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Study of microRNA expression in Salmonella 
Typhimurium‑infected porcine ileum reveals 
miR‑194a‑5p as an important regulator 
of the TLR4‑mediated inflammatory response
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Abstract 

Infection with Salmonella Typhimurium (S. Typhimurium) is a common cause of food-borne zoonosis leading to acute 
gastroenteritis in humans and pigs, causing economic losses to producers and farmers, and generating a food secu‑
rity risk. In a previous study, we demonstrated that S. Typhimurium infection produces a severe transcriptional activa‑
tion of inflammatory processes in ileum. However, little is known regarding how microRNAs regulate this response 
during infection. Here, small RNA sequencing was used to identify 28 miRNAs differentially expressed (DE) in ileum of 
S. Typhimurium-infected pigs, which potentially regulate 14 target genes involved in immune system processes such 
as regulation of cytokine production, monocyte chemotaxis, or cellular response to interferon gamma. Using in vitro 
functional and gain/loss of function (mimics/CRISPR-Cas system) approaches, we show that porcine miR-194a-5p 
(homologous to human miR-194-5p) regulates TLR4 gene expression, an important molecule involved in pathogen 
virulence, recognition and activation of innate immunity in Salmonella infection.
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Introduction
Salmonellosis ranks second within the most notified 
zoonosis in Europe, with 42.5% of the cases needing 
hospitalization. Salmonella Typhimurium (S. Typhimu-
rium) is the second most reported serovar, and the most 
commonly found pathogen in pork meat (especially in 
Spain, which contributed with 30.4% of the European 
cases). Although many control programs are currently 

established in farms, the number of cases in Europe has 
not decreased in the last 5 years, therefore better control 
measures need to be implemented, as 14.3% of pig car-
casses in Spain are Salmonella-positive [1].

Following ingestion, Salmonella reaches the small 
intestine, where it adheres to the intestinal mucosa as 
the first step in the pathogenesis of infection. After inva-
sion, pathogen associated molecular patterns (PAMPs) 
are recognized by pattern-recognition receptors (PRRs) 
from intestinal epithelial cells such as membrane bound 
Toll-like receptors (TLRs), which stimulate the host 
immune response [2]. TLR4 recognizes lipopolysaccha-
ride (LPS) in the cell wall of Gram negative bacteria, acti-
vating signaling cascades that regulate the expression of 
pro-inflammatory cytokines and chemokines, leading to 
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the recruitment of macrophages, lymphocytes, and poly-
morphonuclear leukocytes [3]. A vast innate immune 
response is elicited by the host at the site of infection and, 
although counterintuitive, it has been shown that the 
intestinal section with the greatest inflammatory changes 
(i.e. ileum) is also the most colonized by Salmonella, 
suggesting that this pathogen benefits from inflamma-
tion to further colonize the tissues [4]. Further research 
regarding the nature of the host–pathogen interaction at 
the infection site is needed to better understand Salmo-
nella infection and its regulation. Previous studies have 
shown that microRNAs (miRNAs), which are conserved 
small non-coding post-transcriptional regulators of gene 
expression [5], modulate the development and function 
of immune cells and can have pro- or anti-inflammatory 
effects during bacterial infections [6, 7]. The regulation of 
the transcriptional response by miRNAs in Salmonella 
infection is still mostly unclear, but several miRNAs such 
as let-7i or miR-15 have been shown to modulate cer-
tain host immune functions [8, 9]. In a previous study, 
we described the transcriptomic response in the porcine 
ileum 2 days after infection with S. Typhimurium, as well 
as the expression of a set of miRNAs in this tissue, using 
microarray analysis [4]. However, the recent develop-
ment of powerful miRNA-specific sequencing techniques 
as small RNA-seq prompted us to perform a deeper 
evaluation and quantification of miRNA expression in 
this experimental setting. The purpose of this study was 
to elucidate the role of miRNAs in the regulation of the 
inflammatory processes that are elicited after Salmonella 
infection in ileum. Additionally, we identified key miR-
NAs that influence the host response to this pathogen.

Materials and methods
Experimental infection and sample processing
The experimental infection design was previously 
described elsewhere [10]. Briefly, eight female crossbred 
weaned piglets (commercial hybrids of Landrace × Large 
White × Pietrain), confirmed to be fecal-negative for Sal-
monella, were used in this study. Four piglets per group 
were randomly allocated to control and infected groups. 
Control piglets were necropsied 2  h before the experi-
mental infection, whereas the 4 remaining piglets were 
challenged orally with 108 colony forming units (cfu) of 
a natural isolate of S. Typhimurium phage type DT104 
[11], and necropsied 2 days post-infection (2 dpi). Ileum 
samples (segments approximately 10 cm long) were col-
lected and immediately frozen in liquid nitrogen.

For intestinal mucosa isolation and RNA purification, 
tissue samples stored at −80  °C were temperature-tran-
sitioned with RNAlater®-ICE (Ambion Inc, Austin, TX, 
USA) and cut into 2  cm pieces. Intestinal mucosa was 
scraped from the intestinal luminal surface with a sterile 

razor, and immediately disrupted and homogenized in 
lysis buffer (Ambion Inc, Austin, TX, USA) using a rotor–
stator homogenizer. RNA extraction was performed 
using mirVana miRNA isolation kit (Ambion Inc., Aus-
tin, TX, USA). Eluted RNA was treated with DNase using 
TURBO DNA-free™ Kit (Ambion Inc., Austin, TX, USA) 
to eliminate traces of DNA. RNA integrity was assessed 
in the Agilent Bioanalyzer 2100 (Agilent Technologies, 
Palo Alto, CA, USA), and only samples with RNA integ-
rity numbers (RIN) ≥ 7 were used for sequencing and 
further analysis.

Small RNA library preparation, sequencing and data 
analysis
Four samples (2 controls and 2 S. Typhimurium infected) 
were used for small RNA sequencing (small RNA-seq). 
Sample quality control, library creation and sequenc-
ing were performed at the Functional Genomics Core 
at the Institute for Research in Biomedicine in Bar-
celona (IRB Barcelona). Five hundred nanograms of 
total RNA per sample were used for library preparation 
(NEBNext® Multiplex Small RNA Library Prep Set for 
Illumina, New England Biolabs Inc, Ipswich, MA, USA). 
Libraries were quantified with Qubit dsDNA HS assay 
(Thermo Fisher Scientific Inc., Waltham, MA, USA) 
and quality was assessed using an Agilent Bioanalyzer 
2100 (Agilent Technologies, Palo Alto, CA, USA). Then, 
single-end next-generation small RNA sequencing of 50 
nucleotides-long reads was performed using HiSeq2000 
sequencing platform (Illumina Inc., San Diego, CA, 
USA).

Data analysis was performed at the Andalusian Plat-
form of Bioinformatics at the University of Malaga. Raw 
reads were pre-processed using the in-house developed 
customizable pipeline SeqTrimNext [12]. Contami-
nants, sequencing adapters, short (<17 nucleotides) and 
bad quality reads (Phred score <20) were removed, so 
only high-quality sequences were used for further anal-
yses. The miRNA database used was miRbase (release 
22.1). For the analysis of deep sequencing data, we used 
the CAP-miRSeq pipeline (alignment, miRNA detec-
tion, quantification, and differential expression analysis 
between control and infected group) [13]. This pipeline 
includes an alignment to the pig genome (Sscrofa11.1) 
with bowtie1 [14] and miRNA identification with 
miRDeep2 algorithms [15]. CAP-miRSeq also imple-
ments edgeR for determination of differential expres-
sion between control and infected samples, which 
uses empirical Bayes estimation and exact test based 
on the negative binomial distribution [16]. miRNAs 
were considered to be differentially expressed (DE) if 
false discovery rate (FDR) corrected p-value was < 0.05 
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(Benjamini–Hochberg method), and fold change (FC) 
was ≥2 (absolute value).

Quantitative real‑time PCR (qPCR) and analysis
Eight samples (4 controls and 4 S. Typhimurium 
infected) were used for miRNA qPCR and gene valida-
tion. Selected miRNAs DE in the sequencing analyses 
and target genes were validated as previously reported 
[17] using specific primers (Additional file  1). Briefly, 
to conduct miRNA qPCR analysis, 100 ng of total RNA 
per animal were reverse transcribed to cDNA, which 
was 1:8 diluted and added to a 10 µL PCR reaction mix 
containing 2  µL of 5× PyroTaq EvaGreen qPCR Mix 
Plus with ROX (Cultek Molecular Bioline, Madrid, 
Spain), and 10  µM of each primer. Cycling conditions 
were 10  min at 95  °C followed by 40 cycles of 5  s at 
95  °C, and 60 s at 60  °C; a final melting curve analysis 
was performed (60–99 °C).

Likewise, miRNA-predicted target genes were ana-
lyzed by qPCR, for which RNA samples (1  µg) were 
reverse-transcribed using qScript™ cDNA synthe-
sis kit (Quanta Biosciences Inc.), following manu-
facturer’s instructions. The final 15  µL PCR reaction 
included 2  μL of 1:10 diluted cDNA as template, 3  µL 
of 5× PyroTaq EvaGreen qPCR Mix Plus with ROX 
(Cultek Molecular Bioline, Madrid, Spain), and tran-
script-specific forward and reverse primers at a 10 μM 
final concentration. Real-time PCR was carried out in 
a QuantStudio 12K Flex system (Applied Biosystems, 
Waltham, MA, USA) under the following conditions: 
15 min at 95 °C followed by 35 cycles of 30 s at 94 °C, 
30 s at 57 °C and 45 s at 72 °C. Melting curve analyses 
were performed at the end to ensure the specificity of 
each PCR product.

Expression results were calculated using GenEx6 Pro 
software (MultiD, Göteborg, Sweden), based on the Cq 
values obtained. Based on the literature [18, 19] and 
after qPCR analysis using GeNorm GenEx6 tool, the 
most stable miRNAs (miR-26a, let-7a, miR-103, miR-
17-5p and miR-16-5p) and genes (B2M, CYPA and RPL4) 
were selected as reference to normalize expression. 
Relative gene expression was measured in control and 
infected pigs, resulting in expression ratios calculated 
according to the 2−ΔΔCt method [20]. Statistical differ-
ences in expression among groups were assessed using 
Student’s t test (GraphPad Prism 6, GraphPad Software 
Inc, La Jolla, CA, USA). Statistical significance was set at 
P < 0.05. Additionally, a Pearson correlation analysis was 
performed between small RNA-Seq and qPCR results to 
validate the sequencing results. Heatmaps were created 
using the gplots package (v3.0.1) within the RStudio soft-
ware (v. 1.0.143).

miRNA‑target gene selection, integrative and functional 
analysis
miRNA target genes were selected using the miRNA 
target database miRTarbase (release 6.0) and TargetS-
can (release 7.0) [11, 21]. In order to increase the con-
fidence of the findings, we selected only output targets 
with strong evidence in their validation (performed by 
reporter assay, Western blot or qPCR), and those miRNA 
target genes with highly conserved seed regions. We 
compared all miRNA targets predicted from DE miRNAs 
in ileum at 2  dpi with DE mRNAs from our previously 
published gene expression study from the same samples 
[4]. Selection of miRNA targets was performed based 
on the nature of miRNA regulation, where upregulated 
miRNAs from our DE dataset were paired with down- or 
up-regulated mRNA from our DE gene dataset [4], and 
downregulated miRNAs were paired with upregulated 
mRNA from the same gene expression study. Functional 
enrichment analysis of selected target genes was per-
formed using ClueGO [22], a Cytoscape open-source Java 
tool plug-in [23]. Terms were classified in a functional 
group (GO term fusion), and the name of the functional 
groups was given by the statistical significance of the 
leading term. Statistical significance was set as follows: 
Benjamini–Hochberg corrected P < 0.05, κ score = 0.5 
and at least 3 genes per term.

In vitro miRNA functional assays and target validation
microRNA mimic hsa-miR-194-5p (cat #: C-300642-03-
0005, homologous to ssc-miR-194a-5p), and mimic nega-
tive control (cat#: CN-001000-01-05) were obtained from 
Dharmacon (Horizon Discovery Ltd., UK). Mimic miR-
194-5p and negative control were transfected into intes-
tinal porcine enterocytes cell line (IPEC-J2 cells) using 
Viromer Blue reagent (Lipocalyx GmbH, Germany) fol-
lowing the reverse transfection protocol recommended 
by the manufacturer, at a final miRNA concentration of 
50 nM. Briefly, 7.5 × 104 cells (per well) were resuspended 
in DMEM/F-12 (Life Technologies, Waltham, MA, USA) 
medium supplemented with 5% fetal bovine serum (Life 
Technologies, Waltham, MA, USA), mixed with trans-
fection solution, and seeded on 24-well plates (Thermo 
Fisher Scientific, Waltham. MA, USA). Transfected cells 
were incubated at 37 °C in a 5% CO2 humidified atmos-
phere for 48  h, and then infected with the S. Typhimu-
rium phage type DT104 [11] previously used in the 
in  vivo experimental infection (OD600 = 0.8, MOI 1:25). 
After 1  h of infection, the medium was replaced with 
fresh medium containing gentamicin (100 µg/mL) to kill 
extracellular bacteria and incubated for 2  h. Cells were 
lysed for RNA isolation with mirVana miRNA isolation 
kit (Ambion Inc., Austin, TX, USA).
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miRNA‑target validation by luciferase assay
miRNA recognition elements (MREs) were predicted 
with TargetScan and RNAhybrid [21, 24]. The hybridi-
zation energy required for the formation of the miRNA-
MRE duplex was calculated by uploading to RNAhybrid 
the sequence of 3’UTR segments containing the MREs 
and their respective predicted miRNA. Only the duplexes 
with favorable hybridization energy of ≥ −15  kcal/mol 
were chosen as potential MREs. The 3′UTR of TLR4, 
predicted to be targeted by miR-194-5p, was ampli-
fied by PCR and cloned into the firefly luciferase in the 
psiCHECK2 vector. Primer sequences and restriction 
enzymes used for cloning the 3′UTR of porcine genes 
are shown in Additional file  1. E. coli cells transformed 
with a recombinant miRNA target expression vector 
(psiCHECK2) were grown overnight in the appropriated 
volume of LB medium with ampicillin (100 μg/mL). Plas-
mid DNA was isolated using the JetStar 2.0 Plasmid Puri-
fication Kit system (Genomed GmbH, Löhne, Germany) 
according to the manufacturer’s protocol.

Mimic miR-194-5p and negative control were trans-
fected individually into Chinese Hamster Ovary cells 
(CHO) at a final miRNA concentration of 75  nM. Cells 
were cultured in RPMI medium (Biowest, Nuaillé, 
France) supplemented with 10% of heat-inactivated fetal 
calf serum (Gibco, Life Technologies, Waltham, MA, 
USA) and 2 mM l-glutamine (Biowest, Nuaillé, France), 
at 37  °C and 5% CO2. After incubation of the transfec-
tion mix, 2 × 104  cells (per well) were resuspended in 
RPMI medium with 10% of heat-inactivated fetal calf 
serum (Gibco, Life Technologies, Waltham, MA, USA) 
and 2 mM l-glutamine (Biowest, Nuaillé, France), mixed 
with transfection solution and seeded on 96-well plates 
(Thermo Fisher Scientific, Waltham, MA, USA). Trans-
fected cells were incubated (37  °C in 5% CO2 humidi-
fied atmosphere) and after 24 h cells were co-transfected 
with 250  ng of the psiCHECK2 vector constructions, 
using Lipofectamine 3000 transfection kit (Invitrogen, 
Life Technologies, Waltham, MA, USA). After 48  h of 
incubation, cells were washed twice with PBS and lysed 
with 50  µL of 1× passive lysis buffer (Promega, Madi-
son, WI, USA). An aliquot of 20 µL was assayed for fire-
fly and renilla luciferase activity using the dual luciferase 
reporter assay system (Promega, Madison, WI, USA) 
according to the manufacturer’s protocol. Luciferase 
activity values were obtained by a Varioskan Lux lumi-
nometer (ThermoFisher Scientific, Waltham, MA, USA). 
Control experiments were performed for each putative 
target, including plasmids that did not contain the 3′UTR 
fragment and negative controls of miRNA mimic. Sta-
tistical differences in expression values among groups 
were assessed using a Student’s t-test (GraphPad Prism 6, 

GraphPad Software Inc, La Jolla, CA, USA), with statisti-
cal significance set at P < 0.05.

Inhibition of miR‑194a‑5p expression via CRISPR/Cas9 
system
Plasmid pSpCas9(BB)-2A-Puro (PX459) was purchased 
from the Addgene plasmid repository (Cambridge, MA, 
USA). miR-194a-5p guides (gRNAs) were designed using 
the MIT CRISPR Design Tool [25]. The gRNAs tar-
geting porcine miR-194a-5p genomic sequences were 
cloned into the plasmid pSpCas9(BB)-2A-Puro follow-
ing the manufacturer’s instructions, and verified by DNA 
sequencing. Two hundred and fifty nanogram per micro-
liter of each gRNA-containing plasmid were transfected 
with Viromer Yellow (Lipocalyx GmbH, Germany) into 
IPEC-J2 cells using a reverse transfection protocol. Puro-
mycin treatment (2  μg/mL for 24  h; Life Technologies, 
Waltham, MA, USA) was used for selection, and then 
transfected cells were isolated through serial dilutions 
in the culture medium. Clones obtained by this method 
were characterized by PCR and DNA sequencing.

Gentamicin protection assay
Clones of CRISPR/Cas9, IPEC-J2 cells transfected with 
miR-194-5p mimic and controls were infected with S. 
Typhimurium as mentioned above. After infection, mon-
olayers were washed twice with PBS containing gen-
tamicin (100 μg/mL), then the media was replaced with 
fresh media containing gentamicin (100  μg/mL) to kill 
extracellular bacteria. After 2 h of incubation, monolay-
ers were washed twice with PBS and lysed with 1% Tri-
ton X-100 solution. Lysates were vigorously vortexed for 
1  min, diluted and plated in TSA medium (Trypticase 
soy agar). Invasiveness was calculated by counting the 
colony-forming units (c.f.u.). The experiments were con-
ducted in triplicate on three different days. Statistical dif-
ferences were assessed using Student’s t-test (GraphPad 
Prism 6, GraphPad Software Inc., La Jolla, CA, USA) and 
differences were set at P < 0.05.

Detection and quantification of intracellular S. 
Typhimurium by TaqMan qPCR
TaqMan qPCR assay previously described by Martins 
et al. [26], was used to quantify concentrations of S. Typh-
imurium in IPEC-J2 cells and CRISPR/Cas 9 clones. S. 
Typhimurium standard curve was performed using DNA 
from a pure broth of the Salmonella strain used in this 
study. Salmonella DNA was isolated using DNeasy Blood 
& tissue kit (Qiagen, Valencia, CA, USA). Subsequently, 
known concentrations of 1.0 × 105, 5.0 × 104, 1.0 × 104, 
5.0 × 103, 1.0 × 103, 5.0 × 102, 1.0 × 102, 5.0 × 101, and 
0 genome equivalents (GE) per 1 μL of DNA were used 
to build the reference standard curve, in which 1 GE of 
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S. Typhimurium corresponded to 5.46904  fg of DNA. 
A 19-mer forward primer (5′-GCG​CAC​CTC​AAC​ATC​
TTT​C-3′), a 22-mer reverse primer (5′-GGT​CAA​ATA​
ACC​CAC​GTT​CA-3′), and a fluorogenic probe (FAM 
ATC​ATC​GTC​GAC​ATGC MGB/NFQ) were used in the 
quantification assays. Twenty-five microliters of PCR 
reactions contained 12.5  μL IQ Supermix 2× (Biorad, 
Madrid, Spain), 0.4  μM of each primer, 0.2  μM probe, 
1 μM MgCl2, 200 ng DNA, and 10 μL UHQ water. PCR 
amplifications were performed on an iQ5 Thermo Cycler 
(Biorad, Madrid, Spain) under the following conditions: 
95 °C for 10 min and 50 cycles of 95 °C for 15 s and 60 °C 
for 1  min. Statistical differences were assessed using 
Student’s t-test (GraphPad Prism 6, GraphPad Soft-
ware Inc., La Jolla, CA, USA) and differences were set at 
P < 0.05.

Results
S. Typhimurium infection downregulates miRNA 
expression in porcine ileal mucosa
Sequencing yielded about 7.48 (SD 0.54) million raw 
reads per sample which, after removing the adapters, fil-
tering the quality of the sequence (Phred score > 20) and 
length of the reads, resulted in about 2.17 (SD 0.51) mil-
lions of clean output reads. The read length distribution 
observed in our samples was consistent with profiles gen-
erated in other studies [27], with the highest number of 
reads within the 19–25 nucleotides range.

We first characterized the miRNA expression pro-
file in control and infected intestinal samples. miRNAs 
with at least one mapped read in each library (control 
or infected) were selected for determining the miRNA 
expression profile in the ileum. Analysis revealed that 
312 annotated miRNAs were expressed in ileum from 
infected pigs, while 311 miRNAs were expressed in ileal 
mucosa from non-infected control animals. The 25 most 
abundantly expressed miRNAs in porcine ileum (both 
control and infected groups) are shown in Additional 
file 2. The most abundantly expressed miRNA was miR-
21; miR-143-3p, miR-192, miR-26a, miR-215 and mir-
148a-3p were also highly expressed in the porcine ileum.

Compared with the uninfected group, a total of 28 
miRNAs were found DE in Salmonella-infected samples. 
Of these, 21 were significantly down-regulated, while 7 
were up-regulated (Figure  1, Additional file  3). Down-
regulation of the miR-200 family (miR-200b and miR-
141), miR-215 and miR-192 as well as up-regulation of 
miR-146a, miR-146b and miR-223 were detected, among 
others. Interestingly, we found that all four mature forms 
of miR-194 (ssc-miR-194a-5p, ssc-miR-194a-3p, ssc-
miR-194b-5p and ssc-miR-194b-3p,) were highly down-
regulated. To validate the accuracy of the sequencing 

data and bioinformatic analysis, we conducted qPCR of 
selected DE miRNAs. qPCR analysis confirmed the dif-
ferential expression of 15 statistically significant up- and 
down-regulated miRNAs after S. Typhimurium infection, 
and results were in agreement with the deep sequencing 
results (Pearson correlation coefficient > 0.9, Figure 2).

Integrative analysis of miRNA and gene expression data 
in porcine ileum after infection with S. Typhimurium
To better understand the biological function of the 28 
DE miRNAs in the ileal mucosa of Salmonella-infected 
pigs, target genes were predicted using TargetScan 7.0 
and miRTarbase 6.0 databases. According to this, each 
microRNA would regulate hundreds of genes since com-
putational tools predict microRNA targets by evolution-
arily conserved microRNA binding sites. To focus on the 
most biologically relevant target genes, obtained predic-
tive data was compared with a gene expression dataset 
from a previous study [4]. In this integrative analysis, we 
found that 193 DE genes in the ileum were likely regu-
lated by DE miRNAs from this study (Additional file 4). 
Based on the nature of miRNA regulation, miRNA-
mRNA pairing was performed as follows: 6 upregulated 
miRNAs were paired with 130 down- or up-regulated 
mRNA, and 16 downregulated miRNAs were paired with 
233 upregulated mRNAs. Gene ontology analysis focused 
on immune response revealed biological functions where 
target genes were involved (Figure  3, Additional file  5). 
These functions include monocyte chemotaxis, regu-
lation of cytokine production and cellular response to 
interferon gamma. DE miRNAs such as miR-223, miR-
146, miR-802 and miR-542 were predicted to regulate 
DE genes such as TLR4, STAT1/3, IL1R1 or CCL2 (Addi-
tional file 4). Although TLR4 was not among the initially 
predicted miR-194 target genes, reports have demon-
strated that this miRNA regulates the TLR4 pathway 
[28, 29]. Given the importance of this signaling route in 
Salmonella infection, and its previously shown over-acti-
vation in S. Typhimurium-infected porcine ileum [4], we 
hypothesized that miR-194 could be directly regulating 
the TLR4 signaling pathway.

Effect of miR‑194 overexpression on TLR4 and downstream 
genes during S. Typhimurium infection
To elucidate the effect of miR-194, the expression of 
potential inflammation-related target genes was evalu-
ated following miRNA mimics-mediated overexpression 
in IPEC-J2 cells infected with S. Typhimurium. Given that 
all mature forms of miR-194 showed the same expression 
tendency, we selected ssc-miR-194a-5p (homologous to 
hsa-miR-194-5p) for further studies based on reported 
expression on miRBase and abundancy of reads and 
p-value on our own sequencing results. We evaluated 
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genes involved in the TLR4 pathway [30] and, similarly 
to the in  vivo experiment (infected ileum mucosa), we 
found increased expression of IL1α, IL1β, TLR4, IL8, 
IL18, NFκB1, and MIP1β in Salmonella-infected IPEC-J2 
cells compared to non-infected controls (Figure 4). When 
we increased the expression of miR-194a-5p using mimic 
transfection, overexpression of IL1α and CXCL2 was 
significantly inhibited (p < 0.05) in transfected cells. Sur-
prisingly, the expression of TLR4 was also significantly 
inhibited. Genes such as IL1β, IL6, IL8, TNFα, MYD88 
and NFκB1 did not show significant changes after trans-
fection with miR-194-5p mimic.

Luciferase reporter assay and CRISPR/Cas9 system revealed 
TLR4 to be a target gene of miR‑194‑5p
Based on the effect of miR-194-5p mimic transfection on 
gene expression of IPEC-J2 cells infected with S. Typh-
imurium, we selected TLR4 to test the miRNA-mRNA 
target interaction using the luciferase reporter assay. 
Besides previous gene expression data, selection of this 
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in Salmonella Typhimurium infected ileal samples. Heatmap shows overexpression (red) and repression (green) of porcine miRNAs.
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Figure 2  qPCR validation of sequencing results. Pearson 
correlation analysis of FC values of DE miRNAs between qPCR and 
RNA-seq analysis, values showed a highly significant and strong 
positive correlation.
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Figure 3  Biological functions where miRNA predicted targets are involved. This Figure shows the immune functions affected by DE miRNA 
target genes in Salmonella Typhimurium infection at 2 dpi. All the represented pathways are highly significant following a Benjamini–Hochberg 
correction.
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Figure 4  Expression of potential target genes from the TLR4 pathway in S. Typhimurium infected IPEC-J2 cells after miRNA mimic 
transfection.Gene expression of miR-194 in IPEC-J2 cells infected with S. Typhimurium (2 hpi, yellow bars) and IPEC-J2 cells transfected with 
miR-194 mimic and infected with S. Typhimurium (dark green bars). Bars represent mean log2 fold change compared to their respective controls, 
and standard error of the mean (SEM).
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miRNA was supported by its biological implication dur-
ing S. Typhimurium infection: TLR4 is the main patho-
gen recognition receptor, and it triggers the inflammatory 
signaling cascades in response to Salmonella infection [3, 
31]. Also, some authors have suggested miR-194 as a reg-
ulator of the TLR4 signaling pathway in obesity-driven 
inflammatory response and necrotizing enterocolitis [28, 
32]. As shown in Figure  5, luciferase activity for TLR4 
decreased 24% when miR-194-5p mimic was transfected, 
validating our bioinformatic predictions of the interac-
tion between the sequences.

Additionally, we investigated if the downregulation of 
miR-194-5p via CRISPR/Cas9 deletion had an effect on 
TLR4 and downstream gene expression. To test whether 
CRISPR/Cas 9 vector efficiently disrupted miRNA func-
tion, we transfected IPEC-J2 cells with two different 
miR-194 guide RNA sequences (gRNA1 and gRNA2), 
which were located in the pri-miR-194 and pre-miR-194 
sequences, respectively (Figure  6A). Following puromy-
cin selection, we characterized the obtained clones, find-
ing that, compared to control cells, CRISPR-miR-194 
gRNA vectors induced modifications in the wild-type 
sequence (Figure  6B). Decreased expression of miR-194 
and subsequent TLR4 overexpression were confirmed in 
the CRISPR-miR-194 clones (compared to non-edited 
controls) by qPCR (Figure  6C). Additionally, Sanger 
sequencing confirmed CRISPR-miR-194 induced dele-
tions and insertions (Figure  6D). Thus, our data dem-
onstrated that CRISPR/Cas9 system is highly effective 
in abrogating miR-194 regulation on TLR4 expression 
by introducing mutations in the pre-miRNA and pri-
miRNA sequences in porcine epithelial cells.

To further investigate the function of miR-194 down-
regulation in the inflammatory response, we deter-
mined the expression of the pro-inflammatory genes 
that were tested for miR-194 mimic transfection in 

CRISPR-miR-194 clones and IPEC-J2 cells infected with 
S. Typhimurium. We found that compared with IPEC-J2 
infected control cells, infected CRISPR-miR-194 clones 
had increased expression of TLR4 and downstream genes 
(CXCL2, IL1α, IL1β, IL6, IL8, IL18, MIP1b and TNFα). 
MYD88 and NFκB1 were found downregulated in this 
comparison (Figure  6E). These findings support that 
either up or downregulation of miR-194 altered the gene 
expression of TLR4 and subsequent TLR4 signaling path-
way during S. Typhimurium infection.

Determination of the effect of miRNA expression on S. 
Typhimurium invasiveness in IPEC‑J2 cells
The level of the interaction between S. Typhimurium 
and mimic-transfected/CRISPR-edited IPEC-J2 cells was 
evaluated by gentamicin resistance assay and TaqMan 
qPCR. We found that over-expression of miR-194b 
increases invasion and adhesion of the bacteria (P < 0.05), 
and cells lacking miR-194b (CRISPR-edited) showed a 
decreased invasion of bacteria (P < 0.05) compared to 
infected control cells (Figure 7). Additionally, we quanti-
fied intracellular S. Typhimurium DNA in infected IPEC-
J2 and CRISPR-miR-194 edited cells, which confirmed 
the decrease of intracellular S. Typhimurium in edited 
cells. Altogether, invasion assays confirmed the regula-
tory role of miR-194b in TLR4-mediated Salmonella rec-
ognition and invasion.

Discussion
miRNAs are key post-transcriptional regulators in a 
wide variety of biological processes, including cell pro-
liferation, differentiation, apoptosis, metabolism, immu-
nity, and cancer [33]. Host–pathogen interactions are 
complicated processes regulated by multiple factors, 
and miRNAs appear to be important players affecting 
inflammation and immune response regulation [7]. Many 

Figure 5  Prediction analysis of miRNA-target interaction and results of luciferase assay. A Prediction of target sequence in miR-194-5p/
TLR4. The highest score obtained from RNAhybrid prediction is showed. B Firefly luciferase activity was measured and normalized by the Renila 
luciferase activity. Data are represented as mean ratio ± SEM from four independent transfection experiments. Two tailed Student’s t-test was used 
to compare samples and significance was set at P < 0.05. Asterisk means ***p < 0.001.
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Figure 6  Inhibition of miR-194 via CRISPR and its effect on inflammatory response. A CRISPR/Cas9 strategy for targeting miR-194. Two gRNA 
regions are shown at the top panel. miR-194 gRNA was cloned into the vector as detailed in the materials and methods section. B DNA cleavage 
by CRISPR/Cas9 was detected by PCR. C Expression levels of miR-194 and its target gene TLR4 of CRISPR-miR194 clones compared to IPEC-J2 cells 
control. D DNA sequencing confirmed deletions (green boxes) and insertions (yellow boxes) generated by CRISPR/cas9 in miR-194 sequence. E 
Overexpression of TLR4 and downstream genes in infected CRISPR-miR-194 clones compared to infected IPEC-J2 cells with S. Typhimurium.
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studies have indicated that Gram-negative bacterial 
infection may trigger complex multisystem responses in 
the host, and detailed analysis of the pathological process 
may shed light on the detection of infection in the early 
stages, allowing evaluation and development of thera-
pies [6]. In this context, regulation of miRNA expression 
during Salmonella infection is emerging as a crucial part 
of the host response to infection. Several miRNAs have 
been reported to play a role in S. Typhimurium infec-
tion in pigs. For example, let-7i-3p is downregulated in 
porcine ileum, and has been shown to control Salmo-
nella adhesion and intracellular replication [8]; also, 
miR-15a-5p, miR-15b-5p, miR-22, miR-16-5p, miR-421, 
miR-744 and let-7i-5p (E2F1-dependent miRNAs) were 
downregulated in S. Typhimurium infected porcine 
ileum and colon, promoting bacterial replication [9].

In this study, ileum samples were used to generate 
miRNA expression profiles by high throughput sequenc-
ing technology. Our study reports that miRNAs such as 
miR-21, miR-192, miR-143, miR-200 family, and miR-194 
are highly abundant in porcine ileum, agreeing with pre-
vious reports in the same tissue in other mammals [27, 
34–36]. Twenty-eight miRNAs were found differentially 
expressed following S. Typhimurium infection at 2  dpi. 
The most over-expressed miRNAs in this study were 
miR-146a/b and miR-223, and such over-expression has 
been previously associated with the innate immunity 
regulation and inflammatory response [37], but mecha-
nisms are not clear. Previous studies have reported the 
induction of miR-146 in macrophages and monocytes 
in response to microbial infections such as S. Typhimu-
rium [38–40]. Increased expression of miR-146a in por-
cine peripheral blood has been associated with increased 
fecal shedding counts of the pathogen [41]. Upregulation 
of this miRNA depends on NFκB [39, 42], producing a 

negative feedback control of TLR-TRAF6-IRAK1 sign-
aling, which protects against excessive inflammation 
[43, 44]. miR-146 knockout mice mount an exaggerated 
inflammatory response to injected LPS, when compared 
to non-treated animals [45]. miR-223 was significantly 
over-expressed in ileum at 2  dpi, which also occurs in 
neutrophils infiltrated in the infected mucosa [46, 47]. 
Although the relevance of miR-223 in pathological infec-
tions and the inflammatory response has been described 
previously, there is limited information regarding its role 
in S. Typhimurium infection. Dysregulations of miR-223 
expression have been observed in many inflammatory 
disorders such as rheumatoid arthritis, inflammatory 
bowel disease, osteoarthritis and Crohn’s disease, among 
others [48], where tissue often undergoes excessive 
inflammation.

miRNAs such as miR-192/215, miR-194, and the miR-
200 family (miR-200a, miR-200b, miR-200c and miR-141 
were found downregulated. This group of miRNAs that 
share a consensus seed sequence has been described 
in Gallus gallus intestinal mucosal layer afflicted with 
necrotic enteritis [49]. Additionally, these downregulated 
miRNAs in the current study have also been implicated 
in the host response to microbial pathogens such as Lis-
teria monocytogenes or Helicobacter pylori [50–52] sug-
gesting that similar responses to Gram-negative bacterial 
infection and inflammatory processes could be regulated 
by miRNAs. Downregulation of miRNAs after S. Typh-
imurium infection in ileum at 2 dpi play a role in epithe-
lial cell proliferation [35, 53, 54], as some studies describe 
that the expression of miR-192, miR-194, miR-215 and 
the miR-200 family is necessary for maintaining the epi-
thelial intestinal barrier [55, 56]. In a previous study we 
demonstrated that S. Typhimurium induces the disrup-
tion of the epithelial layer during infection at 2 dpi with a 

A B

Figure 7  Effect of miR-194 expression on S. Typhimurium invasion in IPEC-J2 cells. A For gentamicin resistance assay, data are represented 
as ratio between UFC in mimic transfected or CRISPR-edited cells and UFC in infected cells (means ± SEM). B Quantification of S. Typhimurium 
by TaqMan qPCR assay. Data are shown as ratio between the number of S. Typhimurium genome equivalents (GEd) in infected IPEC-J2 or 
CRISPR-edited cells and control cells (means ± SEM). Student’s t-test was used to compare controls with infected cells. Asterisk means *P < 0.05; 
**P < 0.01; ***P < 0.001.
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complete loss of microvilli [4], which is in agreement with 
the downregulation of miRNAs involved in maintain-
ing the epithelial intestinal barrier. However, it has been 
shown that expression of some of these miRNAs such as 
miR-192/215 can vary depending on the model system 
used, as it has been reported upregulation of them in S. 
Typhimurium infected human intestinal organoids [57].

In addition to a disruption of the epithelial barrier, 
a study of gene expression allowed us to determine the 
existence of a strong inflammatory response in the por-
cine ileum at 2 dpi [4]. The downregulation of the miR-
194 has been associated with inflammatory response [58, 
59], which agrees with our results of miR-194 repression 
and the subsequent transcriptional regulation of spe-
cific target genes that control inflammatory processes. A 
decreased expression of common inflammatory markers 
such as IL1α, CXCL2 and TLR4 was observed in infected 
IPEC-J2 cells when miR-194-5p was over-expressed. This 
suggests that miR-194 has a direct effect on the inflam-
matory response. However, Tian et  al. found that miR-
194 inhibited the TLR4 pathway through targeting a key 
signal molecule TRAF6, which mediates NFκB activation 
and consequently the induction of pro-inflammatory 
cytokines [28]. Supporting this, Bao et  al. showed that 
miR-194 has an indirect effect on NFκB through its tar-
get genes TRIM23 and C21ORF91, which are involved 
in the NFκB induction [60]. In addition to the regula-
tion of miR-194 on the TLR4 pathway through TRAF6 
and NFκB, we found that miR-194 had TLR4 as a non-
conserved target. This prediction was confirmed using 
luciferase reporter assay, suggesting that the inflam-
matory regulation exerted by this miRNA occurs along 
the TLR4 signaling pathway. To confirm this, we used 
the CRISPR/Cas9 system to knockdown miR-194a-5p 
expression. Although miR-194 is derived from two sep-
arate loci in the pig genome (Chromosome 10, intron 2 
and 12, miRBase), we were able to decrease miR-194a-5p 
expression, providing a powerful approach for disrupting 
miRNA sequences and studying the effect on target and 
downstream genes. The downregulation of miR-194a-5p 
in IPEC-J2 cells led to an overexpression of TLR4 in non-
infected conditions, with subsequent increase of expres-
sion of inflammatory markers such as CXCL2, IL1α, IL1β, 
IL6, IL8, IL18, MIP1b and TNFα in IPEC-J2 cells infected 
with S. Typhimurium. Furthermore, we detected lower 
S. Typhimurium invasion when miR-194a-5p expression 
was decreased by CRISPR/Cas9 system, leading to the 
overexpression of TLR4. This finding agrees with Arpaia 
et  al., who demonstrated that mice deficient in TLR4 
were highly susceptible to the invasion of S. Typhimu-
rium [31] supporting the effect of miR-194 on invasive-
ness and inflammatory response via TLR4.

In summary, our study is a comprehensive analysis of 
the miRNA expression profile in porcine ileum after S. 
Typhimurium infection. By using integrated analysis, we 
have identified target genes of the DE miRNAs, which 
have been validated using luciferase assays, miRNA mim-
ics, and the CRISPR/Cas9 system. The effect of miRNAs 
in the regulation of cytokines and bacterial infection were 
investigated, especially in the regulation of miR-194a-5p 
on the TLR4 pathway. This study will most likely provide 
new insights into the contribution of the intestinal infec-
tion to understand the function of host transcriptional 
and post-transcriptional landscape during S. Typhimu-
rium infection.
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