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Innate immune response in bovine 
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Abstract 

Mycoplasma bovis (M. bovis) is a significant worldwide pathogen of cattle. Neutrophils have an important role in the 
innate immune response during infection with M. bovis. However, even though neutrophils accumulate in M. bovis 
infection, the interaction of M. bovis and neutrophils has not been fully elucidated. We attempted to elucidate the 
innate immune response of neutrophils stimulated with M. bovis and evaluate the transcriptome and functional analy-
sis of bovine neutrophils stimulated with M. bovis. Proinflammatory cytokines, such as inducible nitric oxide (iNOS), 
which was the most increased gene in transcriptome analysis, were increased in quantitative polymerase chain reac-
tion analysis of bovine neutrophils stimulated with live or heat-killed M. bovis. Nitric oxide and intracellular reactive 
oxygen species production of neutrophils stimulated with M. bovis was significantly increased. Neutrophils stimulated 
with M. bovis showed an increased ratio of nonapoptotic cell death compared to unstimulated controls. We demon-
strated that neutrophil extracellular traps (NETs) formation was not recognized in neutrophils stimulated with live M. 
bovis. However, heat-killed M. bovis induced NETs formation. We also showed the interaction with M. bovis and bovine 
neutrophils regarding proinflammatory cytokine gene expression and functional expression related to NETs forma-
tion. Live and killed M. bovis induced innate immune responses in neutrophils and had the potential to induce NETs 
formation, but live M. bovis escaped NETs.
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Introduction
Mycoplasmas are classified under the class Mollicutes, 
which do not have a cell wall and are cause widespread 
infections of eukaryotes in nature [1]. Mycoplasma bovis 
(M. bovis) is a significant worldwide pathogen of cattle 
[2, 3] and is known to cause pneumonia, arthritis, and 
mastitis [2, 4], resulting in calf mortality, weight loss in 
surviving calves, and decreased milk production in dairy 
cows [2, 5], which all contribute to significant economic 
losses [2, 6].

Neutrophils have an important role in infectious dis-
eases at the front line. In M. bovis infection, neutrophils 
constitute the major accumulation of cells at an infection 
site [7]. M. bovis reportedly suppressed the production of 
reactive oxygen species (ROS) in the immune response of 
neutrophils [8]. ROS is the major innate immune factor 
of neutrophils to pathogens and is required for neutro-
phil extracellular traps (NETs) formation [9]. ROS and 
inducible nitric oxide (iNOS) are involved in the patho-
genesis of Mycoplasma pneumoniae calves [10], and 
nitric oxide (NO) also triggers and enhances the release 
of NETs [11]. M. bovis was considered to escape the host 
immune response, and we previously reported that M. 
bovis escaped bovine NETs following the degradation of 
nucleic acid [12].
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Inflammatory cytokines have an important role in the 
innate immune responses of neutrophils, such as recruit-
ment, activation, and NETs formation [13]. The suppres-
sion of NO production and increased gene expression of 
inflammatory cytokines, such as IL-12 and TNF-α, as a 
response of neutrophils to M. bovis, have been previously 
reported [14]. However, the mechanisms of the neutro-
phil immune response involved in M. bovis compre-
hensive gene expression have not been fully elucidated. 
We attempted to elucidate the innate immune response 
of neutrophils stimulated with M. bovis, determining 
gene expression related to the innate immune response 
through comprehensive gene expression analysis, and to 
determine whether M. bovis is capable of inducing NETs 
formation.

Materials and methods
Bacterial strains
The bacterial strain used in this study was M. bovis 
(PG45: ATCC 25,523), grown in modified pleuropneu-
monia-like organisms (PPLO) medium (Kanto Kagaku, 
Tokyo, Japan) at 37  °C for 48  h. M. bovis was obtained 
by centrifugation (16 000 g for 40 min) and then washed 
with phosphate-buffered saline (PBS). The bacteria were 
then suspended in PBS to a cell density of 108 colony-
forming units per milliliter (CFU/mL), and the suspen-
sion was stored at −70 °C until used.

Bovine neutrophils
Blood samples (20  mL) were collected in evacuation 
tubes containing sodium heparin (Terumo, Tokyo, Japan) 
from eleven clinically healthy primiparous Holstein cows 
in mid-lactation with no history of M. bovis infection. 
Three cows were used for microarray analysis and five 
cows were used for validation experiments using real-
time PCR, detection of apoptotic cells, quantity of NO, 
and ROS production. Another three cows were used 
for the observation of NETs formation. The experimen-
tal protocol was approved by the Institutional Animal 
Care and Use Committee of Rakuno Gakuen University. 
Neutrophils were isolated by centrifugation on a Lym-
pholyte device (Cedarlane, Ontario, Canada) according 
to the manufacturer’s protocol. Cells were separated by 
centrifugation (300  g for 30  min), and neutrophils were 
transferred to a sterile tube (Becton Dickinson, Tokyo, 
Japan) and washed with cold PBS. Neutrophil viabil-
ity was assessed using an AO/PI cell viability kit (Logos 
Biosystems, Gyeonggi, Korea) and Luna-FL (Logos Bio-
systems). Neutrophil ratios in polymorphonuclear leu-
kocytes (PMNL) were obtained following Diff-Quick 
staining (Sysmex, Hyogo, Japan). Neutrophils were sus-
pended in Hank’s balanced salt solution or RPMI 1640 
medium with L-glutamine (Sigma-Aldrich Corp., Tokyo, 

Japan) and 10% fetal bovine serum (FBS). Isolated neu-
trophils from five individual cows were used immedi-
ately. Neutrophils (concentration of 1 × 107 cells in 3 mL 
RPMI 1640 medium) were incubated in the presence of 
live or heat-killed M. bovis at a multiplicity of infection 
(MOI) of 1000:1 for 3 and 6  h at 37  °C and 5% CO2 in 
60-mm dishes (Asahi Glass, Tokyo, Japan). The number 
of bacteria in the milk of M. bovis mastitis was of 109 to 
1011 CFU and the number of somatic cell counts was 106 
to 107 cells/mL [15]. Thus, MOI of 1000 is a sufficiently 
reasonable number of bacteria, taking into account the 
actual infection.

RNA extraction
Total RNA (TRNA) extracted from neutrophils was 
obtained using the PureLink RNA mini kit (Ambion, TX, 
USA). DNAse digestion was performed using TURBO 
DNA-free DNAse (Ambion). TRNA was quantified via 
spectrophotometry using a BioSpec-nano (Shimadzu, 
Kyoto, Japan). cDNA was synthesized from 1  μg TRNA 
with ReverTra Ace reverse transcriptase (Toyobo, Osaka, 
Japan) and oligo dT primers (Toyobo). For each reac-
tion, a parallel negative control reaction was performed 
in the absence of reverse transcriptase and analyzed via 
the β-actin band using polymerase chain reaction (PCR) 
and 1.5% agarose gels stained with ethidium bromide and 
visualized on an ultraviolet transilluminator.

Microarray experiment and analysis
Six microarray (three stimuli and three control) data for 
the neutrophils stimulated with M. bovis for 3  h were 
provided by Takara Bio, Inc. (Siga, Japan). The gene 
expression dataset was obtained using an Agilent single-
color microarray platform (4 × 44 K bovine gene expres-
sion array, grid ID 023,647). Samples were processed 
for Agilent microarrays, and data were normalized as 
described previously [16]. We used t-tests to identify sig-
nificant gene expression differences (P < 0.025) between 
samples. In a further filtering step, we selected only genes 
with a fold change of ≥ 2. The gene annotation used was 
bioDBnet [17]. Heat map analysis was done using R ver-
sion 3.6.1, and gene ontology enrichment was done using 
the BioMart enrichment tool [18]. The whole dataset is 
available publicly from the ArrayExpress database (acces-
sion number E-MTAB-9022).

Quantitative reverse transcription PCR (qPCR) analysis
The reaction was performed using a Thunderbird SYBR 
qPCR mix (Toyobo) and a CFX real-time PCR system 
(Bio-Rad Laboratories, Hercules, CA, USA). Informa-
tion on the primers is depicted in Additional file  1. We 
used the melting curve analysis to evaluate each primer 
pair for specificity to ascertain that only one product 
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was amplified. We performed a Basic Logical Align-
ment Search Tool (BLAST) search to confirm that the 
primer sequences amplified only the target gene of inter-
est. Thermal cycling consisted of initial denaturation at 
95 °C for 5 min, followed by 40 cycles of denaturation at 
95 °C for 15 s, annealing at 60 °C for 30 s, and extension 
at 72  °C for 30  s. The melting temperature of the PCR 
product was determined by melting curve analysis, which 
was performed by heating the PCR product from 55  °C 
to 95  °C and monitoring the fluorescence change every 
0.5  °C. β-actin, glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), and tryptophan 5-monooxygenase acti-
vation protein zeta polypeptide (YWHAZ) were used as 
reference genes [19, 20].

Detection of apoptotic cells and quantity of NO and ROS 
production
To evaluate NO production and the ratio of apoptosis 
cells in neutrophils stimulated with M. bovis, neutrophils 
(2 × 105 cells/200 μL RPMI 1640 medium in 96-well tis-
sue culture plates) were incubated in the presence of live 
M. bovis at an MOI of 1000 (10 μL) for 1, 3, and 6 h at 
37 °C and under 5% CO2. The NO production and ratio 
of apoptosis cell were measured using a Muse NO kit or 
Muse Annexin V and dead cell kit (Millipore, Darmstadt, 
Germany) and Muse cell analyzer (Millipore) according 
to the manufacturer’s protocol. To measure the quantity 
of intracellular ROS in neutrophils stimulated with M. 
bovis, neutrophils (2 × 105 cells/1 mL RPMI 1640 medium 
in a 3 cm dish) were stimulated with 10 μL conteining live 
M. bovis and/or phorbol myristate acetate (PMA; Sigma-
Aldrich Corp.) or PBS for control at an MOI of 1000 for 
30 min at 37 °C and 5% CO2. After that, intracellular ROS 
production was detected using the Muse Oxidative stress 
kit and Muse cell analyzer (Millipore) according to the 
manufacturer’s protocol.

Observation of NETs formation
Neutrophils (concentration of 1 × 106 cells suspended in 
100 μL RPMI medium with 10% FBS) were seeded onto 
glass coverslips treated with 0.001% poly-l-lysine (Mat-
sunami glass, Tokyo, Japan) and placed in a 35 mm dish 
(Iwaki, Shizuoka, Japan). Cells were incubated for 1  h 
at 37  °C in 5% CO2. Neutrophils were incubated with 
PMA for 30 min to induce NETs formation (or with PBS 
for control), and then, 107  CFU octadecyl rhodamine B 
chloride (Sigma-Aldrich Corp.) labeled live or heat-killed 
M. bovis (or with PBS for control) were added and incu-
bated for 30 min at 37  °C under a 5% CO2. Neutrophils 
were washed with PBS and stained with 4,6-diamidino-
2-phenylindole, dilactate (DAPI) for 15  min (Dojindo, 
Tokyo, Japan). Coverslips were washed with PBS, coated 
with Fluoromount (Diagnostic Biosystems, Pleasanton, 

CA, USA), and viewed using a fluorescence microscope 
(Nikon, Tokyo, Japan). Three bovine neutrophil studies 
were performed individually.

Statistical analysis
Data from five cows were expressed as mean ± standard 
error (SE). The Kruskal–Wallis test was performed for 
comparison between groups, Steel test for multiple com-
parisons, and Welch’s t-test for paired groups using Eku-
seru-Toukei 2010 for Windows (Social Survey Research 
Information, Tokyo, Japan). In all cases, P < 0.05 was con-
sidered statistically significant.

Results
Microarray analysis
We investigated gene expression in neutrophils stimu-
lated with live M. bovis using an Agilent Bovine Gene 
Expression Microarray. Statistical analysis revealed 
that 61 genes in neutrophils stimulated with live M. 
bovis were significantly increased and 30 significantly 
decreased (P < 0.025 with > twofold increase) compared 
to unstimulated neutrophils (Figure  1A and Additional 
file  3). Expression gene patterns with significant differ-
ences were visualized using a heat map (Figure 1B). The 
M. bovis stimulated and unstimulated groups showed 
similar expression patterns. The gene set related to func-
tion did not significantly recognize change, but that of 
the immune system and carbohydrate metabolic pro-
cesses were increased (Figure  1C and Additional file  2). 
To validate these results, genes related to the immune 
system were quantified using real-time PCR (Figure  2). 
Inducible NO synthase (iNOS), interleukin 36A (IL-36A), 
chemokine C-X-C motif ligand 2 (CXCL2), and signaling 
lymphocytic activation molecule (SLAM) family member 
7 (SLAMF7) mRNA expression in neutrophils after 3  h 
of stimulation with M. bovis were significantly (P < 0.01) 
increased compared to unstimulated controls. Basic leu-
cine zipper transcription factor ATF-like (BATF) and 
SLAM family member 1 (SLAMF1) mRNA expression 
also were significantly increased (P < 0.05). C–C motif 
chemokine ligand 24 (CCL24) was significantly decreased 
(P < 0.01) compared to unstimulated controls. 

Quantification of proinflammatory cytokine mRNA 
expression
Expression of proinflammatory cytokine, IL-1β, IL-6, 
tumor necrosis factor α (TNF-α), IL-8, IL-12, and inter-
feron γ (IFN-γ) mRNA in neutrophils stimulated with 
live or heat-killed M. bovis at 3 and 6  h was evaluated 
by qPCR (Figure  3). These cytokines showing mRNA 
expression in neutrophils stimulated with live M. bovis 
for 3  h were significantly (IL-1β and IL-12, P < 0.05; 
TNF-α and IL-8, P < 0.01) increased compared to 
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Figure 1  Microarray analysis in neutrophils stimulated with M. bovis. Bovine neutrophils were evaluated at 3 h after stimulation with M. bovis 
in three cows. A Number of significantly (t-tests, P < 0.025 and ≥ twofold change) downregulated or upregulated mRNA. B Heat map analysis of 
genes with significantly (t-tests, P < 0.025 and ≥ twofold change) different gene expression levels by microarray analysis in neutrophils stimulated 
with M. bovis. C Gene ontology enrichment analysis of genes with significantly (t-tests, P < 0.025 and ≥ twofold change) different gene expression 
levels by microarray analysis in neutrophils stimulated with M. bovis.
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Figure 2  Validation for the microarray analysis of mRNA expression in neutrophils stimulated with M. bovis. Bovine neutrophils were 
evaluated at 3 h after stimulation with M. bovis in three cows. Validation of mRNA expression for immune response-related factors confirmed by 
microarray analysis; significant difference at *P < 0.05 or **P < 0.01 compared to unstimulated controls.
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Figure 3  mRNA expression of proinflammatory cytokine related genes after stimulation with M. bovis. Bovine neutrophils were evaluated 
at 3 or 6 h after stimulation with live or heat-killed M. bovis in five cows. The mRNA expression of IL-1β, IL-6, TNF-α, IL-8, IL-12, and IFN-γ was 
determined by qPCR and expressed as a fold increase, as described in the Materials and methods. The data were expressed in five cows; significant 
difference at *P < 0.05 or **P < 0.01 compared to unstimulated controls.
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unstimulated cells as were those stimulated with heat-
killed M. bovis (IL-1β, TNF-α, IL-8, IL-12, and IFN-γ, 
P < 0.05; IL-6, P < 0.01). After 6 h of stimulation with M. 
bovis, IL-1β (live and heat-killed, P < 0.05), IL-8 (heat-
killed, P < 0.05), IL-12 (live and heat-killed, P < 0.05), 

and IFN-γ (live, P < 0.01, and heat-killed, P < 0.05) dem-
onstrated significantly increased mRNA expression in 
neutrophils.
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Figure 4  Quantity of NO and ROS production in neutrophils stimulated with M. bovis. A Bovine neutrophils were evaluated at 1, 3, and 6 h 
after stimulation with M. bovis in five cows. The ratio of NO production cells is shown. Data were expressed as means ± SE in five cows; significant 
difference at *P < 0.05 compared to unstimulated controls. B Neutrophils were incubated with M. bovis (MOI of 1000) and/or PMA for 30 min. The 
ratio of ROS production cells is shown. Data were expressed as means ± SE of five cows; significant difference at *P < 0.05 compared to unstimulated 
controls.
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Evaluation producing NO and intracellular ROS 
of neutrophils stimulated with M. bovis
NO production of neutrophils stimulated with M. bovis 
was significantly increased (P < 0.05) at 1 and 3  h com-
pared to controls (Figure 4A). Intracellular ROS produc-
tion of neutrophils stimulated with M. bovis, M. bovis 
and PMA, or PMA was significantly increased (P < 0.05) 
compared to unstimulated controls (Figure 4B).

Evaluation of the apoptotic, nonapoptotic, dead, or live 
cells stimulated with M. bovis
The ratio of apoptotic cells in neutrophils stimulated with 
M. bovis at an MOI of 1000 for 1, 3, and 6  h is shown 
Figure  5. The ratios of Annexin-positive and 7-AAD–
negative cells (early apoptosis) in bovine neutrophils 
was significantly increased (P < 0.05) at 3 (4.36%) and 6 
(9.92%) h compared to that at 1 h (2.54%). The ratios of 
Annexin-negative and 7-AAD–positive cells (dead cells 
other than nonapoptotic cells) in bovine neutrophils 
stimulated with M. bovis were significantly increased 

Figure 5  Detection of apoptotic cells in neutrophils stimulated with M. bovis. Bovine neutrophils were evaluated at 1, 3, and 6 h after 
stimulation with M. bovis in five cows. The ratio of positive or negative neutrophils in Annexin V and/or 7-AAD is shown. Annexin V-positive/negative 
cells were defined as apoptotic/nonapoptotic cells, and 7-AAD–positive/negative cells were defined as dead/live cells. Data were expressed as 
means ± SE in five cows; significant difference at *P < 0.05 compared to unstimulated controls.
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(P < 0.05) at 3 (0.96%) and 6 (1.52%) h compared to that at 
1 h (0.20%). The ratios of Annexin-negative and 7-AAD–
negative cells (live cells) in nonstimulated cells tended 
to decrease in a time-dependent manner, and those of 
Annexin-positive and 7-AAD–positive cells (late apop-
totic and necrotic cells) in neutrophils stimulated with M. 
bovis tended to increase in a time-dependent manner.

Observation of NETs formation
NETs formation in neutrophils stimulated with live or 
heat-killed M. bovis is shown in Figure 6. NETs formation 
was detected in neutrophils stimulated with PMA as an 
inducer of NETs formation, whereas it was not observed 
in neutrophils stimulated with live M. bovis and unstimu-
lated controls. However, in neutrophils stimulated with 
heat-killed M. bovis, NETs formation was recognized, 
and M. bovis was localized to be on NETs.

Discussion
We studied the innate immunity of bovine neutrophils 
to M. bovis, and we especially reported a transcriptome 
analysis of bovine neutrophils stimulated with M. bovis 
and its immune-related functional analysis. Proinflam-
matory cytokines, such as iNOS, IL-36A, and CXCL2 
mRNA, were increased in neutrophils stimulated with M. 
bovis as determined in the transcriptome analysis using 
microarray and qPCR for validation. iNOS induced NO 
production with antibacterial activity and was related to 
the formation of NETs [11]. Previous studies [14] did not 
show the production of neutrophil NO upon M. bovis 
stimulation, which may be due to the use of different 
MOIs and detection methods. CXCL2 is a chemokine 
related to priming of neutrophils [21] and enhanced 
antibacterial activity [22]. SLAMF1 and SLAMF7 affect 
the development of T cells [23]. BATF was reported to 
regulate T and B lymphocytes in immune response and 
differentiation [24]. IL-1β, IL-6, and TNF-α are known 
rapid transcription-genes, proinflammatory cytokines, 
and the peak time point in these genes was mainly 3 h. 
IL-1β- and IL-8-related migration and activation of neu-
trophils reportedly had an important role in maintaining 
inflammation in M. bovis infectious diseases. IL-12 and 
IFN-γ mainly reached peak levels at 6 h after stimulation 
with M. bovis, which may be due to the activated neutro-
phils and a type 1 immune response [25]. The production 
of IL-12 and TNF-α by M. bovis-stimulated neutrophils 
has been also observed in a previous study [14], which is 
in line with our present results. In gene ontology enrich-
ment analysis, most dynamically changed genes indicated 
an immune response, and M. bovis induced an innate 
immune response in bovine neutrophils. The carbo-
hydrate metabolic process was the second largest gene 
set changed, and it includes the production of activated 

live
M. boivs

PMA

control

killed
M. boivs

Figure 6  Observation of NETs formation. Bovine neutrophils 
were evaluated at 30 min after stimulation with live or heat-killed 
M. bovis (MOI of 100)/PMA in three cows (unstimulated controls, 
PMA-stimulated, live M. bovis-stimulated, and heat-killed M. 
bovis-stimulated). DNA was stained using DAPI, and M. bovis was 
labeled with rhodamine. The white arrow indicates NETs formation. 
The white bar indicates 16 μm, and representative micrographs are 
shown.
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oxygen. Activated oxygen production in neutrophils stim-
ulated with M. bovis was not recognized as reported pre-
viously [26, 27]. However, this study demonstrated that 
intracellular production of activated oxygen was recog-
nized. Mycoplasma species were known to have a resist-
ance factor for activated oxygen [28, 29], which suggested 
that, although neutrophils stimulated with M. bovis pro-
duced activated oxygen, M. bovis attenuated extracellular 
activated oxygen. Because ROS were required for NETs 
formation [9], M. bovis may have potential in inducing 
NETs formation. However, as ROS-independent NETs 
formation has been reported recently [30, 31], further 
studies are needed on M. bovis-induced ROS production. 
The production of NO in neutrophils reportedly contrib-
uted to NETs formation [11]. In our study, neutrophils 
stimulated with M. bovis in transcriptome analysis and 
qPCR analysis showed increased iNOS mRNA expres-
sion, and NO production was increased in neutrophils 
stimulated with M. bovis. It had been reported that iNOS 
was strongly expressed in lungs of calves with coagulative 
and caseous necrosis lesion after infection with M. bovis 
[10]. Thus, it was suggested that the immune response of 
neutrophils was involved in the pathogenesis in myco-
plasma infectious disease. Neutrophils stimulated with 
M. bovis showed an increased ratio of nonapoptotic cell 
death compared to unstimulated controls. It was consid-
ered that NETosis, which is cell death following NETs for-
mation, contributed to nonapoptotic cell death. Mulongo 
et  al. [32] and Maina et  al. [33] reported that M. bovis 
delayed the apoptosis of monocytes and macrophages, 
respectively. Instead of suppressing apoptosis in neu-
trophils, M. bovis may promote NETs formation. In the 
study by Jimbo et  al., the production of elastase, which 
is used as an index of NETs, was observed from neutro-
phils under stimulation with live M. bovis [14]. NETs for-
mation was not observed in live bacteria stimulation, but 
it was observed in heat-killed bacteria stimulation. This 
result cannot immediately indicate that M. bovis has not 
induced NETs formation. This suggested that NETs were 
degraded by M. bovis nuclease in live bacteria as reported 
previously [26, 27], whereas in heat-killed M. bovis, the 
nuclease was inactivated by heat treatment and thus 
NETs formation was observed. The increased expression 
of proinflammatory cytokine mRNA even after stimula-
tion with heat-killed bacteria suggested that M. bovis has 
the potential to induce NETs formation even in killed 
bacteria.

In conclusion, we demonstrated the innate immune 
response gene expression of bovine neutrophils stimu-
lated with M. bovis, its related function expression related 
to NETs formation, and interaction between M. bovis and 
bovine neutrophils.
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