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Abstract 

Bovine respiratory disease (BRD), as one of the most common and costly diseases in the beef cattle industry, has 
significant adverse impacts on global food security and the economic stability of the industry. The bovine respiratory 
microbiome is strongly associated with health and disease and may provide insights for alternative therapy when 
treating BRD. The niche-specific microbiome communities that colonize the inter-surface of the upper and the lower 
respiratory tract consist of a dynamic and complex ecological system. The correlation between the disequilibrium in 
the respiratory ecosystem and BRD has become a hot research topic. Hence, we summarize the pathogenesis and 
clinical signs of BRD and the alteration of the respiratory microbiota. Current research techniques and the biogeogra-
phy of the microbiome in the healthy respiratory tract are also reviewed. We discuss the process of resident microbi-
ota and pathogen colonization as well as the host immune response. Although associations between the microbiota 
and BRD have been revealed to some extent, interpreting the development of BRD in relation to respiratory microbial 
dysbiosis will likely be the direction for upcoming studies, which will allow us to better understand the importance of 
the airway microbiome and its contributions to animal health and performance.
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1 � Introduction to the bovine respiratory 
microbiome

Bovine respiratory disease (BRD), a leading cause of 
morbidity, mortality and economic cost, is one of the 
largest health challenges facing the modern-day beef 
cattle industry [1]. In the US, over 90% of large feedlots 
reported BRD as the most frequent disease [2]. Not only 
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does this disease result in increased medication costs and 
death, but morbid beef cattle also grow slower, develop 
less efficient feed conversion ratios, and tend to need 
additional feed time to reach similar carcass quality of 
clinically healthy calves [3]. The wide use of vaccines and 
antimicrobials to prevent and treat BRD is a common 
approach worldwide [2]. However, the desired effects of 
vaccines to protect against BRD have not been reached, 
and mass administration of antimicrobials should be crit-
ically evaluated due to increased concerns over antibiotic 
resistance [4–8]. Alternative therapies, such as probiotics 
[9], are becoming increasingly investigated to treat BRD 
and improve management. For example, intranasal bacte-
rial therapeutics developed from the bovine nasopharyn-
geal Lactobacillus spp. could reduce the colonization by 
pathogen Mannheimia haemolytica in dairy calves [10].

In past decades, next-generation sequencing (NGS) 
technology has contributed to the progressive under-
standing of the roles of the resident microbiota [11]. The 
microbiome, including both the community of the micro-
biota (microorganisms containing bacteria, archaea, 
fungi, protists and algae) and their “theatre of activity” 
(structural elements, metabolites/signal molecules, and 
the surrounding environmental conditions) in a specific 
environment (e.g., gut, lung), are important for animal 
health and disease [12, 13]. The contribution of the res-
piratory microbiota to maintaining health and its associ-
ation with disease has attracted more attention [14–16]. 
It is well known that, in humans, the airway microbial 
system may cooperate with host immunity and metabo-
lize products to generate key defenses against infections 
produced by opportunistic pathogens [17, 18]. Moreover, 
airway microbial composition and heightened respira-
tory pathogen incidence are associated with pneumonia 
in beef cattle [19, 20]. The respiratory ecosystem con-
tains the upper (URT) and the lower (LRT) respiratory 
tract at the anatomical and physiological perspectives. 
Regarding the specific environments of each niche in the 
respiratory tract, niche-associated microbiota inhabit 
and differentiate within each specific environment [11]. 
Despite the remarkable progress made in recent studies 
using NGS, current research relevant to the bovine res-
piratory microbiome is only at an initial stage. The most 
commonly implicated bacterial pathogens in BRD cases, 
including Mycoplasma bovis, Histophilus somni, Man-
nheimia haemolytica and Pasteurella multocida, have 
traditionally been identified using culture-dependent 
approaches [1, 21]. However, these bacteria have been 
classified from both clinically healthy controls and mor-
bid cattle. Although some studies have attempted to 
investigate the URT and lung microbiomes using NGS 
[1, 20, 22–25], the microbial movements within the res-
piratory tract are still unknown. Based on the results in 

previous studies, the notion that the respiratory micro-
biome is significantly important to cattle health has been 
confirmed [15, 20, 22, 26]. Since BRD results in massive 
economic losses and beef cattle are one of the key food 
sources of human society, additional research that elu-
cidates the role of the respiratory microbiota in BRD 
pathophysiology is needed and may help us identify 
potential alternative therapies.

In this review, we summarize BRD clinical signs and 
pathogenesis, techniques applied in the respiratory 
microbiome analysis, the biogeography of the microbiota 
in the respiratory system, and the association between 
BRD and the microbiome, which provide implications of 
the respiratory microbiome in health, disease and animal 
production for further studies. Although there are many 
debates regarding the respiratory microbiome, the spec-
ulation and authors’ own opinions are presented. Nota-
bly, as the host-microbiota’s interactions and microbial 
drifts within the airway are contemporary hot topics and 
will continue to be highly relevant to future studies, it is 
deeply analyzed in this discussion.

2 � The pathogenesis of bovine respiratory disease
BRD, also known as “shipping fever”, is the most frequent 
and costly disease of the modern beef cattle industry, 
especially for newly feedlot calves [6]. Recently weaned 
and transported beef cattle are at an even greater risk for 
developing BRD, which contributes to roughly 70–80% 
of feedlot total morbidity and roughly 10–50% of feedlot 
mortalities and additionally results in the subsequent loss 
of performance and health [27]. Moreover, BRD diagno-
sis is usually dependent on trained feedlot personnel and 
is commonly based on observed clinical signs (e.g., cat-
tle depression, nasal discharge, ocular discharge, cough-
ing, gaunt appearance, or inappetence). Additionally, 
treatment often consists of administering antimicrobials 
which may lead to the increase of antibiotic-resistance 
determinants [7, 28].

BRD is usually observed in cattle within four weeks 
of transportation to a feedlot [29]. There are multiple 
clinical signs of BRD, which vary greatly, depending on 
the phase and extent of the disease process. The general 
signs can include depression, inappetence, dullness and 
fever. Additionally, several respiratory signs, including 
ocular and nasal discharge, coughing, excessive saliva-
tion, and abnormal respiratory rate and rhythm, have 
been observed in BRD-diagnosed cattle [30]. However, 
this assessment has limited sensitivity and specificity 
which may result in unnecessary treatment and delayed 
or negative detection of BRD in truly sick animals [31]. 
White and Renter [30] found that the sensitivity for BRD 
detection based on clinical signs observed by trained 
personnel was only 62%, indicating many BRD cases go 
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undetected, or are not detected until the advanced dis-
ease stage when successful treatment is less likely [32]. 
Moreover, although the extent of lung lesions (e.g., pleu-
ral adhesions, collapse/consolidation, parenchymal fibro-
sis, abscesses, or emphysema) resulting from BRD is 
associated with the risk of mortality and retreatment, the 
lesions are frequently found at slaughter, often in calves 
in which BRD has never been detected [33, 34]. Over-
all, current methods for the early detection, prognosis 
and diagnosis of BRD still have low accuracy and there-
fore additional researches exploring BRD diagnostics are 
needed.

The currently accepted theory regarding BRD patho-
genesis is the complex synergistic interaction of bacte-
ria and viruses under the influence of various stressors 
(i.e., weaning, comingling, transportation, and dietary 
changes) in addition to changes within the host and 
environment [35, 36] (Figure 1). A harmonious interac-
tion between the host, properties of microbiome colo-
nization and the local environment within the airways 
exists in healthy cattle. In contrast, a disequilibrium 
related to microbial dysbiosis, mucosal dysfunction as 
well as acute or chronic inflammation consequently 
generates an opportunity for the development of BRD 

[37]. So far, we know bacterial pathogen invasion pro-
duces the acute syndrome of BRD after the bovine res-
piratory system has been disturbed by factors such as 
viral infections, environmental changes and/or stress 
[38, 39]. There are multiple viral agents that can con-
tribute to the development of BRD, including bovine 
viral diarrhea virus (BVDV), bovine respiratory syncy-
tial virus (BRSV), bovine herpes virus 1 (BHV-1), and 
parainfluenza 3 virus (PI3V) [40]. Those viruses with 
stressors can lead to enhanced colonization and repli-
cation of bacterial pathogens and infect the lung sub-
sequently. However, the incidences and abundances 
of these bacteria identified as BRD pathogens, which 
may be commensal organisms in healthy animals, do 
not correlate well with the occurrence of clinical BRD. 
For example, a high abundance of Mycoplasma bovis 
has been observed both in healthy steers and those 
diagnosed with BRD [41, 42]. Since knowledge gaps 
remain regarding BRD pathogenesis, a review of cur-
rent research on community structure and composition 
of the microbiota of the bovine respiratory tract would 
allow for a better understanding of the pathobiology of 
BRD and emphasize an important direction for future 
research.

Figure 1  Triggers affecting the healthy respiratory ecosystem and leading to the onset of bovine respiratory disease (BRD) in newly 
weaned beef cattle. The bovine respiratory ecosystem has an increased risk of disequilibrium and subsequent BRD signs when the host is affected 
by pathogens, changes in the environment and managements (e.g., weaning, commingling, transportation, and dietary changes etc.).
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3 � Techniques used in the studies of the respiratory 
microbiome

Most BRD microbiology studies have been conducted 
using the nasopharyngeal swab (NPS) sampling approach 
[22]. Thus, sampling other niches within the respiratory 
tract is needed to better understand the cattle respira-
tory microbiome and BRD pathogenesis. This manuscript 
will describe the methods of sample collection in relation 
to the specific anatomical structures of the airway. The 
key points focus on subsequent measurements and data 
analysis of sequencing since most of the studies analyzed 
used the 16S rRNA sequencing technique.

3.1 � Sampling techniques for the bovine respiratory 
microbiome

For sample collection, the literature reports various 
methods when comparing the URT and the LRT. Typi-
cally, a sterile swabbing approach is common for the 
collection of microbiome samples from the URT. There 
are many types of swabs such as those with cotton or 
polyester ends with various transport medium available 
depending on the subsequent diagnostics employed. In 
several previous cattle studies, researchers used short 
cotton swabs (17  cm length) for nasal sampling, and 
longer double-guarded polystyrene cotton swabs (84 cm 
length) for nasopharyngeal samples [1, 22, 43]. Common 
approaches for the collection of LRT samples are mainly 
using trans-tracheal wash (TTW) and bronchoalveolar 
lavage (BAL) techniques [1, 43, 44]. TTW utilizes the 
insertion of a catheter into the trachea of subjects to col-
lect fluids samples from the LRT to provide molecular 
evidence about the LRT for cytologic and culture analy-
sis. BAL, as a minimally invasive medical procedure, 
employs a broncho-alveolar lavage tube passed through 
the nares into the lungs for sampling of the lower airways 
[45]. It is not well documented whether TTW or BAL is 
the best approach to investigate the LRT microbiome in 
cattle. In previous studies, TTW and BAL were able to 
determine the bacterial pathogens including Mcoplasma 
and Mannheimia in the lungs of calves acutely affected 
with BRD [1, 43], and Mycoplasma spp. and other bac-
teria have been isolated from BAL samples from pneu-
monia calves [46, 47]. Although some concerns remain 
regarding the risk of nasal and nasopharyngeal contami-
nation, BAL has become more widely used for bacterial 
diagnosis in pneumonia due to its advantages of being 
minimally invasive and useful for cytology [45, 48, 49]. 
In human studies, the contamination of the BAL micro-
biome from the URT is considered minimal and could be 
ignored when using guarded BAL [12, 50, 51]. In addi-
tion to the common URT and LRT sampling methods 
described, some researchers have collected lung tissue 
post-slaughter for microbiome analysis [52]. However, 

the value of these samples is limited due to the cost of 
euthanasia, lack of slaughter facilities appropriate for 
the sampling of lung tissue and lung traceability. Over-
all, the most useful approach to sample the airway will be 
dependent on research goals, the diagnostics utilized, the 
species being studied, and the category and the severity 
of the disease course [53].

3.2 � Sequencing and bioinformatics for the bovine 
respiratory microbiome

Previous studies have analyzed the respiratory microbiota 
or pathogens using culture-dependent techniques [54–
56]. However, these techniques only enable the detec-
tion of a small fraction of the microbiota. Also, various 
molecular techniques have been used to quantify spe-
cific microbes within the respiratory microbial commu-
nity, including immunohistochemistry [57] and real-time 
PCR [58]. The improved availability of NGS techniques 
has allowed us to more broadly and specifically study the 
microbiome. Due to the low biomass of specimens in the 
LRT, the lungs have traditionally been considered a mini-
mal source of bacteria when using culture-dependent 
or molecular techniques in the past [12, 15]. However, 
recent studies using NGS techniques have shown the 
complex microbial composition and found the common 
bacterial pathogens for BRD in the lungs of both healthy 
and sick cattle [1, 16, 23, 43, 52]. With the improvement 
of techniques, nanopore sequencing and multiple omics 
[i.e., metagenomics (the study of a collection of genomes 
and genes from the members of a microbiota by shot-
gun sequencing), metaproteomics, metatranscriptom-
ics and metabolomics] are becoming more effective to 
investigate the composition and functions of the respir-
atory microbiome [59, 60]. In cattle, the bacterial com-
munity and BRD-associated pathogens were found when 
using metagenomics to measure all the genes of all the 
microbes in an environment [20, 25, 61–63], but still no 
reports using other omics were found. However, due to 
many factors such as cost, technique error, and time of 
analysis etc., NGS is still the most popular approach [64].

Big data analysis post-NGS is another key factor in res-
piratory microbiome analysis. After obtaining sequencing 
data from Illumina MiSeq /HiSeq or 454 pyrosequencing 
platforms [65–68], the quality control steps are carried 
out to remove low-quality reads with sequencing errors 
while the remaining high-quality sequences are classi-
fied to the genus- or species- level based on available 
databases such as RDP [69], Greengenes [70], NCBI [71] 
or BRD niche specific database [72]. Of note, it is criti-
cal to include negative (i.e., blanks during DNA extrac-
tion and PCR reactions) and positive controls (i.e., mock 
communities with known bacterial taxa) to rule out any 
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environmental contaminations, especially when ana-
lyzing low biomass lung samples. The software, such as 
quantitative insights into microbial ecology (QIIME) 
and mothur, have been commonly used for 16S rRNA 
sequencing data analysis, including quality control, bac-
terial classification, and downstream analysis [73–75]. 
Then, basic analyses, such as community measures of 
alpha diversity (the diversity within a particular ecosys-
tem, including richness and evenness) and beta diver-
sity (comparison of diversity or the extent of changes 
between ecosystems) for overall community structure 
as well as major microbiota composition, are performed 
and reported.

3.3 � Statistics for the bovine respiratory microbiome
The interactions among microbes within a community 
are essential to study the bovine respiratory microbiome 
and its association with BRD. Network theory can inves-
tigate and display the complex interactions of microbiota 
in a single network. A wide range of methods has been 
used to build ecological networks regarding microbiome 
data [76]. Those methods vary in their accuracy, effi-
ciency, speed and computational requirements, as well as 
the span from simple measures of pairwise Spearman or 
Pearson correlations, to more complex multiple regres-
sion and even Gaussian graphical models. A study using 
co-occurrence analysis by calculating all coefficients of 
Spearman’s rank correlation found “core” community 
structures formed between bacteria in both healthy and 
diseased human airways [77]. Only one study using net-
work analysis related to BRD was found based on our 
knowledge and this research distinguished the bacteria 
associated with BRD using network analysis [78]. Net-
work analysis should be used broadly in BRD researches, 
which could allow us to understand the microbial inter-
plays and find the potential probiotics.

Identification of bacterial taxa related to BRD is of par-
ticular interest to many scientists. Many machine learn-
ing techniques that allow algorithm to be more accurate 
at predicting outcomes could be used to identify specific 
bacteria deferentially represented between healthy ver-
sus BRD calves, including Random Forest [79], Support 
Vector Machine (SVM) [80], Linear discriminant analy-
sis Effect Size (LEfSe) [81], etc. For example, Random 
Forest has been used as a robust machine learning tech-
nique to identify microbial biomarkers related to differ-
ent human and animal diseases [82, 83]. It can deal with 
binary, categorical and continuous variables, and works 
well with unbalanced data sets. Although machine learn-
ing needs more computational power and resource, it 
is not a big problem with the development of computer 
science. Area-under-ROC curve (AUC) of the Random 
Forest (AUCRF), that has been previously published [84], 

has higher accuracy for feature prediction. A recent study 
used machine learning to predict viral-induced BRD with 
high accuracy based on public datasets [85]. Moreover, 
regression-based Random Forest models could be devel-
oped to identify bacterial taxa associated with continu-
ous variables such as body weight and temperature using 
an updated method. This exciting area of research is con-
tinually developing as new techniques and modified tech-
niques are being explored and will ultimately be key to 
improving our recognition of bacterial pathogens.

Another important ecological question involves the 
spatial dynamics (from the upper to the lower airway) 
of the respiratory microbiome in the context of BRD. In 
humans, the URT microbiota disperses and colonizes the 
lung via respiration and microaspiration [86], and the 
island model has been used to detect microbial move-
ment/dispersion from the source to sink environment 
community [87]. The island model considers source eco-
logical communities (URT) as dynamic assemblages of 
microbes whose existence, deficiency and relative abun-
dances in the sink (LRT) environment are affected by 
random dispersion, speciation, elimination, and stochas-
tic birth and death events [88]. Some alternate models, 
such as the neutral model and source tracker, are useful 
to characterize the spatial movement of the respiratory 
microbiota as well. Source tracker can determine the 
contribution of microbiota from one or more sources 
to a particular sink using the Bayesian algorithm [89]. 
The neutral model assesses the microbial drift from one 
source to one sink [86]. Due to the complex ecosystems 
of bovine respiratory tracts, these models may not per-
fectly fit the dispersals of bovine respiratory microbiota. 
However, the outputs of these models should clarify the 
activities of BRD pathogens somehow. Unfortunately, 
there are limited BRD studies to measure the spatial 
dynamics of bovine respiratory microbiota [90]. In future 
BRD studies, researchers need to determine the microbial 
movements from the URT to the lung in both healthy and 
sick calves using these developing models, which may be 
helpful for the understanding of BRD pathogenesis.

Several statistical models have been developed and 
could be applied to examine the associations between the 
bovine respiratory microbiome, host phenotypes (e.g., 
body weight, BRD) and genotypes, diets and environ-
ment. For example, permutational multivariate analysis of 
variance (PERMANOVA) was used to screen for the fac-
tors influencing bovine respiratory microbiota [90]. Cor-
respondingly, a study used bovine respiratory pathogens 
to predict the clinical outcome using a univariate logistic 
regression model [21]. Additionally, some analyses, such 
as Procrustes and multiple co-inertia, are approaches to 
integrate multi-omics datasets [91], and could be poten-
tially applied to study bacterial-host interactions in BRD 
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cases. These algorithms could allow us to explore the 
mechanisms of BRD pathogenesis and better identify the 
factors leading to BRD if they will be used in future stud-
ies of the bovine respiratory microbiome.

4 � Biogeography of the bovine respiratory tract 
and microbiota

The URT includes the nostrils, the tonsils, and the naso-
pharynx, whereas the LRT includes the larynx, trachea, 
tracheal bronchus, tracheal bifurcation, bronchi, bron-
chioles, alveolar ducts, alveolar sacs, and alveoli. Con-
sidering cattle, the tracheal bronchus specifically arises 
cranial to the tracheal bifurcation. The primary physi-
ological function of the respiratory tract is to conduct 
gas exchange (inhalation of oxygen for the exchange and 
exhalation of carbon dioxide) from the blood. To achieve 
this, the respiratory tract must warm, filter, and humid-
ify inhaled air and, in doing so, prevent the formation of 
poisonous or infectious agents that may have access to 
the respiratory system and threaten function and health. 
Thus, the pH and temperature gradually increase along 
the respiratory tract, while the partial pressures of airway 
oxygen (pO2) and carbon dioxide (pCO2) have opposing 
gradients that are regulated by environmental air circum-
stances and the ability of gas exchange at the surface of 
the lungs (Figure 2). The respiratory microbiota colonizes 

along the URT and further disperses into the LRT due 
to the respiratory tract’s anatomical connection with the 
external environment and direct dispersal along mucosal 
surfaces, where the microbiota lives. However, the niche-
specific microbial communities along the respiratory 
tract are selectively grown due to the niche physiologi-
cal parameters (e.g., temperature, pH, ventilation, etc.) 
that are present within the bovine respiratory tract [11]. 
In one study, the existence of M. haemolytica in the cat-
tle nasal cavity affected its prevalence in the trachea, 
although their abundances in both sites were not well 
correlated [92]. Therefore, understanding the biogeogra-
phy of the respiratory microbiome provides insights into 
the complexity of the respiratory ecosystem and BRD.

The URT contains several diverse anatomical zones 
that have different physiological conditions and a greater 
prevalence to generate contact with the external environ-
ment (e.g., diet, water, feces, urine) and other cattle. The 
nasal cavity, most rostral to the external environment, 
contains a skin-like, keratinized squamous epithelium. 
The genera associated with common BRD pathogens 
such as Mycoplasma, Mannheimia, and Pasteurella are 
observed in the nostrils of both healthy and BRD affected 
cattle [1]. Other dominant genera in the bovine nasal 
cavity, including Psychrobacter, Aggregatibacter, Sphin-
gomonas, Corynebacterium and Coprococcus, are also 

Figure 2  The harmonious interaction of the respiratory ecosystem in healthy cattle. The complex respiratory ecosystem in healthy cattle is 
harmonious and contains niche specific environmental properties, microbiota immigrations and host-microbiota interactions, which could resist 
pathogen colonization to some extent. The gradients of physiological features are along the respiratory tract and move from the nasal cavity to the 
nasopharynx to the trachea and terminate in the lungs. Lower temperature is reported in the nostrils while the lungs reach body temperature. The 
partial pressures of airway oxygen (pO2) and carbon dioxide (pCO2) have opposing gradients that are regulated by ventilation and gas exchange 
at the epithelial surface of the airway [11]. Concerning respiration and microaspiration, micro-particles from the external environment enter the 
upper respiratory tract (URT) and move to the lungs. Equilibrium is achieved when the host and the respiratory microbiota maintain harmonious 
interaction [15, 37, 108, 109].
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reported [1, 41]. The microbial community of the naso-
pharynx, the region near the caudal aspect of the nose, 
has been widely investigated. The four genera associ-
ated with BRD pathogens, including Mycoplasma, Man-
nheimia, Histophilus and Pasteurella, have also been 
observed in nasopharyngeal samples from both healthy 
and BRD-affected animals [19, 22, 24]. Other domi-
nant genera include Pseudomonas, Psychrobacter, Act-
inobacillus, Clostridium, Acinetobacter, Bacillus, Proteus, 
Bifidobacterium, Rathayibacter, Cellulomonadaceae, 
Corynebacterium, Jeotgalicoccus, and Planomicrobium 
[22, 23, 25, 93, 94]. Temporal changes of the nasopharyn-
geal microbiota have also been reported. A previous 
study in cattle confirmed that the nasopharyngeal micro-
biota changed significantly within several days of arrival 
to the feedlot, resulting in greater microbial diversity and 
richness [93]. Pasteurella haemolytica was identified in 
the tonsils of calves [95]. In addition, the microbiome in 
the oral cavity and oropharynx is also of interest since 
Pasteurellaceae associated with the commonly isolated 
BRD pathogens was detected in the oral cavity of calves 
[96]. Considering cattle often lick their noses and can 
actually reach farther into their nostrils than other spe-
cies, it is not surprising that there would be similarities 
between the microbes found in the oral cavity and oral 
pharynx and the URT. However, studies are currently 
limited regarding the characterization of the oral micro-
biome in bovines. The first study to investigate the oral 
microbiomes of cattle with bovine periodontitis found 
that the most prevalent bacterial microbiota in cattle 
considered healthy were Pseudomonas, Burkholderia 
and Actinobacteria, whereas Prevotella, Fusobacterium 
and Porphyromonas were significantly reported in dis-
eased subjects [97]. A recent study found Streptococcus 
was the predominant bacteria on the mouth floor, while 
Streptococcus, Bibersteinia and Mycoplasma were found 
in the oropharyngeal community in healthy calves [16]. 
Currently, no published studies of the microbiota found 
in the oropharynx of BRD-affected cattle exist. The oral 
and oropharyngeal microbiome may be a new direction 
for BRD microbiome research, since overlaps of Myco-
plasma between the oropharynx and the lungs in cattle 
have been reported [16].

The LRT is comprised of trachea, tracheal bronchi, 
bronchioles, and alveoli. Passageways entering the lungs 
distal to the tracheal bronchus and bifurcation contain 
bronchi (primary, secondary, and tertiary), bronchioles, 
alveolar ducts and sacs along the respiratory tree [98, 
99]. Until now, little to no bovine research has been con-
ducted that separates the LRT into the trachea and lung 
to investigate the LRT microbiome, likely due to the sup-
ported evidence showing their similarity in the identifi-
cation of BRD pathogens [44]. However, the abundances 

of non-dominant abundance bacteria between the tra-
chea and the lung were different [16], and they may 
have functions in BRD pathogenesis that we may not yet 
understand. There are some studies that have started to 
investigate the LRT microbial composition and struc-
ture in cattle with different sampling techniques. In the 
clinically healthy bovine LRT, the genera Mycoplasma, 
Moraxella, Pasteurella, Mannheimia, Bacteroides and 
Clostridium were observed in both TTA and BAL sam-
ples [1, 20, 43]. Other genera such as Bibersteinia and 
Prevotella were also observed in the bovine lung [43].

Microbial movement or dispersion within the respira-
tory tract is another new research direction since it could 
potentially explain the contribution of the URT micro-
biota to the lung microbiota. One study concluded that 
nasopharyngeal microbiota may serve as the primary 
source for the lungs in healthy calves since the naso-
pharyngeal region shared similar bacterial composition 
with the lungs compared to other sampling niches [16]. 
Similarly, bacterial overlaps between the URT and LRT 
in cattle have also been described in additional studies 
[1, 23, 43]. However, in cattle, no studies have yet evalu-
ated the dispersion of the respiratory microbiota with 
effective statistical models. In healthy subjects, micro-
biota enter the lungs through an active and continuous 
process by inhalation of air, direct mucosal dispersal and 
microaspiration from the URT (Figure 2) [50]. In healthy 
humans, the adapted island model hypothesizes that the 
lung microbiome and its growth rate are more affected 
by microbial immigration and elimination processes than 
by the effects of the local or lung growth environments 
[100]. The composition of a healthy lung’s microbiome fit 
a neutral model when using oral microbiota as a source, 
which meant the oral microbiota is one of the major 
sources contributing to the human lung microbiome 
[51, 86]. Moreover, Venkataraman et  al. [86] found that 
75% of the oral OTUs were neutrally distributed bacteria 
from the upper gastrointestinal tract in humans. Shared 
microbiotas between the oropharynx and lung, such as 
Mycoplasma and Moraxella, have been found in healthy 
cattle [16]. Therefore, especially for ruminants, investiga-
tion of microbial movement within the airway affected by 
external sources is complex yet relevant. Since the spe-
cific ruminating activity of cattle causes rumen content 
and rumen microbiota entry to the oral cavity and oro-
pharynx frequently, it is expected that this physiological 
activity would influence lung microbiota [101], perhaps 
even more so than it might in monogastric. The shifts 
in rumen microbiota affected by dietary changes and 
age may also contribute to the structure of the respira-
tory microbiome. A previous report found that weaned 
calves which consumed selenium-biofortified alfalfa hay 
for nine weeks resulted in favorably reformed microbial 
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communities in the nostrils [102]. Simultaneously, the 
communication between cattle and the environment, as 
well as with each other, could also serve as a significant 
contributor to the URT microbiota and, subsequently, 
the lung microbiota. Cattle, in particular young calves 
and dairy breeds (like Holsteins and Jerseys), tend to 
investigate their environment with their mouths. They 
lick, suckle, and mouth things in the environment (and 
each other) frequently, which suggests the environment 
could serve as an important source for both the oral and 
URT microbiota. Also, social grooming through licking 
the head and neck of each other is an important behavio-
ral feature that may additionally influence oral and URT 
microbiota. Another potential source to consider is the 
direct inhalation of air in different weather conditions as 
survivability of microorganisms in the air can be influ-
enced by temperature, humidity, UV light, etc. [11, 103]. 
These dynamic movements of microbiota are relevant for 
our understanding of pathogenesis in pulmonary health 
and disease [104]. For example, altered respiratory rate 
and effort in a diseased animal may alter the impact that 
direct inhalation of air might have on the microbiome. 
Additionally, diseased animals often have altered eating 
habits, such as inappetence, are sometimes offered diets 
higher in roughages such as hay, and may also receive 
antimicrobials in their diet, which may also impact the 
respiratory microbiome. Moreover, there are multi-
ple factors that affect the URT microbiota and eventual 
microbial shifts in newly weaned calves, including anti-
biotics, external environments, stress, and host immu-
nity [11, 15, 105, 106]. Recently, a study confirmed that 
a single injection of antibiotic including oxytetracycline 
and tulathromycin led to changes in the nasopharyngeal 
and fecal microbiota, and increased the relative abun-
dance of several antibiotic resistance genes in these two 
communities later [28]. Therefore, investigation of micro-
biota dispersion through the URT or the oral cavity or 
oropharyngeal region needs to consider all these poten-
tial factors that could influence the bovine respiratory 
ecosystem.

5 � Association between the respiratory microbiome 
and BRD

Disease is one of the main factors influencing the respira-
tory microbiome. Many studies have confirmed that the 
alteration of the respiratory microbiota can be observed 
in calves with clinical BRD. For example, the nasopharyn-
geal microbiota in BRD-affected feedlot calves was dis-
tinct from pen-matched healthy controls [22, 103], a 
distinct longitudinal shift of microbial composition of the 
nasopharynx from feedlot arrival to when BRD was diag-
nosed was observed in another study [90, 107], and bacte-
rial families associated with BRD, including Mycoplasma 

and Pasteurellaceae, had greater abundances and fre-
quencies in lung tissue samples from calves with BRD 
signs [52]. Although these reports support the hypoth-
esis that microbial dysbiosis is associated with BRD, we 
still do not know the accuracy of the association between 
the microbiome and BRD despite the microbial changes 
found. A key unknown factor is whether the pathogens 
and the rest of the microbiota are the inducers of inflam-
mation and onset of BRD, or whether host inflamma-
tion or other changes in the respiratory immune system 
leads to the alteration of microbial structure by selec-
tively overgrowing pathogenic microbes thriving in a 
more inflammatory milieu [37]. Therefore, integration 
of the mechanism of microbial dysbiosis or host immu-
nity influenced by causal agents is important for clarity 
regarding the association of the respiratory microbiome 
and BRD.

5.1 � The microbial ecosystems in healthy bovine 
respiratory tracts

Understanding the physiological functions of the healthy 
airway and resident microbial colonization help us fur-
ther elucidate BRD pathogenesis. In healthy cattle, a 
mucosal layer covers the respiratory tract and provides 
immune and physical protection for maintaining home-
ostasis under the interactions of the host, microbiotas 
and the external environments [15, 37, 108, 109] (Fig-
ure 2). Mucus consists of a complex array of antimicro-
bial peptides, immunoglobulins, glycoproteins, mucins, 
polysaccharides, ions, cells, and bacteria which work to 
maintain harmonizability [15, 109]. In addition, mucus in 
the URT offers protective barriers against pathogens and 
toxins from the external environment [110]. Dynamic 
mucociliary escalator transport works to shift mucus 
and the small particles it traps (dust, infectious agents, 
bacteria, etc.) toward the nasopharynx or oropharynx 
to be swallowed, which helps prevent foreign material 
from entering the lungs during breathing [111]. The nos-
trils, nasopharynx and trachea are lined with respiratory 
epithelium encompassing goblet cells containing pseu-
dostratified columnar epithelial cells for mucous produc-
tion [112]. Epithelium in the bronchioles shifts gradually 
toward a cuboidal epithelium with some cilia and club 
cells which generate glycosaminoglycans and secre-
tory proteins to maintain normal lung physiology and 
host defense. Epithelial cell surfaces of the alveoli con-
sist of two types: type I cells that regulate gas exchange 
processes and barrier function, and type II alveolar cells 
producing lipid-rich surfactants with the ability to pre-
vent bacterial growth. These two epithelial cell types 
provide the mechanical defenses based on antimicrobial 
peptides whose secretion increases during the process 
of inflammation due to their activation by dendritic cells 
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and macrophages [113]. They might also yield cytokines 
and chemokines that employ and trigger immune cells in 
infected or damaged areas of the respiratory tract [114]. 
Surfactant proteins A and D in type II and club cells (for-
merly named clara cells) potentially have antimicrobial 
and immunomodulatory roles by binding and inactivat-
ing microbial agents [109]. Moreover, the airway micro-
biota and their metabolites can cooperate with the host 
to protect against pathogen invasion/overproduction. 
Steed et al. [115] reported a microbially produced metab-
olite in humans (desaminotyrosine) that can protect the 
host by amplifying type I IFN signaling. Other factors, 
such as the secretion of the ion chloride as well as sodium 
uptake, are essential to maintaining normal regulation 
of mucus production [116]. Altogether, the microbiome 
adapts to a state of microbial symbiosis and homeosta-
sis with the host mucosal surface and immune system. 
This complex interaction of factors requires additional 
researches in order to fully understand how different fac-
tors (environmental, host, pathogen) can impact this deli-
cate balance.

5.2 � The microbial ecosystems in the respiratory tracts 
of BRD calves

Newly weaned beef calves experience numerous stress-
ors that can cause dysbiosis of the respiratory ecosys-
tem and result in subsequent BRD infection [22, 26, 
102, 117, 118]. At feedlot arrival, the homeostasis of 
microbial communities in healthy cattle prevents patho-
gens from establishing infection on mucosal surfaces 
through the consumption of all presented nutrients, the 
adjustment of the local niche environments and micro-
bial composition, the occupancy of receptor sites, the 
clustering of antimicrobial molecule construction, and 
the regulation of mucosal inflammation [11, 15, 109]. A 
previous study confirmed that the URT microbiota in 
healthy feedlot cattle rapidly changed from weaning day 
to arrival at the feedlot (a period of 2 days including 10 h 
shipping and overnight comingling with other calves) 
and within 40 days after feedlot arrival [119], indicating 
that the respiratory ecosystem responded to new chal-
lenges in the feedlot. In a previous study, the serotype 2 
of Mannheimia haemolytica was more abundant in the 
nasal cavity before stress (before weaning and shipping 
to feedlot), while serotype 1, commonly considered to 
be more pathogenic, was more frequently isolated after 
feedlot arrival [120]. Likewise, viral and bacterial patho-
gen invasion through susceptible host defenses leads 
to microbial dysbiosis, damage of airway tissue and the 
subsequent development of BRD after feedlot arrival 
[15]. The proliferation and movement of BRD pathogens 
within the bovine respiratory tract were still unclear. A 
previous hypothesis stated that initiation of dysbiosis is 

directed by the stress and colonization of pathogens into 
the URT, subsequent shifting of the URT microbiome 
structure and then proliferation and ultimately infection 
of the lungs [121]. However, the mechanism of infec-
tions in BRD lungs caused by bacterial pathogens is not 
understood since pathogens are found in healthy lungs in 
calves. The spatial dynamics of pathogens and their sub-
sequent influences on the bovine respiratory microbiome 
are necessary to be investigated in future studies.

While limited information for the colonization, disper-
sion and infection of BRD pathogens have been reported, 
our efforts in preventing and predicting BRD would be 
improved by increasing our understanding of the ini-
tial colonization of pathogens in the URT. The pattern-
recognition receptors in the URT that are expressed by 
the mucosal epithelium and immune cells (e.g., den-
dritic cells, macrophages, and neutrophils) can recognize 
pathogens or other noxious substances and then provide 
signals to regulate acquired immune responses [110]. 
Increasing pathogen loads generate the URT immune 
responses, alteration of the niche environment, and sub-
sequent disequilibrium. Under the initial stage of dys-
biosis representing an increase in pathogens and host 
inflammation, the host is considered to be at the “pre-
BRD” state in which microbial communities are unstable 
and easily breach susceptible host defenses. The mucosal 
barrier function responds to respiratory ecosystem dys-
biosis and pathogen invasion by secreting signaling mol-
ecules (e.g., inflammatory cytokines and chemokines) in 
mucus production, and the stimulation of an immune 
response in local niches [15]. This pre-BRD state can be 
considered a reversible phase. To resist pathogen inva-
sion, protect the host, and reestablish barrier function, 
inflammatory events (including IgA production, immune 
cell recruitment) are activated until risk signals van-
ish, and reestablishment of the damaged area can begin 
to occur [37]. Alternatively, the onset of BRD occurs 
when cattle in the unstable pre-BRD state are subjected 
to the continuous increase of pathogens. Then, detect-
able mucosal damage accompanied by a deficiency of the 
mucosal barrier is usually found in the respiratory tracts 
of BRD-affected calves (Figure 3).

Citing M. haemolytica as an example, it is a commensal 
resident in the URT of healthy calves. However, a sudden 
explosive proliferation associated with stress and viral 
infection occurs in the URT of susceptible animals [122]. 
One specific serotype of M. haemolytica (serotype 1) 
adheres to and colonizes bovine bronchial epithelial cells, 
and subsequently forms foci of infection through damag-
ing tight-junction integrity, transcytosis and rapidly rep-
licating intracellularly [123]. M. haemolytica produces 
leukotoxin and lipopolysaccharide which are two impor-
tant virulence factors that contribute to M. haemolytica’s 
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pathogenicity within the respiratory tract [124]. During 
the invasion process, M. haemolytica stimulates host 
epithelial cells producing proinflammatory mediators 
including cytokines (TNF-α, IL-6 and IL-1β) as well as 
chemokines (CXCL8). The generation of proinflamma-
tory mediators and the release of lipopolysaccharide and 
leukotoxin together affect neutrophil movement into the 
lungs, as they are the primary cause of damaged respira-
tory tissue associated with BRD [125–127]. Then, the 
BRD pathogens, such as M. haemolytica, could attack 
differentiated bovine bronchial epithelial cells through 
cytopempsis, and replicate quickly in cells prior to BRD 
triggering subsequent widespread cellular injury and lung 
lesions [123, 125].

5.3 � The remained questions for the association 
between BRD and microbiota

Until recently, the actual mechanism of epithelial dam-
age in BRD cases has not been clear due to the complex 
interaction of multiple viral and opportunistic bacte-
rial pathogens. Although the process of bovine respira-
tory viruses cooperating with bacterial pathogens is not 
clear, in humans, the summarizations of how respira-
tory viruses interacted with bacteria generating damage 
peripheral to the bronchi and bronchioles are reported 

[128]. The presence of viruses in the bovine respiratory 
tract may also alter the microenvironment of mucosal 
surfaces and bacterial structure, leading to reduced 
mucociliary function and cilia damage. Additionally, 
viral infection could reduce the concentration of anti-
microbial peptides, bacterial adherence and invasion 
by adjusting the host immune system [129]. Segal et al. 
[130] observed that enhanced expression of inflamma-
tory cytokines (Th17 immune activation) is associated 
with bacteria in the human LRT, which indicates that 
the respiratory microbiota could regulate the inflam-
matory condition at the mucosal surface in humans. 
Host defense and clearance of viral infections are gen-
erally facilitated by an equilibrium of the humoral 
immune response to neutralize antibodies and the T 
cell-mediated immune response. Undeniably, viruses 
in the bovine airway may injure ciliated cells and even 
the epithelial layer by disturbing cellular tasks and kill-
ing infected epithelial cells, decreasing mucociliary 
transport and consequently exposing the respiratory 
tracts basement membrane [15, 19]. Thus, an altered 
niche environment could lead to secondary infections 
by opportunistic bacterial pathogens following a host 
immune response by facilitating adhesion and coloniza-
tion of bacterial pathogens [131, 132].

Figure 3  Respiratory pathogen invasion and the host immune response. Dysbiosis is developed by increased colonization of pathogens into 
the upper respiratory tract (URT), shifting the structure of the URT microbiome and then proliferating and infecting the lungs. In the pre-BRD state, 
the mucosal barrier’s function responds to dysbiosis of the bacterial community and the reproduction of pathogens across the airway epithelium 
by releasing chemokines and cytokines in mucus production and activates local immune cells [37]. The onset of BRD occurs when the unbalanced 
pre-BRD state suffers a decline into the clinical exacerbation state. Then, detectable damaged epithelium accompanied by a functional deficiency of 
the mucosal barrier is commonly found in the respiratory tracts of BRD calves.
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There are additional knowledge gaps regarding how 
the microbiota, including commensal bacterial and 
pathogens, move within the airway of both healthy and 
BRD calves. Achievements in understanding microbial 
shifts within respiratory tracts in other species provide 
alternative statistical techniques to study microbial drift 
associated with BRD. In humans, the neutral model can 
estimate microbial drifts from the URT to the lungs suc-
cessfully in healthy individuals, but fails in patients with 
cystic fibrosis [51, 86]. In future studies, the microbial 
drifts in the bovine respiratory tract need to be investi-
gated using similar statistical approaches by considering 
the specific factors influencing the lung microbiome in 
cattle, to provide more insights into the pathogenesis of 
BRD.

6 � Conclusions and future perspectives
BRD is a multi-factorial disease and the pathogenesis 
of BRD is complex and not fully understood. Although 
the rapid development of sequencing techniques and 
machine learning or data science help us to better 
characterize the biogeography of microbial communi-
ties in the respiratory tracts of healthy cattle and those 
affected by BRD, there remain many knowledge gaps. 
The complexity of the respiratory ecological system lim-
its our understanding of mechanisms such as microbial 
colonization and host-microbiota interactions, and drift 
between biogeographical locations. Suitable techniques 
for sampling niches and data analyses should be con-
sidered and optimized based on research goals. Many 
studies have analyzed the differences of the respiratory 
microbial composition in healthy or BRD affected cattle 
in different niche locations.

However, little is known about the dynamic microbial 
movements within the airway [90]. Moreover, character-
izing the function of the respiratory microbiome is one 
of the next steps and will be an important component in 
advancing our understanding of pathogenesis. Addition-
ally, advanced multi-omics techniques (i.e., metagenom-
ics, metaproteomics) will provide key insights into the 
respiratory microbiota and its interaction with epithe-
lial cells for maintenance of homeostasis and dysbiosis 
associated with BRD development. Future studies con-
cerning BRD and the bovine respiratory microbiome 
should also consider greater exploration of the interac-
tions between viral and bacterial communities, and the 
association of microbial dispersion and BRD severity, to 
determine which factors (especially stress) contribute to 
pathogen colonization and proliferation. Simultaneously, 
the bovine respiratory microbiome data should be inte-
grated with host phenotypic data to elucidate the impact 
on BRD pathogenesis.

Future studies investigating the temporal and spatial 
dynamics of the bovine respiratory microbiome using 
multi-omics approaches not only improve our under-
standing of the pathogenicity of BRD but also provide 
novel biomarkers for the accurate prognosis and diag-
nosis of this disease. For example, a panel of biomark-
ers including bacterial taxa, metabolites, and gene 
transcripts generated from nasal swabs collected from 
healthy calves and those with BRD could be developed 
by machine learning techniques such as Random Forest 
to predict and diagnose BRD if the nasal microbiome is 
representative of the bovine respiratory microbiome (at 
least the upper respiratory system). Advanced tools in 
bioinformatics should be developed to integrate the high 
dimensional datasets generated from multi-omics studies 
using different platforms. Network analysis of the lower 
respiratory microbiome can reveal bacterial interactions 
between the opportunistic pathogens and other bacteria. 
The bacterial taxa that had antagonistic interactions with 
these pathogens could be further investigated and used as 
potential probiotics to kill these pathogens. Overall, the 
deep and continued investigation of the bovine respira-
tory microbiome opens new possibilities for therapeutics 
and rapid detection approaches for BRD or other respira-
tory diseases.
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