent way, C 1 , non-shedder but still infected individual and C 2 , non-shedder which was C 1 in the past but eliminated the bacterium. The V e states (SV e , I 1 V e , I 2 V e , I 3 V e , C 1 V e and C 2 V e ) are defined in the same way as S, I 1 , I 2 , I 3 , C 1 and C 2 respectively, except that these animals have been vaccinated when susceptible and non pregnant and are then assumed "vaccinated in an effective way" (V e ). I and IV e cows are in the subcategory m if they shed in milk only, mf if they shed in vaginal mucus/faeces only and mmf if they shed in milk and vaginal mucus/faeces. E represents the environmental bacterial load and p, the probability of infection or reinfection for non V e individuals, is equal to . p v is the probability of infection or reinfection for V e individuals, which is a fraction of p. The other model parameters are presented in Additional file 1: Table S1. ε 1 , ε 2 , ε 3 , ε 1 V e , ε 2 V e and ε 3 V e are the quantities of bacteria shed during a time step by an individual I 1 , I 2 , I 3 , I 1 V e , I 2 V e and I 3 V e respectively and contaminating the environment. For a any shedder, ε represents the sum, for each shedding route, of the quantity of bacteria released, Qty, times ρ, its fraction reaching the herd environment.

Back to article page