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Abstract 

Infectious bronchitis virus (IBV) is a pathogenic coronavirus with high morbidity and mortality in chicken breeding. 
Macrophages with normal biofunctions are essential for host immune responses. In this study, the HD11 chicken 
macrophage cell line and chicken peripheral blood mononuclear cell-derived macrophages (PBMCs-Mφ) were 
infected with IBV at multiplicity of infection (MOI) of 10. The dynamic changes of their biofunctions, including cell 
viability, pathogen elimination function, phagocytic ability, and gene expressions of related proteins/mediators in 
innate and acquired immunity, inflammation, autophagy and apoptosis were analyzed. Results showed that IBV infec-
tion decreased chicken macrophage viability and phagocytic ability, and increased pathogen elimination function. 
Moreover, IBV augmented the gene expressions of most related proteins in macrophages involved in multiple host 
bioprocesses, and the dynamic changes of gene expressions had a close relationship with virus replication. Among 
them, MHCII, Fc receptor, TLR3, IFN-α, CCL4, MIF, IL-1β, IL-6, and iNOS showed significantly higher expressions in 
IBV-infected cells. However, TLR7, MyD88, MDA5, IFN-γ, MHCII, Fc receptor, MARCO, CD36, MIF, XCL1, CXCL12, TNF-α, 
iNOS, and IL-10 showed early decreased expressions. Overall, chicken macrophages play an important role in host 
innate and acquired immune responses to resist IBV infection, despite early damage or suppression. Moreover, the 
IBV-induced autophagy and apoptosis might participate in the virus-host cell interaction which is attributed to the 
biological process.
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Introduction
Infectious bronchitis (IB) is a highly contagious respira-
tory disease in chickens with worldwide distribution 
and economic significance [1]. IB is caused by infec-
tious bronchitis virus (IBV) which is a single-stranded, 
positive-sense enveloped RNA virus of the Coronavirus 
family [2]. IBV was first described in the 1930s in the 
USA [3]. The IBV Massachusetts 41 (M41) strain was 
subsequently isolated and assigned to the Massachusetts 

serotype [4, 5], which is frequently used in experimental 
and clinical research [6, 7]. IBV is liable to mutate and 
recombine, which gives rise to multiple serotypes [2, 8]. 
Generally, the available commercial IB vaccines may not 
trigger powerful immune responses, provide reciprocal 
protection among different serotypes of IBV infections, 
and lead to huge economic losses [9]. Therefore, it is nec-
essary to understand the mechanism of host immune 
responses to IBV infection.

Macrophages are important innate immune effec-
tors against microbial infections and participate in 
innate immune responses and the subsequent acquired 
immunity [10]. Pattern recognition receptors (PRRs) in 
macrophages can recognize the pathogen-associated 
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molecular pattern (PAMP) [11]. Various intracellular 
signals are triggered subsequently to promote the pro-
duction of immunomodulation molecules [12, 13] and 
activate the processing pathways of antigen presentation 
in macrophages to switch on acquired immune responses 
[14]. Also, macrophage-programmed cell death-related 
genes changed in defense against pathogens [6, 15]. It 
has been shown that IBV could significantly increase the 
number of macrophages in chicken respiratory tracts 
[16]. However, the immune function and immune regu-
lation of macrophages in IBV infection remain mostly 
unclear. In this study, HD11 chicken macrophage cells 
and chicken peripheral blood mononuclear cell-derived 
macrophages (PBMCs-Mφ) were infected with IBV M41 
strain, and the dynamic changes of macrophage functions 
and gene expressions of related proteins/mediators in 
innate and acquired immunity, inflammation, autophagy 
and apoptosis were systematically analyzed.

Materials and methods
Cells and virus
HD11 cells were kindly provided by Dr. Yulong Gao (Har-
bin Veterinary Research Institute, Chinese Academy 
of Agricultural Science). HD11 cells were cultured in 
RPMI 1640 complete medium at 1.5 × 105  cells/mL and 
were kept at 41  °C in 5% CO2. PBMCs-Mφ were sepa-
rated from chicken blood based on a previous method 
with minor modifications [17]. In brief, pooled whole 
blood in 10 U/mL heparins (Ncbiotech Co., Ltd, Harbin, 
China) was collected from 3-month-old specific-path-
ogen-free (SPF) chickens by heart punctures. PBMCs 
were separated by Ficoll-Hypaque (Tianjin Hao Yang 
Biological Manufacture Co., Ltd, Tianjin, China) density 
gradient centrifugation according to the manufacturer’s 
instructions. After being cleaned with 1 × PBS (pH 7.2), 
PBMCs were seeded in 2 × 107  cells/mL in RPMI 1640 
complete medium for 24 h and incubated at 41 °C in 5% 
CO2. Finally, nonadherent cells in the supernatant were 
removed. The procedures of the experiment complied 
with the Northeast Agriculture University Health Guide-
lines for the Care and Use of Laboratory Animals.

IBV strain M41 (Accession number: DQ834384.1) was 
preserved in the Veterinary Pathology Laboratory, Col-
lege of Veterinary Medicine in Northeast Agricultural 
University. The virus was propagated in 9–11-day-old 
SPF chicken embryos.

KUL01 + cell assay
The purity of HD11 cells and PBMCs-Mφ were evaluated 
with flow cytometry via staining of chicken macrophage 
marker, KUL01 [18]. PBMCs-Mφ and HD11 cells were 
dispersed with 1% trypsin into a single-cell solution and 
fixed with 1% paraformaldehyde for 30  min. The cells 

were incubated with mouse anti-chicken monocyte/
macrophage antibodies KUL01 (1: 50, Bio-Rad, USA) 
for 30 min. After being washed 3 times with PBS, FITC 
labeled goat anti-mouse IgG (1: 50, ZSGB-Biotechnology 
Co., Ltd, Beijing, China) was added and incubated in 
the dark for 30 min. Washed cells were assayed by flow 
cytometry (BD FACSAria II, USA).

IBV infection in macrophages
HD11 cells and PBMCs-Mφ were seeded in 6-well 
plates and grown to 80% confluence. Macrophages were 
infected with IBV at a multiplicity of infection (MOI) of 
10. After being incubated for 2 h at 41 °C, the virus was 
replaced with RPMI 1640 supplemented with 2% FBS. 
Cytopathic effects (CPE) were observed daily. Virus titers 
were determined by endpoint dilutions as 50% tissue cul-
ture infective dose (TCID50) at 6, 12, 18, 24, 30, 36, 42 and 
48 h post-infection (hpi) by the Reed-Muench method, as 
described previously [19].

Quantitative real-time polymerase chain reaction 
(qRT-PCR) was also carried out to detect IBV. Total RNA 
was extracted at 12, 24, 36, 48 hpi using TRIzol reagent 
(Invitrogen, Shanghai, China) according to the manufac-
turer’s instructions. Total RNA of 1  μg in each sample 
was reverse transcribed into cDNA using PrimeScript™ 
RT reagent Kit with gDNA Eraser (Perfect Real Time) 
(Takara Biomedical Technology Co., Ltd, Beijing, China). 
IBV copies were measured by IBV N gene copies using 
fluorescence quantitative PCR reagent (Bioteke Corpora-
tion, Beijing, China). The primers were designed accord-
ing to the IBV N gene (Accession number: FJ904723.1) 
and are shown in Table 1. The steps for thermal cycling 
were as follows: 94  °C, 2  min for denaturation and 40 
cycles of PCR (94 °C, 15 s; 60 °C, 30 s).

Cell viability assay
A CCK-8 reagent (MCE, USA) was used to detect cell 
viability. UV-IBV was prepared by inactivating IBV M41 
with UV germicidal light for 30  min. Cells were seeded 
into 96-well plates and infected with 10 MOI IBV, or 
incubated with UV-IBV (same amount of virion to 10 
MOI IBV), or PBS (Mock cells) in RPMI 1640 supple-
mented with 2% FBS. CCK-8 reagent was added to the 
cells at 12, 24, 36, and 48 hpi, and they were incubated for 
2.5 h at 41 °C. The optical density (OD) values were meas-
ured with a microplate reader (ELx808, BioTek, USA) at 
450  nm, as previously described [20]. Cell viability was 
calculated according to the formula in the manufacturer’s 
instructions: Cell viability (%) = [optical density (OD) of 
Mock or IBV-infected or UV-IBV-treated cells-OD of 
medium]/[OD of Mock cells-OD of medium] × 100.
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Table 1  Primer sequences for qRT-PCR

Gene Primer Sequences (5′–3′) Product length (bp) Accession number

IBV N F: CAA​GCT​AGG​TTT​AAG​CCA​GGT​ 218 FJ904723.1

R: TCT​GAA​AAC​CGT​AGC​GGA​TAT​

TLR3 F: ACC​CGG​ATT​GCA​GTC​TCA​GTA​ 95 NM_001011691.3

R: CAC​TGT​CCT​TGC​AGG​CTG​AG

TLR7 F: ACC​GTC​GCC​TCA​AGG​AAG​TCC​ 145 NM_001011688.2

R: ACG​CAG​TTG​CAC​CTG​AAG​TCA​ATC​

MyD88 F: AAG​GTG​TCG​GAG​GAT​GGT​GGTC​ 120 NM_001030962.4

R: GGA​ATC​AGC​CGC​TTG​AGA​CGAG​

MDA5 F: TCA​GGA​GGA​GGA​CGA​CCA​CGAT​ 168 GU570144.1

R: TTC​CCA​CGA​CTC​TCA​ATA​ACAG​

IFN-α F: GGA​CAT​GGC​TCC​CAC​ACT​AC 75 GU119896.1

R: TCC​AGG​ATG​GTG​TCG​TTG​AAG​

IFN-β F: GCC​CAC​ACA​CTC​CAA​AAC​ACTG​ 151 GU119897.1

R: TTG​ATG​CTG​AGG​TGA​GCG​TTG​

IFN-γ F: CAC​TGA​CAA​GTC​AAA​GCC​GC 87 NM_205149.1

R: ACC​TTC​TTC​ACG​CCA​TCA​GG

MHCI F: GCC​AAC​ACG​GAC​CAG​CAG​TAC​ 81 NM_001097530.1

R: GTC​CAG​GTT​CTC​GCG​GTC​AATC​

MHCII F: GTT​CTA​CCA​GCG​TTC​GGA​AGGC​ 101 DQ207939.1

R: TCT​GAG​CGG​CGT​CCA​ACT​CC

Fc receptor F: TGT​GAG​GTG​CGG​ACG​GAG​AG 195 AM412311.1

R: TCG​GTG​CCA​GGA​GAA​GGA​GATG​

MARCO F: CAC​ATA​AGC​GAG​CCT​CGA​ATC​CAG​ 81 NM_204736.1

R: CAG​CAG​CAG​CAG​GTA​GAT​GAC​AAG​

CD36 F: ACC​AGA​CCA​GTA​AGA​CCG​TGA​AGG​ 154 NM_001030731.1

R: ATG​TCT​AGG​ACT​CCA​GCC​AGT​GTG​

MIF F: ATT​GGC​AAG​ATT​GGA​GGG​ 127 M95776.1

R: CGT​TGG​CAG​CAT​TTA​TGT​C

CCL4 F: GCA​GTT​GTT​CTC​GCT​CTT​C 192 NM_204720.1

R: GCG​CTC​CTT​CTT​TGT​GAT​

K60 F: GCT​GCT​GTC​ATG​GCT​CTT​ 278 Y14971.1

R: TTG​GTG​TCT​GCC​TTG​TCC​

XCL1 F: ATG​AAA​CTC​CAC​GCC​ACA​GTT​ 294 NM_205046.1

R: TTA​TCT​TCT​TCT​GGT​AGT​ACG​

CXCL12 F: TGT​CGG​AGG​AGA​AGC​CTG​TCAG​ 158 NM_204510.1

R: CAC​TTG​CTT​GCT​GTT​GCT​CTT​GAG​

IL-1β F: TGG​GCA​TCA​AGG​GCT​ACA​ 244 Y15006.1

R: TCG​GGT​TGG​TTG​GTG​ATG​

IL-6 F: ATG​GTG​ATA​AAT​CCC​GAT​GAAG​ 153 NM_204628.1

R: CCT​CAC​GGT​CTT​CTC​CAT​AAAC​

TNF-α F: CAG​ATG​GGA​AGG​GAA​TGA​AC 268 NM_204267.1

R: AGA​GCA​TCA​ACG​CAA​AAG​GG

NF-κB F: TCA​ACG​CAG​GAC​CTA​AAG​ACAT​ 162 M86930.1

R: GCA​GAT​AGC​CAA​GTT​CAG​GATG​

iNOS F: AGT​GGT​ATG​CTC​TGC​CTG​CT 171 NM_204961.1

R: CCA​GTC​CCA​TTC​TTC​TTC​C

IL-10 F: CAG​CAC​CAG​TCA​TCA​GCA​GAGC​ 94 NM_001004414.2

R: GCA​GGT​GAA​GAA​GCG​GTG​ACAG​
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Nitric oxide assay
Cells were seeded into 6-well plates. Supernatants of 
Mock cells, IBV-infected cells, and UV-IBV-treated cells 
were collected at 12, 24, 36, and 48 hpi and centrifuged 
at 1000 g for 30 min at 4 °C. Nitric oxide (NO) content in 
the supernatant was detected by a NO assay kit (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China), as 
previously described [21].

Macrophage phagocytic ability assay
Phagocytic functions of macrophages were assayed 
according to the method of Lee et al. [17]. Briefly, yellow-
green fluorescent latex beads (50 beads/cell, Sigma, USA) 
were used to incubate with Mock cells, UV-IBV-treated 
cells and IBV-infected cells at 24  hpi at 41  °C for 2  h. 
Cells were then separated by 1% trypsin for macrophage 
phagocytic ability assay using flow cytometry. At the 
meantime, cells in these 3 groups were fixed with metha-
nol for 10 min, and stained with 0.01 mg/mL propidium 
iodide solution for 20 min for observation of phagocytic 
function under fluorescence microscopy (Nikon, Japan).

QRT‑PCR assay of gene expression
Total RNA of cells was extracted and reverse transcribed 
into cDNA using PrimeScript™ RT reagent Kit with 
gDNA Eraser at 12, 24, 36, and 48 hpi. QRT-PCR rea-
gents were used to detect the relative gene expressions of 
related factors in innate immunity (TLR3, TLR7, MyD88, 
MDA5, IFN-α, IFN-β, IFN-γ), acquired immunity (MHCI, 
MHCII, Fc receptor, MARCO, CD36), chemokines (MIF, 
CCL4, K60, XCL1, CXCL12), inflammation (IL-1β, IL-6, 

TNF-α, NF-κB, iNOS, IL-10, PPAR-γ), autophagy (LC3II, 
mTOR, Beclin-1) and apoptosis (Caspase-3, Bax, Bcl-2). 
The primers are listed in Table 1. β-actin was chosen as a 
reference gene. The steps for thermal cycling were as fol-
lows: 94 °C, 2 min for denaturation and 40 cycles of PCR 
(94  °C, 15  s; 60  °C, 30  s). The expression fold changes 
were calculated using the 2−△△CT method [22].

Statistical analyses
Each treatment was analyzed in triplicate, values were 
expressed as mean ± SD and statistical significances were 
assessed by Duncan multiple range test of SPSS 19.0 
software using the one-way ANOVA method. Probabili-
ties of p < 0.05 and p < 0.01 were preset for statistical sig-
nificance. Flow cytometry analyses were performed on 
FlowJo software (version 10.0.6). Figures were created 
with Image J and GraphPad Prism (version 5.0) software.

Results
KUL01 + cell percentages of HD11 cells and PBMCs‑Mφ
Both HD11 cells and PBMCs-Mφ showed high posi-
tive fluorescent signals (Figure  1A). The percentages 
of KUL01 + cells in HD11 cells and PBMCs-Mφ were 
99.8 ± 0.1% and 91.3 ± 1.2%, respectively (Figure  1B), 
indicating these two kinds of macrophage satisfied the 
needs of the experiments.

IBV M41 infection in macrophages
HD11 cells and PBMCs-Mφ were infected with IBV 
at an MOI of 10. CPE, qRT-PCR and virus titer assays 
were carried out. After 5 times of adaptive cell culture 

F: Forward primer for qRT-PCR, R: Reverse primer for qRT-PCR

Table 1  (continued)

Gene Primer Sequences (5′–3′) Product length (bp) Accession number

PPAR-γ F: GGG​CGA​TCT​TGA​CAG​GAA​ 175 AB045597.1

R: GCC​TCC​ACA​GAG​CGA​AAC​

LC3II F: GTA​CGA​GAG​CGA​GAA​GGA​CG 83 NM_001031461.1

R: AGA​CGG​AAG​ATT​GCA​CTC​CG

mTOR F: CAT​GTC​AGG​CAC​TGT​GTC​TAT​TCT​C 77 XM_417614.5

R: CTT​TCG​CCC​TTG​TTT​CTT​CACT​

Beclin-1 F: TGG​CTT​TCT​TGG​ACT​GTG​TG 125 NM_001006332.1

R: ACC​ACC​ACT​GCC​ACC​TGT​AT

Caspase-3 F: CCA​CCG​AGA​TAC​CGG​ACT​GT 176 NM_204725.1

R: AAC​TGC​TTC​GCT​TGC​TGT​GA

Bax F: ACT​CTG​CTG​CTG​CTC​TCC​TCTC​ 174 XM_025145468.1

R: ATC​CAC​GCA​GTG​CCA​GAT​GTA​ATC​

Bcl-2 F: GAG​TTC​GGC​GGC​GTG​ATG​TG 92 NM_205339.2

R: TTC​AGG​TAC​TCG​GTC​ATC​CAG​GTG​

β-actin F: ATT​GCT​GCG​CTC​GTT​GTT​ 173 K02173.1

R: CTT​TTG​CTC​TGG​GCT​TCA​
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of IBV M41 strain in both kinds of cell, the typical CPE 
appeared in macrophages at 24 hpi, and peaked at 36 
hpi (Figure 2A). QRT-PCR and TCID50 results showed 
IBV replication increased in a time-dependent manner, 

while there was a decrease at 48 hpi (Figures  2B, C). 
The results indicate IBV M41 could infect HD11 cells 
and PBMCs-Mφ.

Figure 1  KUL01 + cell evaluation. A KUL01 + cells in HD11 cells and PBMCs-Mφ were evaluated by flow cytometry. B The mean percentages of 
KUL01 + macrophages in HD11 cells and PBMCs-Mφ are shown in histograms. Data presented as means ± SD (n = 3).

Figure 2  IBV M41 infection in macrophages. Macrophages infected with IBV at MOI of 10. A CPE observation. CPE results of IBV-infected HD11 
cells and PBMCs-Mφ were recorded at 0, 12, 24, 36, 48 hpi. B IBV growth curves. Virus titers in IBV-infected HD11 cells and PBMCs-Mφ from 6 to 48 
hpi were tested by TCID50 method. C IBV copies. Virus copies of IBV-infected HD11 cells and PBMCs-Mφ from 12 to 48 hpi were tested by qRT-PCR 
method. IBV mRNA copies were calculated by the formula: y = − 2.8207x + 40.827 (R2 = 0.991). Data presented as means ± SD (n = 3).
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IBV M41 decreased macrophage viability
Cell viability was tested. CCK-8 assay results showed that 
cell viability of IBV-infected macrophages decreased in a 
time-dependent manner (p < 0.01), while there were no 
significant changes in Mock cells and UV-IBV-treated 
cells (Figure 3A).

IBV M41 activated macrophage pathogen elimination 
function
NO content was examined to determine the patho-
gen elimination function of macrophages. NO secreted 
by macrophages is a key aspect of the antimicrobial 
response [23]. NO content increased significantly in 

IBV-infected (HD11/PBMCs-Mφ: p < 0.01) and UV-IBV-
treated (HD11: p < 0.01, PBMCs-Mφ: p < 0.05) cell super-
natants at 36 hpi compared with Mock cells (Figure 3B). 
The up-regulated NO content of UV-IBV-treated cells 
was lower than that of IBV-infected cells, indicating that 
IBV replication stimulates NO production in chicken 
macrophages.

IBV M41 affected macrophage phagocytic function
Phagocytic function of macrophages was determined by 
detecting the percentage of macrophages phagocytizing 
yellow-green fluorescent latex beads by flow cytometry 
and fluorescence microscopy. Flow cytometry results 

Figure 3  Macrophages activity assays. A CCK-8 assay. CCK-8 was used to detect the viability of HD11 cells and PBMCs-Mφ infected with IBV or 
treated with UV-IBV or PBS (Mock cells) from 12 to 48 hpi. B NO content assay. NO content of culture supernatants of IBV-infected, UV-IBV-treated 
or Mock cells were measured from 12 to 48 hpi. C, D Macrophage phagocytic function assay by flow cytometry. Phagocytic functions of chicken 
macrophages were detected at 24 hpi by phagocytosis of yellow-green fluorescent beads. Flow cytometry histogram shows fluorescent intensity 
of cells containing yellow-green fluorescent beads (green arrow) and cells not containing yellow-green fluorescent beads in three groups (C). The 
mean percentages of positive cells post-infection are shown in histograms (D). Data presented as means ± SD (n = 3). E Macrophage phagocytic 
function observation under fluorescent microscopy. Beads (green arrow) and nucleus (red) were observed under the inverted fluorescence 
microscope. Data presented as mean ± SD (n = 3). * means the significance of between IBV-infected or UV-IBV-treated cells with Mock cells. * means 
p < 0.05, ** means p < 0.01.
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showed less yellow-green fluorescence in IBV-infected 
cells compared with Mock cells at 24 hpi, HD11 cells 
(Mock: 38.8%, IBV: 30.0%; p < 0.01) and PBMCs-Mφ 
(Mock: 71.5%, IBV: 38.4%; p < 0.01). There were no sig-
nificant changes in UV-IBV-treated cells (Figure 3C, D). 
Fluorescence microscopy results were consistent with 
those of the flow cytometry assays (Figure  3E). These 
indicate that IBV infection could significantly damage the 
phagocytic functions of macrophages.

IBV M41 activated macrophage innate immunity
Toll-like receptors (TLRs) are PRRs that detect charac-
teristic microbial motifs to signal the presence of invad-
ing microbial organisms [24]. Among them, TLR3 and 
TLR7 recognize viral or non-viral RNA [25]. Myeloid dif-
ferentiation factor 88 (MyD88) is a key linker molecule in 
the TLRs signaling pathway [26]. As is known, TLR3/7-
MyD88 are classic pathways involved in host recognition 
of viruses and innate immunity. In IBV-infected HD11 
cells, the gene expressions of TLR7 and MyD88 both 
decreased at 12 hpi (p < 0.01). As the virus replicated, 
the gene expressions of TLR3/7 and MyD88 showed 
obvious upward trends (p < 0.01) and peaked at 36 hpi. 
The general expression trends of TLR3/7 and MyD88 in 
PBMCs-Mφ were consistent with those of HD11 cells. In 
UV-IBV-treated HD11 cells, the gene expression of TLR3 
decreased significantly at 12 hpi (p < 0.01), and MyD88 at 
36 and 48 hpi (p < 0.01). In UV-IBV-treated PBMCs-Mφ, 
TLR7 and MyD88 gene expressions decreased at 12 hpi 
(p < 0.01). TLR3 expression decreased at 24 and 48 hpi 
(p < 0.01), and increased at 36 hpi (p < 0.01). However, 
the TLR3 up-regulation in UV-IBV-treated PBMCs-Mφ 
was lower than that of IBV-infected cells (Figure  4A). 
These results indicate that viral replication is involved in 
IBV-induced TLR3/7-MyD88 modulation. By compar-
ing the increasing mRNA expressions of TLR3 (HD11: 
sevenfold, PBMCs-Mφ: 33-fold) and TLR7 (HD11: four-
fold, PBMCs-Mφ: 22-fold) at 36 hpi in IBV-infected 
cells, it can be concluded that IBV infection activates the 
TLR3/7 signaling pathways, especially the TLR3 signaling 
pathway.

Cytoplasmic retinoic acid-inducible gene I (RIG-I)-like 
receptors (RLRs) identify viral RNAs and initiate innate 
immune responses [27]. Chickens do not have RIG-I [28]. 
Therefore, the other RLR member, melanoma differen-
tiation associated protein 5 (MDA5), plays an important 
role in recognizing intracellular viruses in chickens [29]. 
In IBV-infected HD11 cells, MDA5 expression decreased 
at 12 hpi (p < 0.01), then increased at 24, 36 and 48 hpi 
(24 and 36 hpi: p < 0.01, 48 hpi: p < 0.05). The trend of 
MDA5 expression in PBMCs-Mφ was consistent with 
that of HD11 cells, which increased at 12, 24 and 36 hpi 
(p < 0.01), and peaked at 24 hpi. In UV-IBV-treated HD11 

cells and PBMCs-Mφ, the gene expression of MDA5 
decreased at 12 and 24 hpi (p < 0.01, Figure 4A).

These results suggest that IBV activates antiviral innate 
immunity pathways in macrophages. However, immu-
nosuppression might occur at the early stage of IBV 
infection.

IBV M41 upregulated IFN expressions in macrophages
IFNs, including type I (IFN-α and IFN-β) and type II 
(IFN-γ), play important roles in antiviral defense, inhibit 
viral replication and work as immune effectors/modula-
tors [30, 31]. In IBV-infected HD11 cells, the expressions 
of IFN-α and IFN-β increased at 12 hpi (p < 0.01), while 
the expression of IFN-γ decreased (p < 0.01). As the virus 
replicated, IFNs expressions showed upward trends, 
increasing at 24, 36, and 48 hpi (p < 0.01), and peaking at 
36 hpi. The IFNs expression trends of PBMCs-Mφ were 
consistent with those of HD11 cells. In UV-IBV-treated 
HD11 cells, the expression of IFN-α decreased at 36 
and 48 hpi (p < 0.01), IFN-β decreased at 12, 24 and 36 
hpi (p < 0.01), and IFN-γ decreased at 24 hpi (p < 0.01). In 
UV-IBV-treated PBMCs-Mφ, IFN-α and IFN-γ expres-
sions decreased at 36 and 24 hpi, respectively (p < 0.01). 
However, IFN-β expression increased at 36 hpi (p < 0.01, 
Figure 4A).

These results indicate that IBV could activate IFNs 
production in macrophages, which has a relationship 
with viral replication. Comparing the increasing expres-
sions of IFNs, IFN-α up-regulations (HD11: 490-fold, 
PBMCs-Mφ: 49-fold) were the highest.

IBV M41 activated macrophage acquired immunity
Major histocompatibility complex (MHC) is a family 
of cell surface molecules, including MHC class I and II, 
which is involved in antigen presentation and activa-
tion of T cells [32]. Fc receptor is involved in receptor-
mediated antibody-dependent internalization of immune 
complexes destined for intracellular degradation [33]. In 
IBV-infected HD11 cells, MHCII expression decreased at 
12 hpi (p < 0.05). As the virus replicated, elevated expres-
sions of MHC molecules and Fc receptors appeared 
at 24 and 36  hpi (p < 0.01), and peaked at 36 hpi. The 
expression trends of MHC molecules and Fc receptor in 
PBMC-Mφ were consistent with those of HD11 cells. In 
IBV-infected PBMCs-Mφ, MHC molecules and Fc recep-
tor expressions were up-regulated, but MHCII expres-
sion decreased at 24 hpi (p < 0.01). In the UV-IBV-treated 
HD11 cells, only MHCII expression increased at 12  hpi 
(p < 0.01, Figure 4B).

Scavenger receptors and mannose receptors, parts of 
PRRs, are also involved in pathogen elimination. CD36 
is a scavenger receptor involved in immunity, metabo-
lism and angiogenesis [34]. Mannose receptor, MARCO, 
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Figure 4  Antiviral innate and acquired immunity-related gene expressions. A Antiviral innate immunity-related factors mRNA expressions. 
Relative mRNA expressions of TLRs (TLR3, TLR7), MyD88, MDA5, IFNs (IFN-α, IFN-β, IFN-γ) in IBV-infected, UV-IBV-treated cells and Mock cells were 
detected by qRT-PCR method. β-actin acted as a reference gene. B Acquired immunity-related gene mRNA expressions. Relative mRNA expressions 
of MHC molecules (MHCI, MHCII), Fc receptor, MARCO, CD36 in IBV-infected, UV-IBV-treated cells and Mock cells were detected by qRT-PCR method. 
β-actin acted as a reference gene. Data presented as mean ± SD (n = 3). * means the significance of between IBV-infected or UV-IBV-treated cells 
with Mock cells. * means p < 0.05, ** means p < 0.01.
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plays a role in pathogen clearance and inflammatory 
ligand recognition [35]. In IBV-infected HD11 cells, the 
expressions of MARCO decreased at 12 hpi significantly 
(p < 0.01), and CD36 at 12, and 24 hpi (p < 0.01). Increased 
expressions of both genes appeared and peaked at 36 hpi 
(p < 0.01). The expression trends of MARCO and CD36 
in PBMC-Mφ were similar to those in HD11 cells. Both 
MARCO and CD36 expressions down-regulated at 12 
hpi (p < 0.01), and then increased and peaked at 36 hpi 
(p < 0.01). For the UV-IBV-treated HD11 cells, there were 
no distinct changes in the two kinds of cell (Figure 4B).

These results indicate that IBV inhibits the ability of 
macrophages to eliminate pathogen and antigen presen-
tation at the early stage of viral infection, but do not affect 
the latter activation of acquired immunity. Among these 
genes, the expression of MHCII was the highest (23-fold) 
compared with other genes in IBV-infected HD11 cells, 
and MHCII (26-fold) and Fc receptor (67-fold) in IBV-
infected PBMCs-Mφ, showing that IBV infection mainly 
activates MHCII and Fc receptors.

IBV M41 activated macrophage chemokine expressions
Chemokines are involved in host immune responses and 
inflammatory processes [36, 37]. Macrophage migra-
tion inhibitory factor (MIF), CCL4 (also known as mac-
rophage inflammatory protein-1β) and CXC K60, that 
can activate macrophages and T cells, are involved in cell 
migration, and promote cell maturation [38–40]. In IBV-
infected HD11 cells, the gene expressions of MIF, CCL4 
and CXC K60 up-regulated significantly (p < 0.01), and 
peaked at 24 hpi, but there was a marked decrease of MIF 
expression at 12 hpi (p < 0.01). The expression trends in 
PBMCs-Mφ were similar to those in HD11 cells. In UV-
IBV-treated HD11 cells, CCL4 expression decreased at 
12 hpi (p < 0.01) and CXC K60 decreased at 12 (p < 0.01) 
and 36 hpi (p < 0.05). In UV-IBV-treated PBMCs-Mφ, the 
decreased expression of MIF showed at 36 hpi (p < 0.01), 
CCL4 decreased at 24 and 36 hpi (p < 0.01), and CXCK60 
decreased at 36 hpi (p < 0.01, Figure 5A).

XCL1 (also known as lymphotactin) and CXCL12 (also 
known as stromal cell derived factor-1) have a strong 
chemotactic effect on lymphocytes, involved in inflam-
matory responses [41, 42]. In IBV-infected HD11 cells, 
there was an abrupt increase in XCL1 and CXCL12 
expressions at 24 hpi (p < 0.01). However, XCL1 and 
CXCL12 expressions decreased significantly at 12 and 
48 hpi, respectively (p < 0.01). The XCL1 and CXCL12 
expression trends in PBMCs-Mφ were similar to those 
in HD11 cells (p < 0.01), but there was a gradual decrease 
of XCL1 and CXCL12 expressions at 36 hpi (p < 0.01). 
In the UV-IBV-treatment experiment, there were 
only increased expressions of CXCL12 in HD11 cells 

(p < 0.05) and of XCL1 in PBMCs-Mφ at 12 hpi (p < 0.01, 
Figure 5A).

These results suggest that IBV could activate the chem-
otaxis in macrophages with temporary suppression at the 
early stage of infection. The mRNA expressions of CCL4 
(29-fold) and MIF (24-fold) were the highest in IBV-
infected HD11 cells compared with other chemokines, 
indicating that IBV-infected macrophages mainly secrete 
CCL4 and MIF.

IBV M41 up‑regulated inflammatory factor expressions 
in macrophages
Interleukin (IL)-1β, IL-6 and tumor necrosis factor 
(TNF)-α are classic pro-inflammatory cytokines and acti-
vate a variety of stress responses [43–45]. Transcription 
factor Nuclear factor-κB (NF-κB) is a redox-sensitive 
transcription factor and modulates ILs production [46]. 
Inducible nitric oxide synthase (iNOS) is involved in NO 
synthesis and the pro-inflammatory responses of mac-
rophages [47]. IL-10 is an anti-inflammatory cytokine 
which controls antigen presentation function and the 
ability to synthesize cytokines [48]. Peroxisome prolif-
erator-activated receptor (PPAR)-γ is related to inflam-
mation inhibition [49, 50]. In IBV-infected HD11 cells, 
pro-inflammatory cytokines showed upward trends 
from 12 to 24 hpi. IL-1β, IL-6, TNF-α, iNOS peaked at 
24 hpi (p < 0.01), and NF-κB peaked at 36 hpi (p < 0.01). 
The expression trends in PBMCs-Mφ were similar to 
those in HD11 cells. For anti-inflammatory cytokines, 
IL-10 decreased at 12 hpi in IBV-infected HD11 cells 
(p < 0.01), and PPAR-γ was up-regulated at 24, 36, and 
48 hpi (p < 0.01). However, in PBMCs-Mφ, there was an 
obvious increase in IL-10 expression at 24, 36, and 48 hpi 
(p < 0.01), and in PPAR-γ at 24 hpi (p < 0.01), respectively 
(Figure 5B).

These results indicate that IBV induces macrophage 
pro-inflammatory and anti-inflammatory responses. 
In IBV infection, there were increased expressions of 
IL-6 mRNA (27-fold) in HD11 cells. The relative mRNA 
expression of IL-1β (246-fold), IL-6 (1560-fold), iNOS 
mRNA (118-fold) in PBMCs-Mφ had higher expressions 
compared with other cytokines.

IBV M41 induced autophagy in macrophages
Microtubule-associated protein 1 light chain 3 II (LC3II) 
is an autophagic target protein involved in the formation 
of autophagosomes [51]. Mammalian target of rapamy-
cin (mTOR) and Beclin-1 are key proteins involved in the 
autophagic pathways [52, 53]. LC3II expression peaked 
at 36 hpi in IBV-infected HD11 cells and PBMCs-Mφ 
(p < 0.01). mTOR and Beclin-1 increased to a peak at 24 
or 36 hpi (p < 0.01), and subsequently decreased rapidly 
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Figure 5  Chemokines and inflammatory factors gene expressions. A Chemokine mRNA expressions. Relative mRNA expressions of MIF, CCL4, 
CXC K60, XCL-1, CXCL12 in IBV-infected, UV-IBV-treated cells and Mock cells were detected by qRT-PCR method. β-actin acted as a reference gene. B 
Inflammatory factor mRNA expressions. Relative mRNA expressions of IL-1β, IL-6, NF-κB, TNF-α, iNOS, IL-10 and PPAR-γ in IBV-infected, UV-IBV-treated 
cells and Mock cells were detected by qRT-PCR method. β-actin acted as a reference gene. Data presented as mean ± SD (n = 3). * means the 
significance of between IBV-infected or UV-IBV-treated cells with Mock cells. * means p < 0.05, ** means p < 0.01.
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in IBV-infected HD11 cells and PBMCs-Mφ, respec-
tively (Figure 6A). This indicates that IBV infection could 
induce autophagy at the middle term of viral replication 
and participate in the disease pathogenic process.

IBV M41 induced apoptosis in macrophages
Caspase-3 is an executive factor of apoptosis [54]. Bcl-
2-associated X (Bax) is a classic pro-apoptotic factor [55]. 
Bcl-2 is an inhibitor of apoptosis [56]. Caspase-3 expres-
sion peaked at 36 hpi in IBV-infected HD11 cells and 
PBMCs-Mφ (p < 0.01). However, Caspase-3 expression 

was down-regulated at 12 and 48 hpi in IBV-infected 
HD11 cells (p < 0.01), and at 24 hpi in PBMCs-Mφ 
(p < 0.01), respectively. In IBV-infected HD11 cells, the 
expression of Bax decreased at 12 hpi (p < 0.05), and 24 
hpi in PBMCs-Mφ (p < 0.01). As the virus replicated, the 
expression of Bax showed an increase trend, and peaked 
at 48 hpi (p < 0.01). Remarkably, decreased expressions 
of Bcl-2 appeared in both HD11 cells and PBMCs-Mφ at 
48 hpi (p < 0.01). UV-IBV treatment did not change the 
mRNA expressions of Caspase-3, Bax and Bcl-2 in mac-
rophages (Figure  6B). These results indicate that viral 

Figure 6  Gene expressions of related proteins in apoptosis and autophagy. A Autophagy-related gene mRNA expressions. Relative mRNA 
expressions of LC3II, mTOR and Beclin-1 in IBV-infected, UV-IBV-treated cells and Mock cells were detected by qRT-PCR method. β-actin acted as a 
reference gene. B Apoptosis-related gene mRNA expressions. Relative mRNA expressions of Caspase-3, Bax, Bcl-2 in IBV-infected, UV-IBV-treated 
cells and Mock cells were detected by qRT-PCR method. β-actin acted as a reference gene. Data presented as mean ± SD (n = 3). * means the 
significance of between IBV-infected or UV-IBV-treated cells with Mock cells. * means p < 0.05, ** means p < 0.01.
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replication provokes apoptosis in macrophages at the late 
stage of infection.

Discussion
Macrophages are an important part of innate immunity 
[57]. Macrophages respond to external stimuli with rapid 
changes in their expressions of various related genes. In 
this study, we established an experimental model of IBV 
infection of macrophages. The high-purity HD11 cells 
(99.8%) and PBMCs-Mφ (91.3%) could exhibit typical 
CPE at 36 h post-IBV M41 strain infection, and the virus 
could replicate on them. These results demonstrated that 
both kinds of cell were suitable for studying the interac-
tion of IBV and macrophages and the underlying mecha-
nisms. Macrophage viability and abilities were checked. 
IBV could affect macrophage viability and damage their 
phagocytic functions, which are related to viral replica-
tion. Han et  al. [58] found that IBV Beaudette strain 
could propagate stably in HD11 cells and the virus titer 
reached the high level of 106.85 TCID50/mL, typical CPE 
appeared at 36 hpi, and cell viability decreased obviously 
at the same time. In other words, IBV could impair the 
viability of chicken macrophages and their biological 
functions, which was consistent with our results.

Host immune response is divided into innate immu-
nity and acquired immunity [59]. TLRs and RLRs are two 
types of PRR in the innate immune system [60]. TLR3 
and TLR7 are both involved in IBV infection, which is 
consistent with previous studies [16, 61], and TLR3 may 
play a key role in IBV-induced viral immune mechanisms. 
Furthermore, IBV infection activates MDA5 expression 
[16, 62]. The expressions of the key antiviral molecules, 
IFNs and other acquired immunity-related genes, which 
are involved in antigen presentation and pathogen clear-
ance, increased significantly with virus replication. This 
indicates that IBV activates the innate immune response 
of macrophages. Interestingly, the gene expressions of 
certain signal proteins, such as TLR7, MyD88, MDA5, 
MHCII, and Fc receptor, decreased in HD11 cells and 
PBMCs-Mφ at 12 hpi, respectively, indicating that IBV 
could inhibit the immune regulatory function of mac-
rophages at the early stage of its infection.

Macrophages secrete chemokines post-IBV infection, 
which attract immune competent cells to the sites of 
infection and inflammation [63]. Meanwhile, cytokines 
are activated to participate in information transmis-
sion, immune regulation and effector functions [43, 44]. 
Similar to other research, we found that IBV activated 
the gene expressions of most chemokines and inflam-
matory cytokines [16, 61, 64], demonstrating a promo-
tion of inflammatory response. Among them, CCL4, 
IL-1β, IL-6, and iNOS mainly activated and participated 
in innate immunity of IBV infection. The expressions of 

MIF, XCL1 and CXCL12 decreased at the early stage of 
infection, indicating IBV affects macrophage chemotaxis. 
Moreover, the up-regulation of inflammatory cytokines 
in IBV infection was higher in percentage terms than in 
anti-inflammatory cytokines at 12 and 24 hpi, indicating 
that a pro-inflammatory response is activated at the early 
stage of IBV infection. From 24 to 48 hpi, the expres-
sions of cytokines gradually decreased, indicating that 
at the late stage of IBV infection, an anti-inflammatory 
response is dominant in the macrophages.

Finally, the gene expressions of related proteins 
involved in apoptosis and autophagy were investi-
gated. There have been reports that IBV could induce 
autophagy and apoptosis in both chicken and mam-
malian cells [58, 65, 66]. In this study, there occurred 
autophagy and apoptosis in HD11 cells and PBMCs-Mφ 
post-IBV infection. In addition, we found that autophagy 
appeared and peaked at the period of extensive viral rep-
lication, and apoptosis occurred obviously at the later 
stage of stable virus replication. With virus replication in 
macrophages, there appeared autophagy firstly and apop-
tosis subsequently. Furthermore, the gene expression lev-
els of related proteins enhanced post-IBV infection, while 
there were no obvious changes post-UV-IBV treatment. 
This further supports the fact that the up-regulation 
of gene expressions has a close relationship with virus 
replication.

In conclusion, IBV decreased macrophage phago-
cytic functions and viability, but strengthened patho-
gen elimination functions. IBV promoted nearly all the 
gene expressions of related proteins in macrophages—
except some degree of suppression at the earlier stage—
to exert its biofunctions in multiple host responses, and 
the dynamic changes of gene expression had a close 
relationship with virus replication. This might provide 
some insight into understanding the immunopathogen-
esis mechanism of IBV infection.
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