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The expression level of chicken telomerase 
reverse transcriptase in tumors induced by ALV‑J 
is positively correlated with methylation 
and mutation of its promoter region
Yong Xiang1, Qinxi Chen1, Qingbo Li1, Canxin Liang1 and Weisheng Cao1,2,3,4,5*    

Abstract 

Avian leukosis virus subgroup J (ALV-J) can cause neoplastic diseases in poultry and is still widely prevalent in China. 
Chicken telomerase reverse transcriptase (chTERT) is the core component of telomerase, which is closely related 
to the occurrence and development of tumors. Our previous studies showed that chTERT is overexpressed in ALV-J 
tumors, but the mechanism is still not completely clear. Therefore, this study aims to analyze the possible molecular 
mechanism of chTERT overexpression in ALV-J tumors from the perspective of DNA methylation and promoter muta-
tion. Methylation sequencing of the chTERT amplicon showed that ALV-J replication promoted the methylation level 
of the chTERT promoter. And the methylation level of the chTERT promoter in ALV-J tumors was significantly higher 
than that in tumor-adjacent and normal tissues. Compared with the tumor-adjacent and normal tissues, the chTERT 
promoter in each ALV-J tumors tested had a mutation of −183 bp C > T, and 36.0% (9/25) of the tumors also had 
mutations of −184 bp T > C, −73 bp::GGCCC and −56 bp A > T in the chTERT promoter, which formed the binding 
sites for the transcription factors NFAT5, TFAP2A and ZEB1, respectively. The results of RT–qPCR and Western blotting 
showed that the occurrence of these mutations significantly increased the expression level of chTERT. In conclusion, 
this study demonstrated that the high expression of chTERT in ALV-J tumors is positively correlated with the level 
of hypermethylation and mutation in its promoter, which provides a new perspective for further research on the 
molecular mechanism of chTERT in ALV-J tumorigenesis.
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Introduction
Avian leukosis (AL) is caused by avian leukosis virus 
(ALV), which can induce a variety of neoplastic diseases 
in poultry. The disease has various clinical manifesta-
tions, including myeloma, lymphoma, hemangioma, and 
fibrosarcoma [1]. It is a kind of provenance disease that 

seriously harms the poultry industry worldwide [2]. Since 
the 1990s, AL has caused significant economic losses to 
China’s chicken industry, especially avian leukosis virus 
subgroup J (ALV-J) [3]. It seriously harms the healthy 
development of white-feathered broilers, egg-type broil-
ers, yellow-feathered broilers and local broilers and is still 
widely prevalent in China [4].

Telomerase reverse transcriptase (TERT), as the core 
component of telomerase regulation, is closely related 
to the development of cancer and cell growth [5]. Sig-
nificantly elevated expression levels of human TERT 
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(hTERT) have been found in most human malignancies, 
such as sarcomas [6], brain tumors [7], colorectal tumors 
[8], and breast cancer [9], increasing the risk of tumor 
recurrence. Studies have shown that mutations and 
methylation in the hTERT promoter region play a crucial 
role in the regulation of hTERT transcription levels and 
telomerase activity [10–13]. Preliminary studies by our 
group have shown that the chicken TERT (chTERT) gene 
is one of the main integration sites for ALV-J provirus to 
insert into the host genome, and it is significantly overex-
pressed in ALV-J tumors [14]. However, the reasons for 
its high expression are still not completely clear.

5’-Methylcytosine (5mC) is the main form of DNA 
methylation and one of the earliest and most thor-
oughly studied epigenetic regulatory mechanisms, play-
ing an important role in cancer, gene expression, aging, 
atherosclerosis, Alzheimer’s disease and other diseases 
[15–17]. Studies have shown that the increased expres-
sion of hTERT in colorectal cancer and gastric cancer 
was associated with the degree of hypermethylation of 
the hTERT gene, which seriously affected recurrence 
after treatment [18, 19]. In patients with liver cancer, 
the methylation level of the hTERT promoter in cancer 
tissues was significantly higher than that in tumor-adja-
cent tissues, and the expression level of the hTERT gene 
was also increased by tens of times [20]. However, it has 
been reported that when CpG islands with low methyla-
tion overlie the promoter region of the gene, telomerase 
activity is inhibited, which is inconsistent with a previous 
study showing that methylation in the promoter region of 
the hTERT gene promoted its gene expression level [11, 
21]. In conclusion, the mechanisms by which methylation 
in the TERT promoter region regulates gene expression 
in different tumor diseases are not entirely the same and 
may be methylation-dependent or methylation-inde-
pendent, requiring precise and targeted studies. The 5’ 
region of the chTERT gene and its promoter region are 
part of a large CpG island of approximately 4 kb, suggest-
ing that chTERT expression may be regulated by methyl-
ation [22]. Therefore, we were inspired to actively explore 
whether there are significant differences in the methyla-
tion levels of the chTERT gene and its promoter region in 
tumors induced by ALV-J compared with those in tumor-
adjacent tissues or normal tissues, as well as the methyla-
tion effects on chTERT gene expression and telomerase 
activity.

The formation of many tumors is inseparable from the 
occurrence of genetic mutations, but previous studies 
have shown that genetic mutations mostly occur in cod-
ing regions. However, a study found that there was a high 
frequency of mutations in the hTERT promoter region in 
melanoma, reaching approximately 70.0%, and the muta-
tion sites were concentrated in −57  bp  T > G, −124  bp 

G > A (C228T) and −146  bp G > A (C250T). After the 
mutation, the sequence of GGAA/T or CCG​GAA​/T was 
obtained, forming a new transcriptional binding site for 
the Ets ternary complex factor, thereby actively partici-
pating in the regulation of hTERT expression and pro-
moting the occurrence and development of tumors [23, 
24]. Subsequently, two popular mutation sites, C228T 
and C250T, were also found in adrenal tumors, which 
can promote the expression of hTERT and increase the 
activity of telomerase, providing a suitable environment 
for tumor growth [25]. In addition, scientists have suc-
cessively found mutations in the hTERT promoter region 
in thyroid cancer [26], liposarcoma [27], hepatocellular 
carcinoma [28], urothelial cancer and other tumors [29, 
30], but the mutation sites and mutation frequencies 
were not the same. Since the first discovery of TERT pro-
moter mutations in melanoma, an increasing number of 
studies have shown that TERT promoter mutations play 
an important role in tumorigenesis [31, 32]. However, 
most of the current studies on TERT promoter mutations 
focus on human tumor diseases, and there are few stud-
ies on chicken-related tumor diseases. Therefore, it is of 
great significance to identify the mutation of the chTERT 
promoter region and its regulatory effect on gene expres-
sion in ALV-J-induced tumors in a timely manner.

In this study, DF-1 cells and LMH cells were used as 
in vitro models. The methylation and mutation character-
istics of the chTERT promoter region in chicken tumor 
cells and normal cells were determined by methylation 
sequencing and Sanger sequencing, and the effect of 
ALV-J replication on the chTERT promoter methylation 
level was analyzed. ALV-J tumor tissues and tumor-adja-
cent and normal tissues were used as research objects to 
investigate the methylation and mutation characteristics 
of the chTERT promoter region in ALV-J tumors. Moreo-
ver, the influence of these differences on chTERT expres-
sion was analyzed statistically. It is expected that this 
study can preliminarily answer the scientific question of 
how the high expression of chTERT was formed in ALV-J 
tumors and provide a useful reference and theoretical 
support for the research of other avian tumor diseases.

Materials and methods
Cells, virus, ALV‑J tumors and antibodies
The avian leghorn male hepatoma cell line LMH and 
chicken fibroblast cell line DF-1 were maintained in 
our laboratory and cultured in DMEM/F12 or DMEM 
(Gibco, Thermo Fisher Scientific, Inc., Grand Island, 
NY, USA) supplemented with 10% fetal bovine serum 
(FBS) and maintained at 37 °C with 5% CO2. The ALV-J 
Hc1 strain was maintained in our laboratory. Twenty-
five tumor tissue samples induced by chronic trans-
formed ALV-J and their corresponding tumor-adjacent 
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and normal tissues were confirmed and collected from 
our previous ALV-J artificial tumorigenicity experiment 
and clinical tumor cases in large-scale breeding poultry 
farms (Additional file 1). The chicken single factor serum 
of chTERT was prepared and preserved by our laboratory 
in the early stage. The anti-GAPDH primary monoclonal 
antibody was purchased from Abcam, Inc. (Cambridge, 
UK). IRDye® 800CW goat anti-rabbit IgG and donkey 
anti-chicken secondary antibodies were purchased from 
LI-COR Biosciences, Ltd. (Nebraska, USA).

Prediction of chTERT promoter methylation
We referred to the related sequences of the chTERT pro-
moter region and coding region on NCBI (GenBank: 
EU650197.1, NM.001031007) by using the online soft-
ware MethPrimer to analyze the possible methylation 
CpG sites in the chTERT promoter region. The results 
(Figure  1) showed that there were 2 CpG islands from 
600  bp upstream to 800  bp downstream of ATG of the 
initiation codon, which contained more than 110 CpG 
sites. Therefore, in this study, this sequence was used as a 
target gene for DNA methylation analysis in the chTERT 
promoter region, and the position of the amplicon rela-
tive to the ATG initiation codon in the chTERT coding 
region was −627 bp to + 873 bp.

Target gene bisulfite sequencing
DNA was extracted from cells or tissue samples accord-
ing to the instructions of the DNA extraction kit 
(Omega, Norcross, GA, USA). Target gene bisulfite 
sequencing was conducted by E-Gene Co., Ltd. (Shenz-
hen, China). Briefly, primers (Table 1) were designed to 
recognize regions without CpG sites to avoid amplifica-
tion bias of methylated versus unmethylated sequences. 
Bisulfite sequencing PCR (BSP) validation experiments 
were conducted as follows: 500  ng of genomic DNA 
was converted using a ZYMO EZ DNA Methylation-
Gold Kit™ (Zymo Research, California, USA) according 
to the manufacturer’s instructions. After purification of 
the converted products, PCR amplification was carried 
out in a final reaction volume of 50  µL consisting of 

3 µL purified conversion fractions, 4 µL 2.5 mM dNTP, 
5 µL 10× buffer, 1 µL BSP primers, 0.5 µL JumpStart™ 
Taq DNA Polymerase (Sigma-Aldrich, St. Louis, Mis-
souri, USA) and 36.5 µL water and the following ther-
mal cycling program was 94 °C 1 min, 30 cycles of 94 °C 
10 s, 58  °C 30 s, 72  °C 30 s then extension of 5 min at 
72  °C and products were held at 12  °C. After amplifi-
cation, the PCR products were further used for library 
construction, and the final libraries were quantified by 
an Agilent 2100 Bioanalyzer (Agilent Technologies, 
California, USA) and real-time PCR assay and then 
sequenced by Illumina HiSeq.

Figure 1  Prediction of DNA methylation in the chTERT promoter region. 

Table 1  BSP Primer sequences for methylation analysis of 
the chTERT amplicon 

1 The primer position is relative to the start codon ATG, and upstream of the start 
codon is marked as “−”, while ATG and its downstream regions are marked as 
“ + ”
2 “F” stands for upstream primer
3 “R” stands for downstream primer

Primers 
position 
(bp)1

Sequences (5′-3′) Annealing 
temperature

Product (bp)

−579-F2 TTT​TTT​TTA​TTA​AAT​TGT​GTT​
ATT​G

65 ℃ 194

−386-R3 CTC​TTA​CTT​TAT​CCC​TAA​AAA​
AAC​C

−315-F AGT​TTA​ATT​GTT​AAT​TTA​TTT​
TTA​TTT​

64 ℃ 159

−157-R TTA​AAT​TTA​AAA​ACA​ATT​
TCT​TCT​C

−167-F TTA​AAT​TTA​ATT​TGA​GTT​TTT​
TTT​AG

69 ℃ 323

 + 156-R ATA​CCA​CCC​TCC​TAC​AAC​C

 + 263-F TTT​GTT​TTT​AGT​AGG​TAG​
GGA​GGA​G

67 ℃ 267

 + 529-R AAC​CCC​AAA​CAT​ACA​AAT​
CTT​TAA​C

 + 576-F TTG​GGA​GGG​AAG​TAT​TAT​
TTT​TTT​T

67 ℃ 264

 + 869-R CCC​TTT​TAA​TCC​TAC​TCC​
TCA​TAC​C



Page 4 of 13Xiang et al. Veterinary Research           (2022) 53:49 

PCR amplification and Sanger sequencing of the chTERT 
promoter region
PCR was used to amplify an approximately 1000  bp 
fragment at the end of the chTERT promoter region 
(approximately 1000 bp upstream of ATG) to analyze its 
mutation characteristics. The primer sequences (5’-GTT​
GGT​GGT​ATG​GCA​GTA​-3′, 5′-TCC​TCC​CGC​GCT​ACA​
TTG​-3′) were used for amplification, and the annealing 
temperature was 57  °C. Phanta® Max DNA Polymerase 
(Vazyme, Nanjing, China) was used for amplification. 
The products were detected by 1% agarose gel elec-
trophoresis in 1 × TAE with EB staining, and the PCR 
product was recovered by a Gel Extraction Kit (Omega) 
and cloned into the pMD-18  T vector according to the 
manufacturer’s instructions (Takara, Tokyo, Japan). After 
that, recombinants were transformed into E.  coli DH5α 
competent cells (Takara), and monoclonal clones were 
selected on LB plates containing ampicillin. DNA was 
extracted from positive clones using a Plasmid Mini Kit 
(Omega) and sent to Sangon Biotech (Shanghai, China) 
for Sanger sequencing.

Real‑time fluorescence quantitative PCR (RT–qPCR)
The tissue samples were homogenized by a cryogenic 
grinder, and then the total RNA was extracted from tis-
sues with TRIzol reagent (Fastagen Biotech, Shanghai, 
China) according to the manufacturer’s recommenda-
tions. cDNA was synthesized from the total RNA tem-
plate with random primers using a PrimeScript RT 
Reagent kit (TaKaRa). The RT–qPCR was performed 
using Hieff® qPCR SYBR Green Master Mix (YEASEN, 
Shanghai, China) on a CFX96TM Real-time PCR Sys-
tem (Bio–Rad, California, USA). Expression levels were 
quantified using the 2−ΔΔCt method and normalized to 
GAPDH expression. The sequences of the primers used 
were the same as those used in our previous study [33].

Western blotting
The tissue samples were homogenized at low tempera-
ture, after which NP40 lysis buffer (Beyotime, Shanghai, 
China) was used to extract protein. The concentration 
of extracted protein was determined by the BCA Pro-
tein Assay Kit (Beyotime). Subsequently, equal amounts 
of total protein were separated by SDS–polyacrylamide 
gel electrophoresis (SDS–PAGE) (Beyotime) and then 
transferred onto a nitrocellulose membrane. The mem-
branes were immunoblotted with primary antibodies at 
4  °C overnight followed by a corresponding secondary 
antibody at 37 °C for 1 h. Finally, the blots were scanned 
using an Odyssey Infrared Imaging System (LI-COR, 
Nebraska, USA).

Statistical analysis
All the results are presented as the means ± standard 
deviations. Statistical analysis was performed by Stu-
dent’s t test using GraphPad Prism software, and a P 
value of < 0.05 was considered significant.

Results
The methylation level of the chTERT promoter region 
in LMH cells is higher than that in DF‑1 cells
LMH and DF-1 cells were used as in  vitro models of 
chicken tumor cells and healthy cells, respectively, to ana-
lyze the difference between them in methylation levels of 
the chTERT promoter region. The results showed that 
the methylation level of the chTERT promoter region in 
LMH cells was higher than that in DF-1 cells (Figure 2). 
Our previous study showed that telomerase activity was 
positive in LMH cells and negative in DF-1 cells [33]; that 
is, chTERT was not expressed in DF-1 cells. In conclu-
sion, the expression of chTERT in LMH cells is related to 
the hypermethylation level of the promoter region.

Replication of ALV‑J promotes methylation of the chTERT 
promoter region
LMH cells and DF-1 cells were infected with ALV-J 
at 1.0 multiplicity of infection (MOI) and maintained 
for 7 days, and the cell DNA was extracted for chTERT 
amplicon methylation sequencing. The results showed 
that ALV-J replication promoted the methylation of the 
chTERT promoter region in both DF-1 cells (Figure  3) 
and LMH cells (Figure  4), and the thermal map of the 
methylation level is shown in Figure. 5, the corresponding 
methylation matrix data are shown in Additional file  2. 
Our previous study showed that the replication of ALV-J 
upregulated the expression level of chTERT [33]. In con-
clusion, the expression level of chTERT is positively cor-
related with the methylation level of its promoter region.

The high expression of chTERT in ALV‑J tumors correlates 
with the high methylation level of its promoter region
Some of the ALV-J tumor tissues were selected for meth-
ylation sequencing of the chTERT promoter region. The 
results showed that the methylation level of the chTERT 
promoter region in ALV-J tumor tissue was higher than 
that in tumor-adjacent tissues and normal tissues (Fig-
ure 6), suggesting that the high expression of chTERT in 
ALV-J tumor tissues (Figure  7) was related to the high 
methylation level of its promoter region; the heatmap 
of its methylation level is shown in Figure  8, the corre-
sponding methylation matrix data are shown in Addi-
tional file 3.
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Mutation of the chTERT promoter region promotes its 
methylation and forms binding sites for the transcription 
factors ZEB1, TFAP2A and NFAT5
The sequence of approximately 1000 bp at the end of the 
chTERT promoter region was amplified by PCR (Addi-
tional file  4), and Sanger sequencing was performed. 
Then, the sequences were compared to find a unified rule. 
The results showed (Additional file 5) that there were no 
uniform mutations in the chTERT promoter region in 
tumor-adjacent tissues compared with normal tissues. 
However, compared with tumor-adjacent or normal tis-
sues, the −183 bp of the chTERT promoter region in all 
ALV-J tumor tissues was mutated from T to C (−183 bp 

C > T). In addition, nine tumor tissues (n = 25) were 
further mutated; that is, the chTERT promoter at the 
−184 bp site was mutated from C to T (−184 bp T > C), 
and the −56 bp was mutated from T to A (−56 bp A > T). 
Moreover, after −73 bp in the chTERT promoter region 
of this part of the tumor tissue, there was the insertion of 
5 bases GGCCC (−73 bp::GGCCC). In this study, tumor 
tissues with further mutations in this region were called 
Mutant, and those without such mutations were called 
Wild type.

Further analysis showed that the mutation of −183 bp 
C > T in ALV-J tumor tissue makes this site a CpG site 
that may be methylated. As seen from Figure  9, the 

Figure 2  Comparison of chTERT promoter methylation levels in LMH and DF-1 cells. 

Figure 3  Replication of ALV-J promotes methylation of the chTERT promoter region in DF-1 cells. 
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methylation level of −183  bp in the chTERT promoter 
region of some tumor tissue samples (such as Kidney_T1, 
Liver_T2, Liver_T3, and Mesentery_T) is indeed higher 
than that of the tumor-adjacent and normal tissues. This 
finding indirectly suggests that mutations at this site 
may promote chTERT expression through methylation. 
On this basis, the sequences before and after the muta-
tion were imported into the JASPAR database for anal-
ysis, and it was found that the mutation or insertion of 
−184 bp T > C, −73 bp::GGCCC and −56 bp A > T forms 
the binding sites of transcription factors of nuclear factor 
of activated T cells 5 (NFAT5), transcription factor AP-2a 
(TFAP2A) and E box zinc finger E-box binding home-
obox 1, ZEB1), respectively.

The high expression of chTERT in ALV‑J tumors correlates 
with its promoter mutation
To understand how the mutation of the chTERT pro-
moter region in ALV-J tumor tissues affects the expres-
sion of chTERT, the expression of chTERT in wild-type 
and mutant tumors was analyzed by Western blot and 
RT–qPCR. The results showed that the mRNA and pro-
tein expression levels of chTERT in mutant tumor tissues 
were significantly higher than those in wild-type tissues 
(Figure 10, p < 0.01), suggesting that the high expression 
of chTERT in ALV-J tumors was also significantly related 
to the mutation of its promoter region.

Discussion
Studies have shown that transcriptional reactivation 
of TERT is associated with methylation and mutation 
of its promoter region in a variety of human tumor dis-
eases [34–37]. However, there is no relevant research 

demonstrating the difference in the methylation level 
of chTERT in the promoter region of ALV-J-induced 
tumors, nor whether there are mutations in the promoter 
region or the characteristics of the mutations. Therefore, 
this study focused on the chTERT promoter region to 
analyze the methylation and expression of this promoter 
region in the LMH tumor cell line and DF-1 normal cell 
line, as well as in ALV-J tumor tissues, tumor-adjacent 
tissues and normal tissues, and to explore the effects 
of these differences and characteristics on chTERT 
expression.

In this study, the differences in chTERT promoter 
methylation levels between LMH cells and DF-1 cells 
were analyzed in  vitro, and the results showed that the 
methylation levels of the chTERT promoter in telomer-
ase-positive LMH cells were significantly higher than 
those in telomerase-negative DF-1 cells, but the exact 
reason for this is still unknown. After reviewing the liter-
ature, we speculated that this might be related to the dif-
ferent immortalization mechanism of the two cells. DF-1 
cells are telomerase-negative immortalized cell lines, 
which are not cancer cells in the strict sense, and their 
immortal proliferation does not depend on the expres-
sion of chTERT, but on another mechanism, namely the 
alternative lengthening of telomeres [38]. LMH cells are 
telomerase-positive chicken tumor cell lines, and their 
immortal proliferation depends on the expression of tel-
omerase or chTERT. In order to obtain continuous and 
stable expression of telomerase activity, the chTERT pro-
moter has a high level of methylation. These results sug-
gested that the reactivation of telomerase in LMH cells 
was related to the high methylation level of the chTERT 
promoter region.

Figure 4  Replication of ALV-J promotes methylation of the chTERT promoter region in LMH cells. 
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To understand the effect of ALV-J replication on 
chTERT promoter methylation, ALV-J was inocu-
lated with 1.0 MOI on DF-1 and LMH cells. The results 
showed that after ALV-J inoculation, the methylation 
level of the chTERT promoter region consistently showed 
an increasing trend. Our previous research showed 
that replication of ALV-J upregulated the expression of 
chTERT and telomerase activity, indicating that meth-
ylation in the chTERT promoter region could promote 
its expression. This was further confirmed by comparing 
the methylation levels of the chTERT promoter region 

in ALV-J tumor tissues, tumor-adjacent tissues and nor-
mal tissues. That is, the methylation level of the chTERT 
promoter region in tumor tissues was higher than that in 
tumor-adjacent and normal tissues, which was positively 
correlated with the expression of chTERT. This is consist-
ent with the conclusions of studies on human small-cell 
lung cancer, thyroid cancer, hepatocellular carcinoma and 
other cancer diseases [20, 39, 40]. Imperfectly, allele spe-
cific methylation of chTERT promoter was not analyzed 
in this study. Indeed, this is because this research was not 
designed in a more comprehensive way. Secondly, due to 

Figure 5  Heatmap of the DNA methylation level of the chTERT amplicon in LMH cells and DF-1 cells. 
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the large number of chickens, which are economic ani-
mals, the sources of tumor samples are complicated, it is 
less feasible to trace their genetic information and lack of 
database support. Therefore, if based on this research to 
supplement the experimental analysis of the allele spe-
cific methylation, its feasibility is worthy to be consid-
ered, but it can be further explored and analyzed in detail 

in our subsequent new research. Allele specific methyla-
tion analysis is interesting, but we believe that the lack of 
this data may not affect the main thrust of this study.

Previous studies have shown that when the insertion 
of chronically transformed ALV-J is integrated near the 
proto-oncogene of the host gene, its insertion integration 
site is usually located ± 2500 bp away from the transcrip-
tion start site [14]. Therefore, to avoid the influence of 
ALV-J insertion and integration as much as possible and 
to analyze the mutation of the methylated region in the 
chTERT promoter region and for the convenience of the 
experiment, PCR amplification was only performed on 
the gene sequence 1000 bp upstream of ATG at the end 
of the promoter region to analyze the mutation charac-
teristics. The results showed that there was no difference 
in the promoter sequence between tumor-adjacent tis-
sues and normal tissues. Compared with tumor-adjacent 
and normal tissues, ALV-J tumors have more significant 
mutations in the promoter sequence of this segment, and 
all have the mutation of −183  bp C > T. On this basis, 
some tumor tissues also have the mutation of −183  bp 
C > T, 184 bp T > C, −73 bp::GGCCC and −56 bp A > T; 
these mutation sites are not identical to the mutation 
hotspots of C228T and C250T in the hTERT promoter 
region in human tumor diseases [25, 41, 42] because in 
different tumor diseases, the mutation frequency and 
mutation sites of TERT are not completely consistent. On 
the other hand, this study also attempted to compare the 
mutation of the chTERT promoter region in LMH cells 
and DF-1 cells, but no uniform mutation pattern was 
found after comparison, which was not consistent with 
the mutation characteristics of chTERT in ALV-J tumors 

Figure 6  The DNA methylation level change curve of the chTERT amplicon in ALV-J tumors and tumor-adjacent and normal tissues. T: 
tumor tissues; TA: tumor-adjacent tissues; N: normal tissues.

Figure 7  chTERT was significantly highly expressed in ALV-J 
tumor tissues. Analysis of telomerase activity (A) and chTERT protein 
expression levels (B) in tumor tissue, tumor-adjacent and normal 
tissues.
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or tumor-adjacent and normal tissues. However, this was 
not difficult to understand, because even the correspond-
ing cells in  vitro cannot completely simulate the patho-
logical model at the tissue level in  vivo, there must be 
differences.

Combined with the results of methylation sequencing, 
it was found that the mutation of −183 bp C > T makes 
this site a CpG site that may be methylated. It has also 
been proven that methylation at this site in the chTERT 

promoter region has indeed occurred in some tumor 
tissues. On this basis, the JASPAR database was used to 
analyze the differences caused by the sequence differ-
ences before and after the mutation. The results showed 
that the mutations of −184  bp  T > C, −73  bp::GGCCC 
and −56  bp A > T formed transcriptional binding sites 
that could be bound by the transcription factors NFAT5, 
TFAP2A and ZEB1, respectively. Western blot and RT–
qPCR analyses showed that the expression of chTERT in 

Figure 8  Heatmap of the DNA methylation level of the chTERT amplicon in ALV-J tumors and tumor-adjacent and normal tissues. T: 
tumor tissues; TA: tumor-adjacent tissues; N: normal tissues.
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mutant tumor tissues was significantly higher than that in 
wild-type tumor tissues. This is because the mutation of 
−183 bp C > T promotes an increase in the methylation 
level, thereby upregulating the expression of chTERT. 
On the other hand, it is presumed to be regulated by the 
transcription factors NFAT5, TFAP2A and ZEB1.

After reviewing the literature, it was determined that 
NFAT5 has similar functions to TERT and plays an 

important role in various activities, such as immune 
regulation, metabolic regulation, DNA damage repair 
and tumorigenesis [43–45], such as non-small-cell 
lung cancer [46], pancreatic cancer [47], chronic lym-
phocytic leukemia [48] and melanoma [49]. It plays 
an important role in the occurrence and development 
of various human tumor diseases, and studies have 
shown that NFAT5 can regulate the transcription of 
the mouse TERT gene and promote the expression of 
TERT [50]. TFAP2A is closely related to the process of 
regulating the cell cycle, epithelial-mesenchymal tran-
sition and apoptosis and can participate in regulating 
the proliferation and migration of cervical cancer [51], 
ovarian cancer [52] and other tumor cells and promote 
the occurrence and development of tumors. As a tran-
scriptional regulator containing multiple functional 
domains, ZEB1 can participate in the regulation of the 
expression of various oncogenes, including hTERT; for 
example, ZEB1 can promote the occurrence and devel-
opment of breast cancer by upregulating the expres-
sion of hTERT [53]. In colorectal cancer, the hTERT/
ZEB1 complex directly regulates E-cadherin to pro-
mote EMT [54]. This study speculates that one of the 
main reasons why the expression of chTERT in mutant 
tumor tissues is significantly higher than that in wild-
type tumor tissues is that NFAT5, TFAP2A and ZEB1 
are actively involved in regulating the expression of 
chTERT, but their interaction with chTERT and the 
regulatory mechanism remain to be further eluci-
dated, which also provides new scientific questions 

Figure 9  Schematic diagram of mutations in the chTERT promoter region in ALV-J tumors relative to its tumor-adjacent and normal 
tissues. 

Figure 10  The expression levels of chTERT mRNA (A) and 
protein (B) in tumor tissues with the wild-type or mutant chTERT 
promoter. 
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and research directions for future generations to fur-
ther study the mechanism of chTERT in ALV-J-induced 
tumorigenesis.

In summary, this study demonstrated that the high 
expression of chTERT in ALV-J tumors was positively cor-
related with the hypermethylation and mutation level of its 
promoter region, and we analyzed the molecular mecha-
nism by which chTERT promotes the tumorigenicity of 
ALV-J from the perspective of DNA methylation and pro-
moter mutation. This study provides a new perspective for 
further research on the role and molecular mechanism of 
chTERT in tumorigenicity by ALV.
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