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Abstract 

Gram-negative bacteria are known to subvert eukaryotic cell physiological mechanisms using a wide array of viru‑
lence factors, among which the type three-secretion system (T3SS) is often one of the most important. The T3SS 
constitutes a needle-like apparatus that the bacterium uses to inject a diverse set of effector proteins directly into 
the cytoplasm of the host cells where they can hamper the host cellular machinery for a variety of purposes. While 
the structure of the T3SS is somewhat conserved and well described, effector proteins are much more diverse and 
specific for each pathogen. The T3SS can remodel the cytoskeleton integrity to promote intracellular invasion, as well 
as silence specific eukaryotic cell signals, notably to hinder or elude the immune response and cause apoptosis. This 
is also the case in aquatic bacterial pathogens where the T3SS can often play a central role in the establishment of 
disease, although it remains understudied in several species of important fish pathogens, notably in Yersinia ruckeri. In 
the present review, we summarise what is known of the T3SS, with a special focus on aquatic pathogens and suggest 
some possible avenues for research including the potential to target the T3SS for the development of new anti-viru‑
lence drugs.
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1  Introduction
The demand for fish products has been increasing world-
wide for multiple decades now, and with the output of 
fisheries largely stagnant, this demand has been mostly 
answered through the growth of aquaculture, particularly 
in developing countries [1]. Aquaculture has become the 
fastest growing animal food production sector [2, 3] and 
it is expected to almost double to reach 93.2 million tons 
in the next decade [4]. This increased production has 
been in part achieved by increasing the intensity of fish 
farming, which has led to an increase in the occurrence 
of infectious diseases, which represent a major limiting 
factor in aquaculture [5, 6].

Pathogenic bacteria, in particular gram-negative bac-
teria, are a major group among the pathogens associated 
with diseases in aquatic organisms and have evolved mul-
tiple features to influence their hosts and defend them-
selves against attackers. Bacteria are separated from 
their environment by a complex multi-layered enve-
lope. In gram-negative species, this envelope is formed 
of three layers: the inner-membrane which is composed 
of a phospholipid bilayer, a thin peptidoglycan cell wall 
composed of repeating units of N-acetyl glucosamine and 
N-actyl muramic acid and an outer-membrane, a feature 
unique to gram-negative bacteria, composed of phospho-
lipids and lipopolysaccharides [7]. The space between the 
inner and outer-membrane where the cell wall is located 
is termed the periplasm and can represent a large pro-
portion, up to 40%, of the total volume of the bacterial 
cells [8]. In addition, many bacteria also secrete a glyco-
calyx in the form of capsules or slime-layers.

As the main role of this complex envelope is to separate 
the bacterial cytoplasm from the external environment, 
it is largely impermeable and movement of non-soluble 
compounds requires complex transport mechanisms. 
Notably, virulence factors are by their very defini-
tion active outside the bacterial cells and are therefore 
transferred through specific transport system from the 
bacterial cytoplasm toward the outer side of the enve-
lope [9]. Several secretion systems have been linked to 
the export of virulence factors and classified into broad 
families, forming an ever-expanding list of numbered 
secretion systems that currently includes at least nine 
different types [10, 11], although more are very likely 
to be described in the future. Of course, not all types 
of secretion systems are present in all bacterial species. 
For example, the type 7 secretion system is mostly asso-
ciated with members of the Mycobacterium genus and 
other gram-positive bacteria and no functional members 
of this family have yet been described in any species of 
gram-negative bacteria [9, 12].

Among these secretion systems, the best studied, or 
at least the one associated with the highest number of 

references in the PubMed database at the time of this 
writing, is the type 3 secretion system (T3SS). This inter-
est can be explained by the important role of the T3SS in 
the virulence of many varied bacterial pathogens, includ-
ing many important pathogens of fish and other aquatic 
animals.

Because of the importance of the T3SS in the estab-
lishment of disease by Gram-negative pathogens, an 
understanding of their mode of action is necessary for 
the understanding of many diseases. Moreover, they 
represent attractive targets in the development of anti-
virulence therapy. In aquatic organisms notably, bacterial 
pathogens have been associated with several outbreaks 
and much of the bacterial species involved belong to the 
group of the gram negative, with several known to har-
bor a T3SS that is often required for the establishment 
of infections. However, despite this importance, much 
remains to be learned about the T3SS of many aquatic 
pathogens. Therefore, the present review was writ-
ten with the goal to present an overview of what is cur-
rently known about the T3SS and list some of the areas 
still requiring more attention, with the hope that it might 
help further research on the subject. Since most of the 
research regarding the T3SS was conducted on patho-
gens of land animals, the present review will start with an 
overview of what is generally known about these T3SS, 
first in term of structure and then regarding their func-
tions and effector proteins. Then, it will focus on what has 
been discovered specifically about the role of the T3SS in 
the establishment of diseases in aquatic organisms.

2 � The T3SS
2.1 � Structure of the Type III secretion system
The T3SS either evolved from the bacterial flagellum 
or shares a direct relative with it, consequently, many 
structural proteins are homologous between the two 
apparatus [13–16]. While there are multiple distinct 
families of T3SS (Figure  1), the Ysc secretion system of 
the Yersinia genus is generally used as the model for our 
understanding of the T3SS. Moreover, while many spe-
cies of bacteria share genes homologous to that belong-
ing to the Ysc T3SS, they are often more closely related 
to T3SS from other genera (Additional file 1). Based on 
these similarities, seven categories (or families) of T3SS 
have been defined and most of the T3SS belong to one of 
these seven families [16]. In recent years, because of the 
presence of a number of homologous proteins, an effort 
has been conducted to standardise the names of the vari-
ous proteins comprising the T3SS following a universal 
nomenclature based on homology [15, 17, 18]. In this 
nomenclature, the first 3 letters reflect the T3SS from 
which the protein originates, while the last letter, written 
in capital, indicates the specific protein and is identical 
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between homologs. For example, the translocation pro-
tein AscE of Aeromonas hydrophila is homologous with 
the translocation proteins YscE in Yersinia sp. and SctE 
encoded by the pathogenicity island 1 (SPI-1) of Salmo-
nella [19]. This is the terminology that we will apply in 
the next paragraphs.

One way to categorise the different proteins compos-
ing the T3SS is between conserved and variable proteins. 
The former is represented by a set of about 15 to 20 con-
served proteins [20], mostly playing a structural role, 
which are homologous between the different organisms 
harbouring a T3SS [18]. They are generally present in all 
T3SS and, in a way, define what constitutes this apparatus 
(Table 1). The second category of proteins is more vari-
able and adapted to the specific bacterium and the role 
the T3SS play in its lifestyle. Specific effector proteins 

and corresponding chaperones are therefore most repre-
sented in this category.

Another way to characterise this complex apparatus 
is based on the location of the different proteins. This 
allows dividing the T3SS into three regions: the cyto-
plasmic region, the trans-membrane region, also known 
as the basal body [21], and the extra-cellular region 
(Figure 2). The main role of the cytoplasmic region is to 
interact with proteins in the bacterial cytoplasm and to 
recruit effector proteins before directing them to the rest 
of the secretory apparatus. Consequently, this section of 
the T3SS is often characterised as the “sorting platform” 
or at the “export apparatus” of the T3SS [22]. This region 
is organised around a polymer formed by the protein 
YscV which complexes with the proteins YscR, YscS, and 
YscT [23]. In addition, YscQ, a homolog to the flagellar 

Figure 1  Phylogenetic tree of the best characterized T3SS families. The tree was prepared using aligned sequences from the Ribosomal 
Database Project II and the various sequences were allocated into 7 major families of T3SS based on homology (reproduced with permission from 
Troisfontaines and Cornelis [16]).
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Motor C-ring is generally considered part of the export 
apparatus [24]. Energy for the protein export is provided 
through the ATPase YscN, which forms a hexameric ring 
and is regulated through YscL [25]. The sorting platform 
recognises specific substrate to be exported via the T3SS. 
These substrates are marked by a leader sequence fol-
lowed by a specific translocation signal, however these 
are highly variable and ill-defined: unstructured N-termi-
nal sequence appear common in all T3SS substrates but 
the length of these sequence vary greatly between mol-
ecules and some classes of proteins require additional 
signals to be recognised by the T3SS [26].

The trans-membrane region is composed of two rings 
forming an export channel through the inner and outer 
bacterial membranes. The channel in the inner mem-
brane is composed of two proteins and is considered 
homologous to the flagellar M-ring. YscJ is a lipoprotein, 
located on the periplasmic side of the inner-membrane 
and co-purified with YscD [27, 28], which has both cyto-
plasmic and periplasmic domains [29]. Mutation of the 
forkhead-associated-domain of YscD was shown to result 
in silencing of the T3SS in Yersinia pseudotuberculo-
sis [29]. YscC belongs to the family of secretin-proteins, 
it protrudes into the periplasm and forms a pore in the 
bacterial outer-membrane allowing for protein export 
into the rest of the T3SS [30]. It is theorised, based on 
observation performed on T3SS component proteins 
tagged with fluorescent proteins, that it is the insertion 
of YsC into the bacterial outer-membrane by the pilotin 

YscW that initiates assembly of the T3SS, at least as far 
as the YsC family is concerned, and that the rest of the 
T3SS is built around YscC [28, 31]. The role of the trans-
membrane region is to transport the effector proteins 
across the bacterial cell membranes. In addition, it is 
also involved in the secretion of the extra-cellular com-
ponents of the T3SS on the other side of the cell mem-
branes where they will form the extra-cellular part of the 
T3SS [32].

Finally, the extra-cellular region can be further sepa-
rated between the needle that bridges the extra-cellular 
space between the bacterial and the host cell membrane 
and the tip and translocon of the T3SS that are inserted 
into the host cell to act as the injection apparatus and 
move the effector proteins across the cell membrane. The 
needle is very conserved and composed of hundreds of 
repeats of the protein YscF [33]. The tip of the T3SS is 
formed by the protein LcrV, also known as the V anti-
gen, a polymorphic protein which is absent in many 
T3SS families and whose function remains unclear [34, 
35], although it has been suggested that it plays a role in 
manipulating the TLR2 mediated immune response. In 
addition, it is known that YopD/LcrV interactions play 
a role in the secretion through the T3SS [36] and LcrV 
are required for the insertion of the other two proteins, 
YopB and YopD [37]. These two proteins are called trans-
locators and together, they form an integral multimeric 
500 to 700 kDa complex referred to as the translocon that 
acts as a pore into the host membrane, allowing for the 
delivery of effector proteins directly into the cytoplasm 
[32, 38, 39]. For this reason, the T3SS is sometime called 
the “injectisome” [20].

As mentioned above, this description is based on our 
understanding of the Ysc secretion system, which is likely 
the best characterised of all T3SS and, while the basic 
structure is conserved, other T3SS families exist that dif-
fers from this model in some respect. For example, the 
assembly sequences for the basal body and the export 
apparatus differ between the Salmonella Spa and the 
Yersinia YsC secretion systems [40].

2.2 � Chaperones of the T3SS
Alongside these structural components, another criti-
cal part of the T3SS is the associated chaperones. These 
chaperones are generally small amphiphilic molecules 
[41] and are often encoded adjacent to the effector pro-
teins that they serve. They are generally not secreted 
themselves but may be necessary for secretion and there-
fore for the T3SS to perform its function [42]. Chap-
erones can play multiple roles but are mostly known 
to direct the correct folding of proteins and protect 
them from untimely degradation, oligomerization and 
unwanted interactions with proteins in the bacterial 

Table 1  Chaperones effectors corresponding in 
Enteropathogenic bacteria 

Chaperones Effectors Microorganisms References

SycE YopE Yersinia enterocolitica [54]

SycO YopO Yersinia enterocolitica [54]

SycT YopT Yersinia enterocolitica [52]

SycB YspB Yersinia pestis [48]

SycN YscB Yersinia pestis [48]

Inv SopA(SipF)
SopE
SopE2
SipA(SspA)

Salmonella [182]

SseA
SseB
SrcA

SseL
PipB2
SsaN
SteD

Salmonella enterica [44]
[55]

CesT Tir Escherichia coli (EPEC) [47]

CesT Map Escherichia coli (EPEC) [47]

Spa15 IpaA
IpgB1, OspC3
OspB

Shigella flexneri [57]

PscE- PscG PscF Pseudomonas aeruginosa [40]
[59]
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Figure 2  Schematic of a typical T3SS. A Schematic of the use of the bacterial type 3 secretion system. B Common organization and structure of 
the T3SS. The colors of the proteins correspond to the various areas of the T3SS. C Nomenclature of T3SS components displaying both the universal 
nomenclature and the corresponding protein on the SPI-1 T3SS. Reproduced with permission and minor modifications from Wagner et al. [20].
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membrane [43]. For example, the Inv protein in Salmo-
nella directs the folding of cognate secreted proteins in 
an ATP-dependent manner [42]. A major role of chap-
erones is to direct their substrate toward the ATPase of 
the T3SS that will propel them through the T3SS [42, 
44]. Chaperones of the T3SS are generally divided within 
three classes based on their substrate with class I chaper-
ones specialising in the translocation of effector proteins, 
class II chaperones translocating proteins that assemble 
to form the secretion pore in the host target membrane, 
and class III chaperones specialising in the secretion of 
extracellular filamentous proteins [42, 45].

In enteropathogenic Escherichia coli, co-immunopre-
cipitation assays have shown that the chaperone CesT 
interacts with both the translocated intimin receptor 
(Tir) and the Mitochondrial-associated protein (Map). 
Both gel overlays following migration on SDS-PAGE 
and enzyme-linked immunosorbent assays have shown 
that Tir binds to the type III ATPase EscN via CesT [46] 
which allows for its subsequent secretion through the 
T3SS [47]. Similarly, crystallography studies have shown 
that SycN–YscB form a heterodimeric chaperone that 
permits the secretion of YopN in Yersinia pestis [48]. 
Moreover, LcrH plays a role in controlling the levels of 
secretion of Yop and YopD [49, 50].

An important family of chaperones is the SycE family in 
the T3SS of members of the Yersinia genus [51, 52]. This 
family includes Syct, a chaperone that harbours a binding 
site containing residues 52–103 of YopT and is required 
for the secretion of YopT in Yersinia enterocolitica [53]. 
Three additional chaperones have been described for the 
Yop of Y. enterocolitica, SycE, SycH, and SycO, acting as 
chaperones for YopE, YopH, and YopO, respectively [54].

In Salmonella sp., the multicargo T3SS chaperone SrcA 
interacts with the ATPase, SPI-2-encoded effector SsaN, 
and SteD, an adaptor that drives the ubiquitination and 
degradation of MHCII [55]. Mutation experiments have 
further shown that SrcA is required for the secretion 
of both of these effector proteins [44, 55]. Meanwhile, 
another chaperone, SseA is known to act as a chaperone 
allowing for the translocation of SseB and SseD [44]. In 
Salmonella enterica serovar Typhimurium, mutations 
in sseA has been shown to prevent the assembly of the 
SPI-2 T3SS and to result in loss of virulence and impaired 
intracellular replication [56].

Shigella flexneri Spa15 chaperone is unusual because 
it has multiple substrates: it has been shown to enhance 
the stability of IpaA, IpgB1, OspC3, and OspB [57]. In 
addition, several homologs of this chaperone have been 
described, including the SycB that acts as a chaperone for 
YspB in Y. enterocolitica [58].

The PscG–PscF complex in Pseudomonas aeruginosa is 
an example of class III that is required for the assembly of 

a stable needle for the T3SS. Consequently, mutations in 
these chaperones have been shown to result in an impair-
ment of the T3SS functions and reduction of its cytotoxic 
effects on macrophages [59].

2.3 � Roles of the T3SS
2.3.1 � Effects of the T3SS on host cell signalling
Cell physiology is regulated by interconnected networks 
and intercellular cell signals. A common strategy by 
microbial pathogens is to interfere with these signals by 
suppressing or mimicking cellular messengers, notably 
using effector proteins secreted directly into the cell cyto-
plasm through the T3SS. Among the common targets of 
the T3SS are the cytoskeleton, endosomal trafficking, 
particularly those involved in phagocytosis, mitogen-
activated protein (MAP) kinase, and nuclear factor-κB 
(NF-κB) pathways as well as the innate immunity [60, 61].

The MAP kinase pathway is one of the main cell signals 
controlling proliferation progression, stress, and inflam-
mation response and plays a vital role in immunity of 
the host to bacterial pathogens [62]. Two pathways have 
been described, termed “canonical” and “non-canonical”, 
that both involve stimulation of membrane receptors of 
the EGF receptor family, ultimately leading to the cas-
cade activation of transcription factors [62, 63]. Enter-
opathogenic bacteria in particular interfere with a variety 
of host cell mechanisms through the mitogen-activated 
protein kinase (MAPK) and NF-κB pathways [61]. In 
Yersinia, screening of host genes using RNA interference 
allowed to identify 19 NF-κB-regulated genes [64]. These 
genes included the heat shock protein H 1 (HSPH1) and 
encompass a variety of functions, including the NF-κB, 
the MAPK and the ERK signalling pathways, ion channel 
activity, and even cell growth regulation. Normally, these 
genes are upregulated by NF-κB, although this does not 
occur in the presence of wild-type Y. enterocolitica. How-
ever, curing this bacterium from the virulence plasmid 
pYV (that carries the bacterium T3SS) restores expres-
sion of these genes in infected cells, leading the authors 
to conclude that they were the target of Y. enterocolitica 
T3SS [64].

Moreover, research on the T3SS effector NleB1 from 
enteropathogenic E. coli showed that the effector NleB1 
binds to the death domain of the Fas-associated protein 
[65]. This binding prevents the formation of the canoni-
cal death-inducing signalling complex (DISC) and the 
proteolytic activation of caspase-8 in order to avert 
apoptosis [65]. Similarly, another T3SS protein has been 
described as preventing cleavage of caspase-8, caspase-3, 
and the receptor-interacting serine/threonine protein 
kinase 1 (RIPK1) as well as binding caspase-4, -8, and -9 
to inhibit their activity [66].
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2.3.2 � Cytotoxic effects
The cellular cytoskeleton is a network of actin and 
microtubules that act together to give shape and rigid-
ity to eukaryotic cells while also playing a role in cellular 
trafficking, cellular uptake and cell movement. A major 
aspect of the cytoskeleton is the Rho family that consti-
tutes a subfamily of the broader Ras super-family. Rho are 
small GTPases modulating actin organization, cell cycle 
progression and gene expression and playing a role in 
the organization of guanine exchange factors (GEF) and 
GTPase activating proteins (GAP) to change the inactive 
GDP- bound to active GTP- bound [67].

Members of the Rho family are a major target for effec-
tor proteins of the T3SS, either for inhibition or activa-
tion of these networks. For example, in Yersinia spp., 
translocation of the recruiting effector YopD through 
the cell membrane allows for the formation of channels 
through which YopE is delivered into the cell cytoplasm 
[32]. YopE GTPase inactivates members of the Rho fam-
ily, including RhoA, Rac1, but not Cdc42 which is not 
considered an in  vivo target for YopE [68]. This inacti-
vation leads to disruption of the actin cytoskeleton [68, 
69] and elicits a proinflammatory signalling response 
culminating in cytotoxicity [70]. However YopE is also 
recognised as a danger signal by macrophages and it has 
been shown that presence of YopE increased macrophage 
mediated killing of Yersinia bacteria [71]. Another effec-
tor of Yersinia spp., YopT, is a cysteine protease that 
induces apoptosis of macrophages through the inhibi-
tion of the MAPK and NFκB pathways [72], disturbing 
the F-actin structure of the cytoskeleton and resulting in 
a rounding of affected cells [73]. Interestingly, YopT com-
petes with YopE for the same pool of Rac1, and the two 
effector proteins have antagonistic properties [71]. Simi-
larly, YopK/YopQ (the name varies between homolog in 
different species of Yersinia) plays a role in the control of 
Yop translocation across the host cells [74]. In Y. pseu-
dotuberculosis, YopQ has been associated with cytotoxic 
effects on polymorphonuclear leucocytes, although the 
precise mechanisms of actions remain unclear [75]. Simi-
larly, YopJ effector has an inhibitory function for MAPK 
and NF-κB [76]. This effector prevents phosphorylation 
of serine and threonine residues MAPKK6 and interrupts 
the pathway [76, 77], reducing the production of the anti-
apoptotic regulator Bcl-2 and leading to apoptosis of 
infected macrophages [78]. Moreover, YopE interferes on 
the signalling by acetylation of MEK2, MEK6 and, IKK as 
well as promoted apoptosis in infected macrophages [72, 
78].

Salmonella enterica also induces apoptosis in mac-
rophages through an unknown NF-κB-independent 
mechanism that relies on signalling through the kepro-
inflammatory activator caspase 1 [61, 63, 79, 80]. Ectopic 

expression of the SPI-2 T3SS effector, SseL, did not sup-
port a role in the down-regulation of the host immune 
response and in particular the NF-kB pathway [81].

2.3.3 � Other means of circumventing the immune response
In addition to causing apoptosis, bacterial pathogens can 
protect themselves from phagocytosis and the immune 
system by interfering with the host cells in other ways. 
For example, YopE and YopT can hinder the maturation 
of prointerleukin-1β in macrophages [82]. Meanwhile, 
EspF and EspJ of E. coli inhibit the PI3K and Src signal-
ling required for phagocytosis [61].

Moreover, in Citrobacter rodentium and other Attach-
ing/Effacing (A/E) pathogens like E. coli, the metallopro-
tease effector NleC cleaves the transcription factor p65, 
a transcription factor involved in the transcription of 
NF-κB in colon epithelial cells isolated from the intestine 
of mice. The resulting p651–38 fragment then interferes 
with p65/ RPS3 interactions to hinder the transcrip-
tion of NF-κB and NF-κB signalling [83]. Likewise, the 
effector SpvB secreted by the Salmonella pathogenic-
ity island-2 (SPI-2) T3SS of Salmonella enterica serovar 
Typhimurium has been shown to promote the expression 
of the E3 ligase KEAP1 [84]. KEAP1 acts as a repressor 
for IKKb which is in turn a promoter of NF-kB, therefore 
this effector proteins allows the bacterium to supress the 
NF-kB-dependent signalling pathway associated with the 
immune response [84].

Two distinct T3SS have been described in members of 
the Salmonella genus, located on the SPI-1 and SPI-2 and 
correspondingly named T3SS1 and T3SS2 [85, 86]. Both 
of these T3SS are required for bacterial virulence: one of 
the pathways of intracellular infection in Salmonella spp. 
involves the formation of salmonella containing vacuoles 
(SCV) in which the bacterium can multiply overtime 
[87]. Salmonella spp. requires both T3SS1 and T3SS2 to 
survive within these SCV and effector proteins interfere 
with the maturation of the vacuoles [87], although the 
precise mechanisms involved remain unclear. Effectors 
from T3SS1 are generally detected earlier in the infec-
tion process and it has been suggested that they are more 
involved with the earlier stages of the vacuole maturation 
while effectors from T3SS2 are more involved with later 
stages [87]. Finally, experiments using mutants of Acido-
vorax avenae identified an effector protein (A. avenae K1 
suppression factor 1) that was associated with supressing 
the cellular response following recognition of flagellin 
associated molecular patterns [88].

2.3.4 � Interference with the cytoskeleton to promote 
internalisation and cell invasion

Finally, a major role of the T3SS is in tissue colonisa-
tion to assist with bacterial attachment and to provide 
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a mechanism of intracellular invasion through the trig-
ger mechanism. Tir molecules are effectors which exist 
in two distinct forms, secreted by enteropathogenic and 
enterohaemmorhagic E. coli, respectively [89]. Both 
forms of Tir stimulate actin assembly through Nck-inde-
pendent pathways leading to the recruitment of F-actin 
at the site of contact and the formation of pedestal struc-
tures to which the bacteria can then attach tightly [89].

A large class of effector proteins, best known in Shi-
gella spp. and Salmonella spp., are characterised by their 
Trp-X-X-X-Glu motif [90]. These proteins are known to 
activate the Rho GTPases RhoA, Cdc42, and Rac1, result-
ing in the reconfiguration of the cytoskeleton and the 
formation of stress fibres, filopodia, and ruffling of the 
host cell membrane, leading to the intracellular uptake 
of the bacteria [90–92]. Similarly, the effector proteins 
SopE, SopE2, and SigD of Salmonella can activate actin 
in a Arp2/3-dependent manner [93], resulting in mem-
brane ruffling that facilitates bacterial invasion [94]. Fol-
lowing internalisation, the activation of Cdc42 and Rac 
is reversed by SptP, another effector protein while IpgD 
destabilizes tight junctions, facilitating the formation of 
SVC [93–95].

3 � T3SS in aquatic pathogens
As mentioned, many T3SS-harbouring bacterial patho-
gens have been associated with diseases in fish and other 
aquatic animals. However, despite this importance, much 
remains to be learned about these virulence factors. A 
review of what is currently known is presented in the fol-
lowing pages.

3.1 � Edwardsiella spp.
The Edwardsiella genus represents a small but grow-
ing group of facultative anaerobic enteric bacteria and 
includes pathogens causing disorders in both fish and 
mammals. Mutation studies performed on 7 genes from 
the T3SS of E. tarda resulted in an increase in the bac-
terium LD50 (at least tenfold) as well as a decreased sur-
vival and growth of the bacterium in fish phagocytes 
following silencing of the T3SS [96]. The first effector of 
T3SS discovered in E. tarda was EseG whose secretion 
is dependent on the activity of the EscB chaperone [97]. 
EseG shares partial homology with the effectors SseG 
and SseF of Salmonella spp. and like these two proteins 
was found to interact with the cytoskeletons of the host 
cells, suggesting that it too might be involved in pro-
moting internalisation of bacteria into fish cells [97]. In 
addition, the inner rod protein of the T3SS, alongside 
the flagellin molecule, induces pyroptosis activating the 
death process in host cells [98]. Pyroptosis starts with the 
activation of caspase-1 via the inflammasome complex, 
resulting in the secretion of IL-1β, IL-18 and TNF-α and 

concluding in cell death [98]. The protein EsaE is a mem-
brane bound protein required for the secretion of T3SS 
effectors and its deletion has been shown to result in the 
attenuation of the bacterium [99]. Liu et al., furthermore 
demonstrated that the expression of E. tarda T3SS was 
regulated through a ternary complex involving EsaB, Esa, 
and EsaM [100]. Notably, they found that the activity of 
EsaL was pH dependent with EsaL suppressing secretion 
at pH 7.2 but promoting it under acidic conditions (pH 
5.5) [100].

E. ictaluri is best known as a pathogen of catfish 
and sequencing of E. ictaluri plasmids pEI1 and pEI2, 
revealed remarkable similarities with the T3SS of E. 
tarda as well as SlrP, SspH1, and SspH2 in Salmonella 
typhimurium and IpaH of S. flexneri. pEI2 has also lim-
ited similarities to Spa15 of S. flexneri 5 and InvB of Shi-
gella sonnei and S. typhimurium [101]. Signature-tagged 
mutagenesis have shown that these regions were neces-
sary for the ability of E. ictaluri to cause infections [102, 
103]. Both acidification and subsequent neutraliza-
tion of the Edwardsiella containing vacuoles (ECV) are 
required to trigger the translocation of the E. ictaluri 
effectors [103], a feature that appears unique among bac-
terial pathogens. In contrast, transcription and assem-
bly of the related Salmonella SPI-2 T3SS only requires 
acidification of the SCV [104]. The EseN effector plays 
an important role in E. ictaluri invasion, where it acti-
vates extracellular replication in catfish head kidney by 
dephosphorylation in vivo in the head kidney of infected 
fish, and ex vivo in macrophages derived from the head 
kidney [105]. EseN can also shut down signal-regulated 
kinases 1 and 2 (ERK1/2) early in the infectious process 
[80, 105]. Furthermore, there is evidence of reduced 
numbers of bacteria in infected tissue and in mortal-
ity in channel catfish (Ictalurus punctatus) infected with 
bacteria with a deleted eseN gene bacteria compared to 
wild-type infected tissue [105]. Finally, low pH and low 
phosphate triggers the expression of the T3SS effectors 
EseB, EseC, and EseD expression as well as the PEI1and 
PEI2 encoded, ESeH and ESeI [106].

Edwardsiella piscicida, has been described more 
recently and has been associated with diseases in aquatic 
animals, e.g. catfish and zebrafish [107]. It possesses both 
a T3SS and a T6SS, which are responsible to transport 12 
effectors with synergistic activity [108]. In-frame deletion 
mutants of the T3SS structural genes EpDssaV, EpDe-
saM, EpDyscR in E. piscicida have resulted in loss of vir-
ulence in the bacterium and further analysis found that 
the mutants had potential efficacy as vaccines in catfish 
fingerlings [109]. The T3SS E. piscicida triggers TNF-α 
and IL-1β, synchronously, and activates inflammatory 
cytokines contributing to spreading the infection in host 
cells [110]. More recently, transcriptomic analysis using 
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the regulator EsrB have allowed to identify 6 novel effec-
tor proteins that were co-expressed alongside proteins 
of the T3SS, although the exact role of these effectors 
remains to be elucidated [111].

3.2 � Vibrio spp.
Vibrio species include a wide array of pathogenic bac-
teria found in both marine and terrestrial animals and 
these bacteria are considered endemic in water reservoirs 
throughout the world and are uncommon in the fact that 
many members of this genus commonly harbour two 
chromosomes, of varying size [112]. Most members of 
the genus Vibrio only harbour one T3SS [113]. However, 
sequencing has shown that several pathogenic strains 
of Vibrio parahaemolyticus harbour two distinct T3SS 
gene clusters encoding two different apparatus known as 
T3SS1, homolog to the one shared by other Vibrio spp., 
and T3SS2, carried on the main and secondary chromo-
some, respectively [113].

The T3SS1 showed an organisation comparable to that 
of the T3SS of Yersinia spp. [114]. Mutant strains of V. 
parahaemolyticus deficient in either T3SS1 or T3SS2 
activity have been generated by Park et  al. [114] and 
infection studies using these mutants have shown that 
T3SS1 was involved in the cytotoxic activity of the bac-
terium [114]. Activity of the T3SS1 on fibroblasts has 
shown an impact on the expression of 398 host genes 
[115]. Multiple T3SS1 effector genes have been iden-
tified [113], these include the effectors VopQ, VopS, 
VPA0450 and VopR (VP1683). VopQ has been linked 
to cell autophagy and toxicity via JNK-pathways lead-
ing to the expression of IL-8, caspase-1, IL-1β, and IL-18 
and the inactivation of Cdc42, culminating in cellular 
cell death [116–118]. Moreover, the fic domain of VopS 
promotes cytoskeleton destruction via RhoA, Rac1 and 
Cdc42 (Rho GTPases) AMPylation [116, 119]. VopS and 
VopQ are homologous proteins, collaborating to pro-
mote cell autophagy concomitantly [119–121]. Moreo-
ver, VPA0450 was reported to disrupt the bacterial cell 
membrane by interfering with the cytoskeleton, result-
ing in membrane blebbing [122]. In addition, the regu-
lators EsxA, EsxC, ExsD and ExsE have been shown to 
be necessary for the expression of the T3SS1. ExsA acts 
as a positive transcriptional regulator and plays a regu-
latory role for T3SS1 and shows DNA binding motifs 
linked to multiple T3SS1 genetic operons and promotes 
the expression of the T3SS1. ExsD binds ExsA to block 
expression of the T3SS1 genes while Exsc binds ExsD to 
allow for their expression [123]. Expression of the T3SS is 
regulated through the regulatory protein ExsA and sev-
eral environmental factors like temperature above 30  °C 
or elevated presence of magnesium in the medium have 
been correlated with an increased activity [124]. T3SS1 is 

further involved in suppressing inflammatory responses 
through the inactivation of Cdc42 which otherwise acts 
as a stimulator to activate inflammasomes, NLRP3 and 
NLRC4 in host cells [117]. In V. alginolyticus, the effector 
proteins Val1686 and Val1680 include a Fic-domain, and 
have been shown to induce apoptosis, cell rounding and 
cell lysis through Val1686-dependent Rho GTPase inhi-
bition [125]. However blocking the caspase 3 apoptotic 
pathway does not prevent cell rounding, membrane pore 
forming or cell death, suggesting that this T3SS can act 
through other cellular pathways beside caspase 3 [126]. 
Conversely, the T3SS1 was also shown to upregulate 
several pathways involved in cell-survival, a feature that 
the authors suggested might help the bacterium reduce 
the immune response by masking its cytopathic activity 
[115].

Somewhat less information is available regarding the 
rarer T3SS2. Screening of 155 environmental isolates 
(defined by the absence of the thermostable direct hae-
molysin (TDH) and TDH-related haemolysin) for genes 
coding for 2 elements of the T3SS2 (vscC2 and vopP), 
detected these genes in 10 or 8 isolates, respectively 
[127]. This suggested that this virulence factor might be 
uncommon in environmental isolates. Similarly, screen-
ing of environmental isolates from grouper and milkfish 
suggested that presence of T3SS2-associated genes was 
also variable, ranging from 14 to 100% of the isolates, 
depending on the gene [128]. When present, the T3SS2 
has been linked to enterotoxicity [129, 130]. Notably, the 
T3SS2 is necessary for the secretion of the effector pro-
tein VopT which is a homolog of the Pseudomonas exo-
enzyme T (ExoT) [130]. Expression of VopT has been 
shown to inhibit growth in yeast culture while mutant of 
V. parahaemolyticus deficient in VopT displayed reduced 
cytotoxic activity against Caco-2 cells [130]. However, 
compared to the T3SS1, the T3SS2 appears to only be 
active against a limited number of cell lines [131]. Finally, 
Calder et al. have described the role of the T3SS2 in the 
formation of biofilms [132].

3.3 � Aeromonas spp.
Aeromonas salmonicida is another major pathogen in 
aquaculture and the causative agent of furunculosis 
[132, 133]. The T3SS of A. salmonicida is likely its most 
important virulence factor [134] but was only relatively 
recently reported, its discovery probably hindered by 
the fact that T3SS are lost when the bacterium is cul-
tivated above 20  °C [135–137], due to the T3SS gene 
cluster being locating in a thermosensitive region [138]. 
Among the most important effector proteins secreted by 
the T3SS of A. salmonicida are AopH, Ati2, AexT, AopP, 
AopO, AopN and ExsE [134], that have been associated 
with cytoskeletal collapse and immune system response 
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impairment [139], with aopO being upregulated during 
the infectious process [140]. Moreover, AcrV and AopB 
are homologues in LcrV and YopB in Yersinia which 
stimulate IL-10 production in the cell, consequently 
supressing the immune response [141].

More recently, experimental infections of Oncorhyn-
chus mykiss by wild-type A. salmonicida harbouring a 
fully functional T3SS, a mutated T3SS ascV (ΔascV), or 
a strain in which the T3SS had been completely lost con-
firmed the central role of the T3SS in the establishment 
of disease, with ΔascV being attenuated and the T3SS-
less strain being totally avirulent [142]. Moreover, the 
authors also performed RT-qPCR on the anterior kidneys 
of infected fish showing a down-regulation of several 
immune genes associated with T3SS activity. Notably, 
expression of the interleukin 2 (a cytokine regulating pro-
liferation of T-cells) and interferon gamma (a cytokine 
produced by T-cells) as well as that of the markers CD4 
and CD8 (both expressed by different sub-populations of 
T-cells) were very strongly downregulated in fish infected 
with the wild-type and ΔascV strains but not in the strain 
without T3SS [142]. These results suggested that the 
T3SS of A. salmonicida had a strong immunosuppres-
sive effect, particularly targeting different populations of 
T-cells, even if the precise effectors involved remain to be 
elucidated [142].

The effector AexT has been linked to cell cytotoxicity. 
It is considered homologous to P. aeruginosa bifunctional 
toxins exoenzyme S (ExoS) and exoenzyme T (ExoT), 
having a GAP function, activating members of the Rho 
family and resulting in the depolymerisation of ADP-
ribosyltransferase actin and cell rounding [143]. Studies 
in mice have shown that deletion of aexU gene from the 
genome of A. salmonicida resulted in loss of virulence 
[144]. Furthermore, immunization of mice with recombi-
nant AexU protected them from subsequent lethal chal-
lenge dose by the wild-type bacteria.

Notably, presence of T3SS genes is less systematic in A. 
hydrophila, the other major fish pathogen in this genus 
[133], as only some of the strains of the bacterium har-
bour all the genes for a functional T3SS [145]. However, 
sequencing of the gene cluster of A. hydrophila AH-3 
using primers derived from sequences in A. salmonicida 
revealed the presence of 35 T3SS genes, 20 of these genes 
were homologous to genes on A. salmonicida and at least 
half of the remaining 15 proteins appeared novel to Aero-
monas [19]. Silencing of the T3SS by deletion of the ascV 
gene resulted in loss of virulence in both rainbow trout 
and mice, showing the role of the T3SS in the disease 
process [19]. This decreased virulence of the mutants 
was confirmed in dwarf gourami (Trichogaster lalius) and 
was associated with reduced cytotoxicity and increased 
phagocytosis, which could highlight some mechanisms 

of action of this T3SS [146]. Epidemiologically, screen-
ing for the presence of several genes associated with the 
T3SS showed that the strains harbouring such genes 
were more likely to be associated with outbreaks of dis-
ease [145]. Similarly, screening of Aeromonas spp. from 
human patients has also shown that Aeromonas caviae, 
generally regarded as less virulent, were less likely to 
harbour a T3SS than other members of the genus [147]. 
The regulatory mechanisms of this T3SS in A. hydroph-
ila have been investigated and it was shown that it was 
expressed in response to several environmental factors, 
including calcium depletion, high magnesium concen-
tration, and high temperature [148]. The latter makes an 
interesting contrast with A. salmonicida where the T3SS 
is lost at high temperature. As previously stated, sev-
eral of the effector proteins secreted by the T3SS of A. 
hydrophila are homologous or present similarities with 
those of A. salmonicida. For example, the first part of the 
aexT gene is identical in A. hydrophila and A. salmoni-
cida [149], while the second half is different. The same 
study identified the protein ADP-ribosyltransferase activ-
ity and showed that mutation of aexT resulted in a slight 
reduction of their virulence both in vitro and in vivo in 
both three-spot gourami (Trichogaster trichopterus) or 
mice [149]. Similarly, aexU was found to have similari-
ties with aexT of A. salmonicida [144, 150]. In addition, 
this protein also demonstrated GAP activity resulting 
in the disruption of actin filaments, inhibiting cytokine 
secretion and resulting in apoptosis in HeLa cells [151]. 
Like for A. salmonicida, deletion of the gene resulted in 
increased phagocytosis and decreased virulence of the 
bacterium [144, 150, 151]. Despite these advances, much 
is still to be learned about the T3SS of A. hydrophila. 
Notably, the precise targets and mechanisms of actions 
of the known T3SS effectors remain to be determined. 
Moreover, because of the variability in T3SS between iso-
lates and the limited numbers of strains that have been 
investigated, it is likely that a significant number of effec-
tor proteins remains to be identified.

Finally, Matys et al. have recently reviewed the effector 
proteins secreted by bacteria of the Aeromonas genus, 
and this article should be of great interest to readers 
[152].

3.4 � Flavobacterium spp.
The genus Flavobacterium encompasses many species and 
is ubiquitous in aquatic and soil environments. Among 
these species, several are well known as opportunistic or 
true pathogens. In particular Flavobacterium psychrophi-
lum which is a major problem in particular in fish hatch-
eries, and Flavobacterium columnare, which is mainly 
known as a pathogen in warm water fish, notably in I. 
punctatus [153]. Even within a species, it is known that 
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different strains can vary wildly in term of their virulence 
[154, 155]. For example, in F. columnare, examination of 
the bacterial genome has allowed to subdivide members 
of the species in several subgroups termed genomovars 
[156, 157], and these genetic groups appear to have at 
least some correlation with the virulence of the isolates 
[155]. T3SS are not unknown within this genus: exami-
nation of the genomes from two strains belonging to two 
different genomovar revealed the presence of a partial 
T3SS on the genome of F. columnare ATCC​ 49512, con-
sidered avirulent in catfish, and a complete T3SS on the 
genome of F. columnare 94-081, belonging to the genomo-
var II and considered highly virulent [158]. Similar exami-
nation performed on 4 strains belonging to genomovar I 
with varying degrees of virulence identified T3SS on all 
genomes [159] and suggested that differences in virulence 
were likely related to differences in chemotaxis and bacte-
rial adhesion rather than the T3SS. Overall, the T3SS of 
Flavobacterium spp. does not appear to have garnered 
much attention. In the future, it might be of interest to 
systematically investigate the prevalence of this virulence 
factor within both clinical and environmental isolates of 
Flavobacterium spp. as well as clarify the role that it might 
play in the establishment of disease by deletion mutation 
or other silencing of the genes involved.

3.5 � Yersinia ruckeri
Yersinia ruckeri is a major pathogen, particularly well-
known in salmonid fish, and associated with general-
ized bacteraemia and septicaemia [160]. The presence of 
a T3SS in Y. ruckeri was reported by Gunasena et al. in 
2003 [161]. Subsequent sequencing of the complete Yers-
inia ruckeri SC09 genome has allowed to further confirm 
the components of a ysa T3SS [162]. This T3SS is unu-
sual because of its chromosomal location and it is carried 
on an operon with a moderate (ranging from 60 to 37%) 
identity to four genes of Y. enterocolitica [161]: YsaV (pro-
tein ID: CNI46870.1), YsaK (protein ID: CNI46839.1), 
YsaN (protein ID: CNI46802.1) and CDS19 (protein ID: 
NZ_KN150747.1). Furthermore, it displays similarities in 
gene sequence, arrangement and gene content with that 
of Y. enterocolitica biotype 1B and SPI-1 [163]. However, 
beside the sequencing of these genes, no information is 
currently available regarding the function of this T3SS 
and of their role in the virulence, internalization, replica-
tion and invasion mechanisms [162, 164]. This is particu-
larly surprising considering the importance of Y. ruckeri 
as a fish pathogen and the amount of research that have 
otherwise focused on this pathogen.

3.6 � Pseudomonas spp.
Pseudomonas spp. are gram-negative bacteria belong-
ing to the γ-proteobacteria [165] that can display a high 

level of resistance for antibiotics [166] and infect a wide 
range of animals including human and fish [167, 168]. For 
example, P. aeruginosa is a normal part of the fish micro-
biota but may behave as an opportunistic pathogen in 
immunocompromised fish, resulting in ulcers and hem-
orrhagic septicemia [168]. The T3SS of P. aeruginosa is 
similar in structure with that of other gram-negative bac-
teria like Salmonella, Shigella and Yersinia spp. [169] and 
it has been theorized that this T3SS might have evolved 
to kill environmental amoeba as a defense mechanism 
against predation [170]. Four effector proteins (ExoT, 
ExoS, ExoU and ExoY) have been described in P. aer-
uginosa. Intriguingly, ExoS and ExoU are, for unknown 
reason, rarely secreted together in the same strain and 
have been associated with apoptosis and rapid cell lysis, 
respectively [166]. Furthermore, deletion mutations have 
shown that ExoU plays a role in damaging the lung epi-
thelium in mice [171]. The other two effector proteins 
include ExoT and ExoY. ExoT has been linked to apop-
tosis in cultured cells following disruption of the mito-
chondrial membrane and leaking of cytochrome C into 
the cytosol [172, 173]. Furthermore, this effector also 
interferes with the actin cytoskeleton in order to inhibit 
phagocytosis, as well as slow wound healing by prevent-
ing epithelial cell migration in order to facilitate bacte-
rial colonization [174]. The last known effector protein is 
ExoY which promotes secretion of the cyclic pyrimidine 
nucleotides cGMP and cUMP which play an important 
regulatory role in apoptosis and ion channel regulation, 
as well as smooth muscle control, including in the blood 
vessels [175].

While most of this work has been conducted on mam-
malian models, and in particular a mouse model, the pro-
teins targeted by P. aeruginosa are well conserved and it 
is plausible that the T3SS has similar effects on fish cells. 
Moreover, these mechanisms of action, notably induc-
tion of apoptosis, escape from the immune system, and 
epithelial damage and delayed healing are consistent with 
the clinical signs associated with P. aeruginosa infections 
in fish [168].

4 � New potential avenues for research
While T3SS appear commonplace among aquatic bacte-
rial pathogens, they are not universal in every species. 
Therefore, it would be of interest to systematically screen 
and sequence both clinical and environmental bacterial 
isolates to identify the presence of T3SS. This is particu-
larly the case for members of the genus Aeromonas and 
Flavobacterium in which the presence of T3SS is only 
sporadic. Moreover, comparing the prevalence of these 
virulence factors between clinical and environmental iso-
lates would provide us with some understanding of their 
role in disease.
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In addition, sequencing of the T3SS regions would 
allow to identify some of the effector proteins based 
on homology with previously characterized proteins in 
other species. This approach could be complemented 
by mutation experiments targeting structural element 
of the secretion apparatus followed by a compari-
son of the mutant secretome to that of the wild type 
isolate. Effector proteins are the most variable part 
of the T3SS, including between isolates of the same 
species, therefore there are likely many such proteins 
that remain to be identified and this approach has the 
advantage not to be reliant on sequence homology 
with already known effector proteins.

Moreover, the mutants could then be tested for 
infection and virulence, both in  vivo and in  vitro, 
to assess their role in the infection process. This 
approach would be relevant for bacterial fish pathogen 
in which the presence of a T3SS is known but its role 
in the establishment of disease remains unclear, like in 
Y. ruckeri or Flavobacterium spp. The specific mecha-
nisms through which the expression of these T3SS 
is regulated is also an area of interest as is the target 
and mechanisms of actions of individual effector pro-
teins. The later could be investigated by transfecting 
cells with plasmids expressing the gene of interest. 
The effect of this transfection on the cells physiology 
could then be investigated [176]. Molecules belonging 
to the T3SS would also represent interesting targets 
for the development of prophylaxis or therapeutic 
treatments. For example, the T3SS of P. aeruginosa 
has been targeted and several small molecules have 
been identified with inhibitory properties on the T3SS 
[166] as well as antibodies targeting the protein PcrV 
[177]. Similarly, additional vaccine attempts have been 
conducted targeting the homologous LcrV on Y. pes-
tis [177] and AopO, a T3SS effector of A. salmonicida, 
has proven immunogenic in O. mykiss [140]. Target-
ing virulence mechanisms rather than the pathogen 
itself is advantageous not only because it offers new 
targets but also because it is generally accepted that 
it exerts a lower selective pressure on the pathogen, 
leading to a delayed emergence of resistance mecha-
nisms [178]. Currently, most of these research efforts 
are being conducted on human pathogens; however, 
it is highly plausible that many of these therapeutants 
will be equally effective on fish pathogens. Finally, 
interference with the T3SS could also be performed 
by targeting its regulatory mechanisms. In particular, 
some of T3SS are known to be regulated through quo-
rum sensing and strategies that target quorum sens-
ing molecules, such as quorum quenching probiotics, 
have already been identified in fish health manage-
ment [179, 180].

5 � Conclusions
T3SS constitute a way for bacterial pathogens to 
manipulate the physiology of the host cells. They rep-
resent a powerful and versatile tool, and some of the 
most important virulence factors of gram-negative 
bacteria. Several examples show that it is also the case 
for multiple bacterial fish pathogens. However, com-
paratively less is known about their exact repertoire 
of secreted effector proteins as well as the targets and 
precise mode of action of these effectors. This is for 
example the case of otherwise well-known pathogens 
such as Y. ruckeri or members of the genus Vibrio or 
Aeromonas. In this context, much research effort, as 
detailed above, is still required to improve our under-
standing of the role of the T3SS in aquatic bacterial 
pathogens, how common they are and how they con-
tribute to specific diseases as well as clarifying the fac-
tors governing their expression. Moreover, molecules 
belonging to these T3SS might also represent new tar-
gets for the development of vaccines or even new ther-
apeutic treatments.
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