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Abstract 

Flaviviruses are enveloped single positive-stranded RNA viruses. The capsid (C), a structural protein of flavivirus, is 
dimeric and alpha-helical, with several special structural and functional features. The functions of the C protein go far 
beyond a structural role in virions. It is not only responsible for encapsidation to protect the viral RNA but also able to 
interact with various host proteins to promote virus proliferation. Therefore, the C protein plays an important role in 
infected host cells and the viral life cycle. Flaviviruses have been shown to affect the health of humans and animals. 
Thus, there is an urgent need to effectively control flavivirus infections. The structure of the flavivirus virion has been 
determined, but there is relatively little information about the function of the C protein. Hence, a greater understand-
ing of the role of the C protein in viral infections will help to discover novel antiviral strategies and provide a promis-
ing starting point for the further development of flavivirus vaccines or therapeutics.
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1  Introduction
Flavivirus is part of the Flaviviridae family along with 
Pestivirus, Hepacivirus and Pegivirus [1, 2]. The pri‑
mary categories are mosquito-borne (such as Usutu 
virus, USUV; dengue virus, DENV; Japanese encephali‑
tis virus, JEV; West Nile virus, WNV; Zika virus, ZIKV) 
and tick-borne flaviviruses (such as tick-borne encepha‑
litis virus, TBEV). These flaviviruses mainly cause foetal 
malformation (such as ZIKV) and neurological disor‑
ders (such as JEV and TBEV). A flavivirus is an envel‑
oped single positive-strand RNA virus with a genome of 
approximately 11 kb that contains a single open reading 
frame (ORF) flanked with a short (~100 nt) 5′-untrans‑
lated region (UTR) and a longer (~400–600 nt) 3′-UTR 
[3]. The ORF encodes a polyprotein associated with the 
endoplasmic reticulum (ER) membrane and is proteo‑
lytically cleaved into three structural proteins (capsid, 
C; precursor membrane, prM; and envelope, E) and at 
least seven nonstructural (NS) proteins (NS1, NS2A/B, 
NS3, NS4A/B and NS5) by host and viral proteases [4]. 
The C protein is essential for the assembly and matura‑
tion of viral particles and is the most promising drug tar‑
get candidate. Before being cleaved by a viral protease to 
produce a mature protein, the C protein takes the form 
of a membrane-anchored C (anchC), which can initiate 
subsequent effective flavivirus assembly but will not per‑
form viral replication [5], and this process induces the 
downstream prM to be cleaved into Pr and M by furin 
[6]. anchC is also the signal peptide that transfers prM 
to the ER lumen. Therefore, anchC is produced and dis‑
appears in the life cycle of flavivirus, and its mechanism 
of action in virus assembly may be helpful for antiviral 
research. However, the size and transient existence of 
anchC may limit its research. The nonstructural proteins 
are proteases that are mainly involved in the cleavage of 
polyprotein [7] and the regulation of host cell responses 
[8]. NS2A and NS3 also participate in the assembly of 
virions through direct interaction with the C protein [9]. 
NS1 regulates the production of infectious particles by 
interacting with structural proteins (C, prM and E) [10, 
11].

Flaviviruses use a complex reproduction process to 
gain access to host cells (Figure  1). Flavivirus infec‑
tion can induce invagination of the ER, forming clusters 
of double-membrane vesicles (Ves) wrapped in vesicle 

packets (VPs) [12]. The Ve houses the viral replication 
complex, including double-stranded viral RNA, viral 
nonstructural proteins and cellular proteins [13]. C pro‑
tein binds to the membrane and exits the ER via a coat 
protein complex II (COPII)-dependent mechanism, 
bypassing the Golgi apparatus; the presence of inter‑
feron-induced protein viperin enhances the release of C 
protein [14]. Currently, there is relatively little informa‑
tion on the functional properties of flavivirus C protein. 
However, C protein is the critical element of infectious 
virus particles and contains positively charged residues 
distributed throughout the molecule. The mature C pro‑
tein assembles on the genomic RNA through nonspecific 
electrostatic interactions to form a nucleocapsid, which 
is wrapped by the lipid bilayer with prM and E proteins 
to form an infectious virion [15, 16]. The purified C pro‑
tein dimer can be assembled into C-like particles when 
combined with transcribed viral RNA in  vitro [17], and 
the C protein-coding region hairpin sequence (cHP) is a 
conserved region in arthropod-borne flaviviruses. cHP is 
involved in the enhanced recognition of translation ini‑
tiation codons, which are essential for effective RNA rep‑
lication [18]. In this review, we primarily summarize the 
structure and function of the C protein, aiming to dis‑
cover more new functions and assist in the development 
of flavivirus vaccines and drugs.

2 � Structure of the C protein
The structure of the C protein has been solved by nuclear 
magnetic resonance (NMR) and X-ray crystallography 
[19]. The C protein is located at the N-terminus of the 
polyprotein [20]; it is an internal protein in virus struc‑
ture, and we expect it to consist of approximately 180 
capsid protein units [21]. The C protein is composed of 
approximately 100 amino acid residues and has a molec‑
ular weight of approximately 13  kDa; for example, the 
C protein of Tembusu virus (TMUV) consists of 120 
amino acids (aa), that of WNV contains 105 aa, and that 
of DENV contains 100 aa. Compared with the other two 
surface proteins prM and E in different flaviviruses, the C 
protein has the lowest amino acid homology. The homol‑
ogy of the JEV C protein to WNV, DENV-2 and TBEV 
is only 67%, 33%, and 25%, respectively. However, certain 
characteristics, such as the biochemical properties, struc‑
tural specifics (hydrophobicity, secondary/tertiary struc‑
ture, and abundance of basic amino acid residues) [22] 
and several functional elements of the C protein, seem 
to be well conserved in flaviviruses [23, 24]. These con‑
servative biochemical characteristics contribute to simi‑
lar functions.
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2.1 � Superhelical structure of the C protein
Each C protein molecule contains two highly conserved 
internal regions: a hydrophobic region and a highly cati‑
onic region [25]. A far-ultraviolet circular dichroism 
(CD) potassium analysis showed that the flavivirus C 
protein monomer forms oligomers in solution and that 
the protein is predominantly a dimer with a two–alpha 
helical conformation, including four α-helices (α1 to α4) 
connected by short loops [26] (Figure 2). The C protein 
dimer is essential for viral assembly and virus particle 
stability [27]. The α4 helix at the hydrophobic C-terminus 
of the C protein is the longest of the four helices, and the 
α4–α4′ interaction plays the most important role in sup‑
porting C protein dimers [28], nucleocapsid formation 
and virus production [29]. The α1–α1′ and α2–α2′ helices 
are located on the opposite sides of the α4-α4′ helix and 

are composed of nonpolar residues [30]. Some research‑
ers think that the α4–α4′ region interacts with RNA, and 
the hydrophobic core in the α2–α2′ region binds to the 
virus and host lipid membranes [31]. The α1 helix is a 
part of the central hydrophobic region, which may play 
an important role in virus assembly and interactions with 
virus surface proteins [32, 33]. The α3–α3′ helix is parallel 
to the α4–α4′ helix, and the α1 and α3 helices are amphi‑
pathic and are mainly composed of leucine residues.

2.2 � Nucleocapsid
The flavivirus particle consists of an electron-dense inner 
core called the nucleocapsid (NC). The NC complex con‑
tains multiple copies of the C protein and a single copy 
of genomic RNA, and the production of infectious virus 
particles requires the NC. The anchC may help initiate 

Figure 1  Propagation process of flaviviruses. Flavivirus propagation mainly includes adsorption, entrance, replication, assembly, maturity and 
release. The virus enters host cells through host receptor recognition (A); then, the virus fuses with the host membrane (B), and the RNA of flavivirus 
is ejected from the nucleocapsid and released into the cytoplasm of the host cells (C). RNA replication, protein synthesis and particle assembly are 
carried out in the ER (D and E); the particles mature in the Golgi apparatus (F); subsequently, mature virions are released from the host cells (G).
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the formation of the nucleocapsid, including interactions 
with the genomic RNA. The mature C protein is respon‑
sible for packaging the viral nucleic acid and ribonucleo‑
protein complex in the virion, and RNA encapsidation is 
the first step in the assembly process of flaviviruses [34]. 
In the process of encapsidation, the C protein acts as a 
chaperone of RNA, promoting the folding of RNA by 
preventing its misfolding or by dissolving misfolded RNA 
without consuming ATP. The C protein is also involved in 
regulating the cyclization of flavivirus genome RNA for 
viral replication [35]. The NC is enveloped by two other 
structural proteins (prM/E) and the lipid bilayer derived 
from the host cell ER [36–38] (Figure 3). The interaction 
between the C protein and nucleolin in the nucleolus 
is important for the formation of stable and functional 
nucleocapsids [39]. During the virus infection cycle, the 
dissociation mode of the NC in the cytoplasm is not yet 
completely understood and may be worth exploring in 
antiviral studies.

2.3 � Nuclear localization signals
The C protein of flavivirus is localized in both the cyto‑
plasm and the nucleus. The C protein has basic amino 
acid regions (mainly 23–25% Arg and Lys) called nuclear 
localization signals (NLSs), and it can interact with 
nuclear import receptor proteins (such as transcription 
factor hnRNP K, nucleophosmin and importin α/β), 

which promote entry of the C protein into the nucleus; 
the NLSs of WNV are located from aa 85 to aa 101 [40], 
and the NLSs of DENV are located from aa 85–100, 
including 6KKAR9, 73KKSK76, and the bipartite signal 
85RKeigrmlnilnRRRR​100 [41–43]. The active transport 
system may be related to the movement of C protein 
from the cytoplasm to the nucleus, and importins (α/β), 
protein kinase and C protein-mediated phosphorylation 
are involved in this process [40]. The interaction between 
the C protein and importin-α is mediated by NLS motifs, 
but the function of the C protein in the nucleolus is 
almost unknown. According to evolutionary study of 
the Flaviviridae, C protein NLSs are highly conserved in 
mosquito-borne flavivirus and blood-borne and human-
adapted hepatitis C virus (HCV). The Gly42 and Pro43 of 
C proteins are important for nuclear localization and are 
completely conserved in flavivirus and HCV [44]. After 
mutating Gly42 and Pro43 to Ala (the M4243 mutant), an 
increase in defective particles or a low viral RNA replica‑
tion efficiency was detected in JEV [45].

2.4 � Phosphorylation sites
The NetPhos algorithm shows that flavivirus C protein 
has 2–6 putative phosphorylation sites. These phospho‑
rylation sites exist in the RNA-binding regions of the C 
protein. Therefore, dephosphorylation of the C protein 
enhances its interaction with viral RNA. According to 
bioinformatics analyses, the WNV C protein is phos‑
phorylated in infected cells and has 5 putative phospho‑
rylation sites (serine 26, 36, 83, 99 and threonine 100). 
The work of Cheong [46] showed that mutation in these 
phosphorylation sites of the C protein reduced its RNA 

Figure 2  3D structure of the flavivirus capsid protein. Topological 
diagram of a C protein homodimer: α-helices 1–4 of each C monomer 
are shown in light blue, green, purple and dark blue, respectively. The 
α1–α1′ and α2–α2′ helices are located on the opposite side of the 
α4–α4′ helices, and the α3–α3′ helix is parallel to the α4–α4′ helix. The 
3D structure was created with PyMOL software.

Figure 3  Infectious particle of the flavivirus. The viral RNA 
genome is packaged in a spherical nucleocapsid composed of 
multiple copies of the C protein. The structural proteins prM/E and 
lipid bilayer enclose the nucleocapsid core.
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binding activity and did not inhibit oligomerization but 
did affect the ratio of dimerization and oligomerization. 
In infected cells, the flavivirus C protein is localized 
in the nucleus due to the presence of NLSs. Interest‑
ingly, the degree of phosphorylation of the C protein is 
reduced, thereby reducing its nuclear localization [47].

2.5 � Structural flexibility of the C protein
The N-terminal region of the C protein is unstructured 
in solution, especially the first 20 residues [48]. This 
region has abundant positive charges because it is rich 
in the basic residues Arg and Lys. Therefore, almost 40% 
of the unstructured N-terminus of the C protein can be 
removed without severely damaging its functional integ‑
rity. Hence, truncation of the N-terminal region has been 
used in the prokaryotic expression and purification of 
recombinant C. The truncated C protein retains the abil‑
ity to package RNA, and even the version with approxi‑
mately 30% of the C-terminal region deleted (including 
complete deletion of α4) can still function [27]. Remov‑
ing the entire internal hydrophobic domain from the α2 
helix and the partial loop between the α2 and α3 helices 
of the WNV C protein severely impairs viral growth; 
however, a short deletion did not substantially affect the 
growth, indicating the structural and functional flexibil‑
ity of the C protein [44, 49]. A TBEV study showed that 
the C-terminal region of the C protein has two amino 
acid sequence motifs that match the canonical NS2B/
NS3 recognition site, and this region has significant func‑
tional flexibility in the assembly of infectious virions [50]. 
The flexibility of the C protein is conferred by its inher‑
ent disordered region and is conserved in all flavivirus C 
proteins. The key to the many actions that C proteins can 
perform in the proliferation cycle of virus particles and 
cells is the existence of internal disordered domains.

2.6 � Cis‑acting elements
Cis-acting elements are necessary for genome circulari‑
zation and viral enzyme activity in replication, and the 
rate of viral replication is very sensitive to small changes 
in this RNA. The N-terminus of the C protein-coding 
region is important in the translation, replication, host 
adaptation and encapsidation of mosquito-borne flavi‑
virus [29, 51]. A novel cis-acting element downstream 
of the 5′ cyclization sequence pseudoknot (DCS-PK) is 
conserved in mosquito-borne flaviviruses [52], which 
mainly enhances flavivirus RNA replication by regulating 
genome cyclization. The function of DCS-PK depends 
mainly on its secondary structure and some conserved 
primary sequences, such as the highly conserved stem 
1 loop 2 sequence [53]. Stem-loop 6 (SL6) is a cis-acting 
enhancer in the C protein coding region of tick-borne fla‑
vivirus [54]. Cis-acting elements can be used to study the 
function of flavivirus C proteins.

3 � Multiple functions of the C protein
The multiple functions of the flavivirus C protein are 
attributed to the abovementioned special structural fea‑
tures (Figure  4). The C protein undergoes various con‑
formational changes and participates in the formation 
of the nucleocapsid to protect viral RNA. It also has 
nonstructural functions in the virus life cycle, mainly 
involving intermolecular interactions, such as interaction 
with organelle membranes to promote virus replication, 
assembly and virion maturation.

3.1 � Binding and interacting with RNA
The NS2A protein of flavivirus can recruit genomic RNA, 
structural proteins (C/prM/E), and nonstructural pro‑
teins (NS2B/NS3) to the virion assembly site. Once the 
C-prM-E polyprotein is formed, NS2A will transfer the 

Figure 4  Multiple functions of the C protein. The C protein is a flavivirus structural protein that has both structural and nonstructural functions. 
Vaccines and antiviral drugs can exploit various functional characteristics of the C protein.
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viral RNA to the structural proteins for virion assembly 
[36]. The C protein binds and interacts with RNA to form 
a nucleocapsid and is wrapped by prM/E proteins. The 
mutation of NS2A weakens the binding and eliminates 
virus production, which indicates that NS2A plays an 
indispensable role in virion assembly [55].

Cell-penetrating peptides (CPPs) can translocate to the 
cell membrane and function to reduce immunogenicity 
and cytotoxicity. Recent publications indicate that CPPs 
can deliver many bioactive molecules such as proteins, 
nucleic acids, and therapeutics in mammalian cells [56]. 
CPPs derived from the DENV C protein are involved in 
suitable viral delivery systems, which can deliver nucleic 
acids to cells for virus infection or deliver therapeutic 
molecules [21, 57]. CPPs contain 6–30 amino acid resi‑
dues, which range from highly charged (rich in Arg and 
Lys) to hydrophobic or amphipathic sequences. Basic res‑
idues are cumulatively distributed on the surface of the 
C monomer; the positive charges of these basic residues 
may play a role in the neutralization of negative charges 
during viral RNA encapsidation. To assemble the nucle‑
ocapsid and package the genome without nucleases, the 
hydrophobic amino acids at the carboxyl terminus of the 
C protein are fixed to the rough ER of the host cell.

The structural part of the DENV C protein includes two 
domains, pepR and pepM, which have very distinct phys‑
ical and chemical characteristics [21]. They are two novel 
intrinsic CPPs that have conserved folds in the C proteins 
of the Flaviviridae family [58], and they have two differ‑
ent internalization routes. pepR uses the endocytic path‑
way, while pepM directly translocates physically through 
the lipid membrane. These two peptides preferentially 
bind to anionic lipid membranes in an α-helical config‑
uration [21]. pepM is a relatively hydrophobic domain, 
while pepR is a highly cationic helix. Therefore, pepM 
primarily interacts with lipid membranes, and pepR binds 
to RNA in the virion. However, only pepM can promote 
the fusion and aggregation of Ve, which is composed of 
zwitter-ionic lipids [59]. The C protein of yellow fever 
virus (YFV) has a high-affinity dsRNA-binding function, 
which can interfere with the cleavage of long dsRNA by 
Dicer, thereby antagonizing RNA silencing [60]. The con‑
servation of the viral suppressor function in various fla‑
vivirus C proteins is particularly fascinating. The basic 
residues in the N-terminal region help RNA bind to form 
particles [61]. Viral protein-derived CPPs can be a valu‑
able tool for drug delivery across membranes, mainly in 
genetic therapy. Therefore, researchers designed and 
synthesized pepM and pepR based on the two domains 
of the C protein sequence. They have almost equivalent 
efficiency to the whole parental C protein for ssDNA 
delivery. In addition to the CPP properties, pepR also has 
antibacterial activity.

Based on the combination of C protein and RNA, 
researchers have considered fusing exogenous genes with 
C protein through a capsid-targeted antiviral inactivation 
(CTVI) strategy [62]. This tactic is based on the fusion of 
the C protein and a crucial effector molecule, such as a 
nuclease, a lipase, a protease, or a single-chain antibody 
(scAb), which can degrade viral DNA/RNA or interfere 
with the proper folding of important viral proteins [63].

3.2 � Promoting the proper assembly of infectious particles
The C-terminus of the C protein contains a single trans‑
membrane domain (TMD) called anchC, which acts as 
a signal for the translocation of prM into the ER lumen 
and controls the stability of the E protein, so it is available 
for the assembly of infectious particles [64, 65]. The TMD 
is cleaved by the viral protease NS2B/NS3 to release a 
functional cytosolic form. In addition, due to the internal 
hydrophobic sequence (IHS), mature C protein can bind 
to cellular and intracellular membranes. IHS contains 
14 to 22 hydrophobic residues, which are conserved in 
all flavivirus C proteins and are required for virus mat‑
uration and assembly [27]. The C and prM proteins are 
connected by the IHS, which crosses the ER membrane 
and is responsible for the translocation of prM to the 
ER lumen [50, 66]. In a TBEV study, Kofler interfered 
with the assembly of viral particles by deleting HIS [32], 
and the proportion of subviral particles (SVPs, lacking 
the nucleocapsid and infectivity) produced by deletion 
mutants increased. However, SVPs are highly immuno‑
genic because of the prM and E proteins [67]. Moreover, 
the C protein plays a vital role in other aspects of the 
flavivirus replication cycle. Kofler et al. [32] proved that 
large deletions in the C protein (C △28–35, C △28–39, 
C △28–43, and C △28–48) did not significantly reduce 
the level of the C protein in BHK-21, and C protein dele‑
tion mutants did not impair RNA replication or transla‑
tion. However, these mutations can affect the expression 
of the E protein, which indirectly affects the formation of 
particles. For example, the diameter of capsid-free and 
noninfectious SVPs is smaller than that of wild-type viral 
particles, the viral infectious titres of the four mutants are 
lower than that of wild-type virus, and the production of 
infectious particles released by all mutants is lower than 
that of wild-type virus.

3.3 � Phosphorylation and dephosphorylation of the C 
protein affect virus replication

The phosphorylation of the C protein is an essential 
process of virus replication in many viruses. It is an 
important posttranscriptional modification required 
for flavivirus C protein function, such as binding to 
importin-α or HDM2 protein [47]. Experiments with 
kinase inhibitors and activators have shown that protein 
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kinase C is responsible for the phosphorylation of the 
C protein [47]. C protein undergoes spontaneous self-
oligomerization, which is involved in nucleocapsid for‑
mation; however, phosphorylation reduces both the 
oligomerization rate and phosphorylation-dependent 
nucleocapsid assembly [46]. Dephosphorylation of the 
C protein is also critical for reducing its nuclear locali‑
zation. Therefore, during viral infection, the phospho‑
rylation of the C protein should decrease over time. The 
assembly of flavivirus occurs in the cytoplasm. In the 
later stages of infection, dephosphorylation promotes 
the interaction of C protein with RNA in the cytoplasm. 
Tracking the cellular location of the C protein during 
infection indicated that it was localized in the nucleus in 
the early stages of infection and in the cytoplasm in the 
late phase of infection. These changes are related to the 
gradual dephosphorylation of C protein in infected cells. 
However, in Flaviviridae, only the C proteins of HCV 
and WNV have been shown to be phosphorylated. In 
fact, the bioinformatics analysis of other flavivirus C pro‑
teins revealed multiple putative phosphorylation sites. 
Therefore, the C proteins of other flaviviruses may also be 
phosphorylated.

3.4 � Interactions with host proteins to promote virus 
propagation

The C protein binds to viral RNA and has other cellu‑
lar regulatory functions in infected cells. This protein 
can mediate host protein expression or interfere with 
immune recognition [68]. It is also associated with vari‑
ous cellular proteins that contribute to viral pathogenesis 
[69].

3.4.1 � Interaction with phospholipid‑binding proteins 
to enhance viral replication

During flavivirus infection, C protein progressively accu‑
mulates around lipid droplets (LDs) through a nonca‑
nonical function of the COPI system, which provides 
new ideas for antiviral strategies [70–72]. A disordered 
N-terminal arm of the C protein is involved in specific 
interactions with host lipid systems, such as LDs and very 
low-density lipoproteins (VLDL) [73, 74], implicated in 
viral assembly, maturation and release. The interactions 
depend on a high concentration of intracellular potas‑
sium ions (K+) and are mediated by the surface lipopro‑
teins perilipin 3 α-helix 5 (PLIN3α5) and apolipoprotein 
Eα-helix 4 (APOEα4). These two proteins are the main 
ligands of the C protein on the surface of LDs and VLDL 
[28, 75]. Interestingly, the N-terminal region (first 220 
residues) of APOE has multiple motifs that match the 
C-terminal region (last 220 residues) of PLIN3, and the 
conserved regions may be primarily involved in specific 
C protein-LD/VLDL interactions [76]; the L50 and L54 

amino acids in the α2 helix of the C protein are crucial 
for these interactions, which are essential for the viral 
replication cycle [77]. In the study on the DENV C pro‑
tein, the authors proved that mutations of these two leu‑
cine residues would weaken the interaction between the 
C protein and LDs. Drugs that disrupt LD biogenesis 
significantly inhibit viral production during the parti‑
cle assembly step of the viral replication cycle [78, 79]. 
Interestingly, the binding of DENV C protein to LDs 
indicates that a 10 amino acid residue peptide, pep14-
23 (14NMLKR18, similar to the importin α self-inhibitory 
sequence), may be functionally related to the interaction 
between the C protein and LDs, which may require an 
α-helical conformation of the C protein. This sequence 
is a common motif in mosquito-borne flavivirus C pro‑
teins. A peptide (pep14-23) designed using the intrinsi‑
cally disordered N-terminal region (residues 1 to 26) to 
inhibit the interaction between the DENV C protein and 
host LDs [78]. In a study on WNV C protein [80], a simi‑
lar result was observed: pep 14–23 is a potential inhibitor 
of C protein binding to the host lipid systems, which may 
be similar to other flaviviruses. The interaction between 
the C protein and LDs/VLDL is a key step for the viral 
replication of flaviviruses; therefore, this may provide a 
novel antiviral strategy.

3.4.2 � Interaction with nucleolar proteins to promote nuclear 
localization

The C protein is transported from the cytoplasm to the 
nucleus through nuclear pore complexes, which pen‑
etrate the double layer of the nuclear envelope. During 
virus replication, the C protein is located in the nucleus 
because it interacts with importin in infected cells; how‑
ever, flavivirus assembly occurs in the cytoplasm [47]. 
The interaction between the C protein and importin is 
enhanced by phosphorylation. Hence, dephosphoryla‑
tion disrupts the interaction, resulting in a decrease in 
the nuclear localization of the C protein, which provides 
an opportunity for the assembly of virus nucleocapsid in 
the cytoplasm. A JEV study [81] demonstrated that the 
amino acid residues Gly42 and Pro43 are involved in the 
binding of the C protein to nucleolar phosphoprotein 
B23, and the binding site is located at amino acid residues 
38–77; however, this interaction is not detected in DENV 
[82]. Interestingly, the mutation of amino acid residues 
Gly42 and Pro43 of the JEV C protein to Ala influences 
the nuclear localization of the C protein, which leads to 
impaired virus replication and pathogenicity [83]. Gly42 
and Pro43 are the crucial sites for nuclear localization and 
are associated with RNA replication, protein synthesis 
and even propagation in Vero cells [81]. Mori et al. [45] 
demonstrated that the C protein is present in the nucleo‑
lus and cytoplasm of mammalian and insect cell lines 
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after JEV infection or transfection with recombinant 
plasmids that cause C protein expression. However, the 
nuclear localization of the JEV C protein has been shown 
to enhance virus replication.

3.4.3 � Interaction with nonsense‑mediated mRNA decay 
(NMD) pathway factors

Zika virus (ZIKV) is an emerging mosquito-borne fla‑
vivirus related to DENV and WNV. It can infect human 
cells in vitro, such as neural progenitor cells (NPCs), and 
disrupt the nonsense-mediated mRNA decay (NMD) 
pathway. NMD is a cellular mRNA monitoring mecha‑
nism required for the development of normal brain size 
in mice. Krystal et al. showed that cellular NMD factors, 
such as the central NMD regulator up-frameshift protein 
1 (UPF1), can interact with viral C protein. The expres‑
sion of C protein post-transcriptionally downregulates 
the level of UPF1 protein. Cellular fractionation studies 
have shown that the ZIKV C protein specifically targets 
nuclear UPF1 and can be degraded by the proteasome 
[84]. ZIKV uses C protein to reduce UPF1 levels and 
inhibit the antiviral activity of NMD, which in turn con‑
tributes to the development of neuropathology in  vivo. 
Similar phenomena were also found in WNV and DENV. 
Li et al. also found that the host exon-junction complex 
(EJC) recycling factor PYM1 can interact with C, thereby 
interfering with the function and location of the EJC pro‑
tein. However, EJCs have a role in NMD, and they have 
antiviral effects in DENV, WNV, and ZIKV by indirectly 
or directly targeting viral RNA. The EJC protein R8M8A 
can directly bind to WNV RNA, but depletion of PYM1 
attenuates the binding of R8M8A to viral RNA, so WNV 
infection can segregate PYM1 to protect the RNA from 
decay [23]. In contrast, PYM1, a capsid-interacting pro‑
tein, plays a pivotal role in HCV infection [85].

3.4.4 � Interaction with hSes3p protein
In the cytoplasm, human Sec 3 (hSec3p) and Jab 1 pro‑
teins can interact with the C proteins of DENV and WNV. 
Confocal experiments showed that hSec3p and flavivirus 
C protein colocalized in the cytoplasm and perinuclear 
regions. hSec3p is an extracapsular complex component, 
and its main function involves secretory pathways and 
exocytosis. hSec3p has been shown to be a novel chaper‑
one of WNV and DENV C proteins through the protea‑
some pathway [8]. The SH2 domain-binding motif (last 
15 aa) of hSec3p binds to the first 15 amino acids of C; 
the amino acid residues in positions 14 (WNV) and 13 
(DENV) of the C protein are particularly important for 
this interaction. The protective effect of hSec3p can affect 
the transcription and translation of viral RNA by chelat‑
ing elongation factor 1α (EF1α), thereby regulating virus 
production [25], which can delay flavivirus infection.

3.4.5 � Interaction with organelle membranes
C protein is expressed in the ER as a part of the flavivirus 
polyprotein [86]. A study by Markoff et  al. [87] showed 
that the mature C protein is associated with the ER mem‑
brane through the internal hydrophobic region located 
at the α2/α2’ interface, which is known to be conserved 
among mosquito- and tick-borne flaviviruses [77, 88, 89]. 
In the DENV study, the C protein fragment peptide C 
(pepC) was able to bind negatively charged phospholipid 
membranes through a charge anchor formed by three 
positively charged amino acid residues (including Arg-2, 
Lys-6 and Arg-16) [90]. It interacts with organelle mem‑
branes to promote viral replication, virion assembly and 
viral production. This should be considered in examining 
the flavivirus life cycle.

3.4.6 � Interaction with caprin‑1
The expression of the C protein plays an important role in 
regulating the activity, expression or localization of host 
molecules [91]. In JEV, YFV and ZIKV, C has been shown 
to interact with its binding partner caprin-1 to inhibit the 
formation of stress granules (SGs). The Lys97 and Arg98 
amino acid residues in the C protein are important for 
the interaction with caprin-1, and the mutation of these 
two amino acids to Ala inhibits the formation of SG and 
damage virus propagation [92]. However, C protein-
mediated suppression of SG formation has not been 
detected in all flaviviruses; for example, the expression of 
DENV and WNV C proteins does not significantly block 
the formation of SG [93]. However, it has been reported 
that DENV and WNV C proteins interact with other host 
proteins [94, 95].

3.5 � Participation in apoptosis
Another nonstructural function of the multifunctional 
C protein is involved in apoptosis. The phosphorylation 
of WNV C protein is very important for its interaction 
with importin and affects its RNA-binding activity, oli‑
gomerization, nuclear localization and apoptosis [46, 96]. 
In several flaviviruses, C proteins have been shown to be 
pro-apoptotic. However, in a study by Matt D. Urbanow‑
ski, WNV C protein was shown to completely block the 
apoptosis of infected cells during virus replication. The 
protective effect is mediated by a phosphatidylinositol 
3-kinase (PI3K)-dependent pathway [97]. In the nucleus, 
nucleolin, the apoptotic protein Daxx [98], core histones 
(H2A, H2B, H3 and H4), hnRNP-K and Hdm2 (in the 
case of WNV) interact with the C protein. These inter‑
actions affect the induction of apoptosis in the host [96] 
and regulate transcription, leading to the development of 
disease. The C proteins of various flaviviruses have pro-
apoptotic or anti-apoptotic functions [99, 100].
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4 � Application of the C protein
Flavivirus C protein is indispensable in virus replica‑
tion and assembly, can undergo immune escape muta‑
tions to efficiently avoid the immune system, and it is 
an important target of T cells during natural infection 
[101, 102]. C protein has a specific structure, various 
functions and biological characteristics, which make it 
a potentially promising drug target for antiviral agents. 
In a study of DENV, a novel low-molecular-weight com‑
pound, ST-148, was used to interact with the C protein 
and block its activity, which is required for virus rep‑
lication [103]. The pep14-23 region of the C protein 
is the major participant in the interaction with LDs. 
Therefore, a peptide was designed to bind to LDs and 
inhibit C protein-LD interactions to affect virus repli‑
cation. The pep14-23 region is also very important for 
drug design, but further research is needed. Flavivirus 
C protein has obvious structural functions in mature 
virions, especially in the processes of viral encapsida‑
tion, because it belongs to the same class of α-helical 
C proteins as hepadnaviruses and retroviruses. Some 
studies have successfully used flavivirus C protein in the 
CTVI strategy against DENV [104, 105] and JEV [24]. 
In addition to flavivirus, the C protein of classical swine 
fever virus (CSFV) [24, 106] belonging to the Pestivi-
rus genus has also been used in CTVI. Based on these 
antiviral mechanisms, CTVI is expected to be applied 
to more Flaviviridae viruses for targeted antiviral 
research, such as TMUV, YFV, and the Pegivirus genus. 
However, there are still some problems to be solved if 
this strategy is applied to clinical research, such as find‑
ing more nucleases that are suitable for CTVI and can 
be tolerated by host cells without cytotoxicity.

Because envelope domain III (EDIII) contains impor‑
tant linear antigenic epitopes that directly interact 
with neutralizing antibodies [107] and the C protein is 
important in the flavivirus life cycle, researchers have 
fused EDIII of the DENV E protein with the C protein 
of DENV, leading to the formation of the tetravalent 
vaccine DIIIC [88, 108, 109]. The results demonstrated 
that DIIIC can induce cell-mediated immunity and has 
the ability to protect mice against DENV. The structural 
flexibility of the C protein has been proven in numer‑
ous studies. Schlick et al. [110] used a deletion mutant 
of the C internal hydrophobic domain and another 
deletion mutation in the 3′ noncoding region (3′-NCR), 
which removed a conserved hairpin structure (hairpin 
II-1 nt 10737–10825) to study attenuated vaccine can‑
didates in WNV in vivo. The vaccine is not pathogenic 
but can induce protective immunity in mice.

Among all flavivirus proteins, the C protein has the 
lowest conservation. However, the structural prop‑
erties of the protein are very similar, and its charge 

distribution is well conserved, which is conducive to 
the conservation of its function. Table  1 summarizes 
the numerous functional applications of flavivirus C 
proteins.

5 � Conclusions
Flavivirus C protein is a multifunctional protein that 
participates in many aspects of the virus life cycle. The 
C protein binds to viral RNA to form the nucleocap‑
sid and plays an important role in the process of viral 
infection, including interactions with cellular proteins 
and the regulation of cell metabolism, apoptosis and 
immune responses [111, 112].

As a structural protein, the main function of C involves 
packaging viral genomic RNA and the formation of the 
viral core, while anchC may help initiate the formation 
of the nucleocapsid, including interaction with genomic 
RNA or oligomerization with other C proteins. The C 
protein is a highly basic protein rich in positively charged 
amino acid residues (approximately 26 Arg or Lys resi‑
dues and only 3 negatively charged residues), which is 
crucial for its binding and interaction with viral RNA. 
The C protein is a genomic protective agent that can 
encapsulate viral RNA through its N- and C-terminal 
basic amino acid clusters to form the viral nucleocap‑
sid. This indicates that the C protein may be a potentially 
useful target for the development of antiviral therapy 
[27, 111, 113]. Flavivirus C protein has highly divergent 
sequences and different domain organizations. However, 
all C proteins can promote nucleic acid annealing and 
enhance hammerhead ribozyme-mediated cleavage. The 
chaperone activity of the flavivirus C protein is very rele‑
vant due to its intrinsic disorder; it has the ability to resist 
heat denaturation, and boiling C protein for 5 min has no 
effect on its kinetics [114, 115]. Importantly, the C pro‑
tein may promote profound structural rearrangement of 
RNA without consuming ATP. C proteins are conserved 
in Flaviviridae, including the Hepacivirus (HCV, GBV-B), 
Pestivirus (bovine viral diarrhoea virus, BVDV), and Fla-
vivirus genera (WNV). In HCV and GBV-B, the N-termi‑
nal region of the C protein is a highly basic and flexible 
RNA-binding domain, while the C-terminal region is 
a hydrophobic domain [114]. The central hydrophobic 
region of the C protein may be related to the ER mem‑
brane, which is thought to promote nucleocapsid assem‑
bly [45]. In addition, the C protein has variable degrees 
of tolerance to structural changes and can tolerate exten‑
sive deletions in its N-/C-terminus, which indicates that 
the C protein does not require a defined tertiary struc‑
ture for its function but relies on basic residues to recruit 
viral RNA. Due to its structural and functional flexibil‑
ity, the C protein may be a novel and attractive target for 
the targeted attenuation of flaviviruses. For example, 
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small-molecule inhibitors of the C protein binding sites 
may be of interest. Recently, it has been proven that the C 
proteins of ZIKV and YFV can inhibit small RNAs based 
on the antiviral response [116].

As a “nonstructural” protein, the C protein precur‑
sor anchC plays an important role in flavivirus assem‑
bly. Prior cleavage at the anchC dibasic site may affect 
the cleavage mediated by signalase in the ER lumen, 
and the sequential cleavage of the anchC sequence is 
considered to be essential for flavivirus production. 
The mature C protein can regulate virus replication or 
change the host cell environment [8, 47, 117]. It plays 
an important role in virus replication through interac‑
tions with various host factors [40], such as B23 [118], 
Jab1, hnRNP K, and hnRNP A2 [119, 120]. The inter‑
action with organelle membranes of the C protein also 
plays a vital role in the virus life cycle, but the mecha‑
nism by which the interactions affect virus propagation 
during the virus infection cycle has not been reported. 
Inhibition of the interaction may severely affect virus 
replication, assembly and release, thereby reducing 
virus production. Whether or how the conformation 

of the C protein changes in this process, which region 
of the four α-helices (α1 to α4) is involved, and how 
to specifically label the membranes are all worthy of 
consideration. Understanding and solving these issues 
will help us to further study antiviral drugs. The inter‑
actions between the C protein and host proteins are 
conserved in DENV, WNV, and ZIKV [23]. The C pro‑
tein also plays a crucial role in modulating host cell 
signalling networks by promoting innate immunity or 
affecting cell apoptosis, which benefits or impedes the 
flavivirus replication. The C protein also has favourable 
antigenicity and can induce host cell-mediated immu‑
nity [121, 122] and the humoural immune response, so 
it can be considered a vaccine target candidate. Drugs 
that interfere with the formation of the C protein or 
inhibit its conformational changes during the interac‑
tions between the C protein and other proteins will 
affect the process of genome encapsidation and virus 
release. Overall, the extraordinary functional flexibility 
of the C protein makes it an attractive target for flavi‑
virus vaccines and vector engineering design, which is 
very promising and attractive.

Table 1  Applications of flavivirus capsid proteins 

Proteins Viruses Virus strains Application types References

EDIII and C DENV Hawaii (DENV-1)
New Guinea C (DENV-2)
H-87 (DENV-3)
H241 (DENV-4)
DENV-2 A15
DENV-2 SB8553/S16803

Subunit vaccine [123, 124]

DENV-1 Jamaica (AF42564)
DENV-2 SB8553
DENV-3 (FJ882576)
DENV-4 (AF326573)

Vaccine [125]

DENV-2 A-15 strain
DENV-2 SB8553
DENV-2 Jamaica

Vaccine [126]

C Hawaii (DENV-1)
New Guinea C (DENV-2)
H-87 (DENV-3)
H241 (DENV-4)
DENV-2 SB8553

Vaccine [127]

Four serotypes Antiviral agent [128]

C JEV Wild-type and 9798A mutant of 
JEV AT31

Antiviral agent [92]

Wild-type and L17A/CSmt JEVs Pathogenesis of JEV infection [117]

C WNV WNV NY99 Live vaccine candidates [110]

C TMUV DTMUV WR strain DNA vaccine [129]

CQW1 strain Target therapeutic [130]

C-prM-E ZIKV PRVABC59 Virus-like particle vaccines [131]

C FSS13025 strain Live-attenuated vaccine [132]

VSV-C PRVABC59 strain Vesicular stomatitis virus (VSV)-
based vaccine

[102]
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Research on the structure and function of flavivirus C 
proteins provides us with broad application prospects. 
The existence of a domain with antibacterial activity in 
the C protein enhances the importance of viral proteins 
in the drug development platform and poses new chal‑
lenges to the coevolution of viruses and bacteria. We 
expect to make increased efforts in the development of 
vaccines and drugs.
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