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Abstract 

The skin is a passive and active barrier which protects the body from the environment. Its health is essential for the 
accomplishment of this role. Since several decades, the skin has aroused a strong interest in various fields (for e.g. cell 
biology, medicine, toxicology, cosmetology, and pharmacology). In contrast to other organs, 3D models were mostly 
and directly elaborated in humans due to its architectural simplicity and easy accessibility. The development of these 
models benefited from the societal pressure to reduce animal experiments. In this review, we first describe human 
and mouse skin structure and the major differences with other mammals and birds. Next, we describe the different 
3D human skin models and their main applications. Finally, we review the available models for domestic animals and 
discuss the current and potential applications.
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Most three-dimensional (3D) skin models have been 
developed in humans and were subsequently adapted 
to animals. This is mainly due to an easy accessibility to 
human skin specimens, its flat architecture, an active 
research for burn repairs, and the wide range of appli-
cations: e.g., pharmacology, modelling of skin diseases, 
and cosmetology. In addition, the strong societal pres-
sure to reduce the use of animals for research purposes 
since the 1990s boosted the establishment of reliable 
reconstructed skin models as alternatives. Indeed, these 
novel 3D skin models made possible the ban on cosmetic 
testing on animals in the European Union in 2013 and 
in some other countries afterward. The first part of this 
review briefly describes the skin structure, functions, 
and skin stem cells. The second part describes the main 
methodologies of 3D skin production in humans since 
the last seventy years. The third part reviews the 3D skin 
models developed in livestock, poultry, and pets. As only 
few of these 3D skin models are currently available, we 
focus on potential future veterinary applications as a 
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justification for the development of such 3D skin mod-
els. In our opinion, implementing 3D reconstructed skin 
models for poultry will be key to understand the role of 
skin differentiation in Marek disease virus biology.

1 � Skin, a complex organ most dedicated to body 
protection and rich in stem cells

1.1 � Structure, origin and functions
The skin is a flat organ covering the entire body and one 
of the largest in surface (about 2  m2 and 6 to 10  kg for 
an adult human) [1]. Skin has multiple functions essen-
tial to life, the major one being a barrier to protect the 
body from the environment. The skin limits (i) injuries 
and penetration of inert elements (chemicals, physical 
particles), microorganisms (protozoa, worms, bacteria, 
fungi, and viruses) and small insects, (ii) water loss of the 
body, and (iii) DNA damage induced by solar ultraviolet 
radiations. Additionally, the skin has sensory (nerves, 

vibrissae), thermoregulation (sweat gland, hair and feath-
ers, and blood flow), and immune (Langerhans cells) 
functions. Moreover, skin appendages contribute to com-
munication (i.e., cat with erect hairs, courtship display in 
birds) and to locomotion (flight feathers of birds, horse 
hoof).

The skin is constituted of three overlaid parts: the 
hypodermis, the dermis, and the epidermis, the latter 
being the outermost layer in contact with the air (Fig-
ure  1). The hypodermis also called the subcutaneous 
tissue, mostly formed of lipid cells, has a role as protec-
tive padding, insulation, and energy reservoir. The der-
mis consists of an extracellular matrix (ECM; fibers and 
glycosaminoglycans) and cells, mostly fibroblasts and 
immune cells. Fibroblasts deposit the collagen and elastic 
fibers that give the skin its elasticity. The dermis harbors 
blood vessels, nerves, glands, and skin appendages (e.g., 
hair in the hair follicle and the base of nails and claws). 

Figure 1  Overall structure of the mammalian skin with hair follicle. Hypodermis, dermis, and epidermis constitute the skin. The 
epidermis is a specialized epithelium, mostly composed of keratinocytes at different stages of differentiation (see text). The dermis, located below 
the epidermis, consists of a fibrous scaffold composed of ECM, fibroblasts, and immune cells. The dermis hosts blood vessels, nerves, and hair 
follicles. The bulge, located in the outer root sheath of the hair follicle, houses stem cells which constantly replenish the hair follicle with new cells 
(keratinocytes, melanocytes), and replenish the sebaceous gland and the epidermis after injuries.
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The complex structure of a hair follicle has led to con-
sider it as a mini-organ. Glands and skin appendages will 
not be reviewed in detail in this article because most skin 
models are currently devoid of these complex structures. 
Indeed, current skin models are either constituted of an 
epidermis alone, or an epidermis associated with a der-
mis. Most of the thickness of the skin is formed by the 
dermis which is connected to the epidermis by a basal 
membrane. This basal membrane is composed of ECM 
proteins, and serves as a “proliferation-promoting plat-
form” for the epidermis [2]. The epidermis is a stratified 
squamous epithelium mostly composed of keratinocytes 
(95%). In mammals, these specialized epithelial cells are 
organized in four layers (from the most internal to the 
most external layer): the basal (or stratum germinativum), 
spinous (or stratum spinosum), granular (or stratum 
granulosum), and cornified (or stratum corneum) layers. 
Each layer contains keratinocytes at different stages of 
differentiation, from basal keratinocytes in the basal layer 
to corneocytes in the cornified layer. Basal keratinocytes 
are the only proliferative keratinocytes. At their ultimate 
stage of differentiation, keratinocytes become corneo-
cytes. These cells are enucleated dead cells, resulting 
from a cell-death program referred to as cornification [3], 
during which they lose a large amount of water. Corneo-
cytes are constantly shedding, a process called desqua-
mation, and renewed by cells arising from underneath. 
In normal human skin, the complete differentiation of 
a keratinocyte and its progression from the basal layer 
toward the surface takes 40 to 56 days [4], depending on 
the individual’s age (it is quicker in children and young 
adults). The age of the donors could therefore influence 
the quality of the skin used in in vitro models. In mouse, 
this differentiation process is of only 8 to 10 days [5]. In 
non-pathologic skin, the other 5% of epidermal cells are 
melanocytes, Merkel cells, and Langerhans cells. Mel-
anocytes produce melanin which absorbs UV and give 
different colors to skin as well as hair or feathers [6, 7]. 
The number of each cell type per mm2 of skin and the 
ratios of different cell types in the human epidermis 
have been empirically estimated (reviewed in [8]). For 
example, the ratio of melanocytes or Langerhans cells to 
nucleated epidermal cells is of 1:36 and 1:53, respectively. 
This information is important for full skin reconstitution 
in vitro.

In a healthy skin, various immune cells have also been 
identified: antigen presenting cells [Langerhans cells, 
several subsets of dendritic cells (DCs), notably dermal 
DCs, and macrophages], and resident T cells [including 
regulatory T cells (Treg)], monocytes, mast cells, and 
neutrophils [9–11]. Langerhans cells are located in the 
epidermis, whereas the other immune cells are found 
in the dermis. Interestingly, immune cells in the skin 

maintain a subtle balance between a tolerogenic and an 
immunogenic state through innate and acquired immune 
response [12]. They can either detect invasive pathogens 
and induce a protective host response or maintain a tol-
erant environment towards foreign antigens. Keratino-
cytes, which produce Toll-like receptors, cytokines, 
chemokines, and growth factors can also orientate the 
immune response [9, 12]. In mammals, anti-microbial 
peptides (i.e. ß-defensins) as well as a variety of lipids 
present at the surface of the skin assist with microorgan-
isms defense.

Healthy skin hosts various microorganisms on its sur-
face, the skin microbiome. The composition and function 
of the skin microbiome has been studied in humans [13], 
as well as in dogs and chickens [14, 15]. Interestingly, the 
skin microbiota differs from the gut microbiota in that 
the absence of skin microbiota (e.g., in germ-free mice) 
appears not deleterious for skin development and mor-
phology [16], while the absence of gut microbiota nega-
tively affects gut development.

The morphological aspect and thickness of the skin var-
ies according to clades, species, race, and even genders, 
age, and body location. In humans, the skin is thick up to 
several mm over the sole of the feet in adults. In domestic 
mammals, the haired skin is thickest over the dorsal sur-
face of the body compared to ventral region [17]. The epi-
dermis is naturally thicker in surfaces that need enhanced 
protection [17]. Similarly, the stratum spinosum of dogs’ 
footpads may contain up to 20 layers whereas it is made 
of only 1 or 2 layers in haired skin [17].

The skin components are coming of different embryo-
logical origins: the dermal fibroblasts originate from 
the mesoderm and the neural crest while the epider-
mal keratinocytes originate from the ectoderm [18]. 
Melanocytes are derived from the neural crest [19]. 
Langerhans cells originate from a subpopulation of bone-
marrow CD34+-derived cells expressing the skin hom-
ing receptor cutaneous lymphocyte antigen (CLA) [20]. 
Langerhans cells may persist by local-self renewal [21]. 
Epidermal structures, such as different types of glands 
(i.e., sweet glands, sebaceous glands) and skin append-
ages (i.e., hair, feathers, nails, claws), form via cell–cell 
interactions with dermal fibroblasts [18, 22].

1.2 � Major skin peculiarities in mammals and birds
The overall skin structure is well conserved across differ-
ent mammalian species and body sites [2], although in the 
interfollicular epidermis, the number of stacked cells in a 
layer can vary according to the species. For example, the 
stratum spinosum has 1 or 2 cell layers in the haired-skin 
regions of mice, dogs, and cats, and up to 4 in humans, 
as well as in large animals [17]. The main differences 
between humans and most domestic and laboratory 
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mammals concern the appendages: hair forming a fur, 
feathers a plumage, presence of vibrissa with tactile func-
tion in some domestic animals (e.g., cats and dogs). Hair 
and feathers are constantly shed and renewed, according 
to a cycle. The different phases of hair and feather follicle 
cycles are variable according to the species. The duration 
of the growth phase (or anagen) which is 4 to 7 years for 
the hair of human scalp or human male beard, is only of a 
few weeks in mouse.

Birds skin presents several differences when compared 
to mammals’ skin. First, the skin is usually thinner and 
accommodates feather follicles, the homologues of hair 
follicles. The main difference between avian and mamma-
lian epidermis is the absence of a granular layer involv-
ing filaggrin in birds [23]. Another characteristic of avian 
keratinocytes is the presence of lipid droplets in their 
cytoplasm, absent in mammals’ keratinocytes [24, 25]. 
Importantly, numerous keratinocyte markers described 
in mammals (e.g., like K5/K14 keratins pair and invo-
lucrin) are conserved [25, 26]. In contrast to mammals, 
melanocytes usually inhabit only the feather follicles and 
not the interfollicular epidermis in birds [27]. The silky 
chicken is an exception, with melanocytes populating 
also the dermis and connective tissues [27, 28]. Birds 
have a unique sebaceous gland, named uropygial, located 
dorsally at the base of the tail [28], while mammals have a 
hair follicle associated with two sebaceous glands, which 
are required for the emergence of the hair shaft [29]. 
Lastly, besides feathers, birds show two major hard skin 
appendages, the scales of the legs and feet, and the beak 
[28]. Cysteine rich proteins arranged in pleated sheets 
named corneous beta-proteins (CBP) constitute hard 
appendages of birds and reptiles (for review see [30]) and 
have no orthologues in mammals, of which the hair shaft 
and claws are formed by a special set of keratins [31].

1.3 � Skin stem cells
Due to its composition, its constant renewal and the need 
of repair after wounds, the skin hosts different types of 
stem cells (or progenitors): tissular and multipotent stem 
cells. Stem cells are located in interfollicular skin and 
mostly in hair or feather follicles [32–34].

Interfollicular epithelial stem cells reside within the 
basal layer in mammals [33]. Two types of basal keratino-
cytes have been described: stem cells and transit ampli-
fying keratinocytes, the second displaying a limited 
capacity of division [35]. These self-renewing cells adhere 
to the basal membrane through integrins/laminin inter-
actions. Integrins are considered as good markers for 
these cells. Factors secreted by dermal fibroblasts (such 
as insulin-like-growth factor, fibroblast growth factor 
7, fibroblast growth factor 10, and epidermal growth 
factor receptor ligands) promote basal keratinocytes’ 

proliferation [34]. Basal keratinocytes express keratin 
5 and keratin 14 [33]. When basal keratinocytes detach 
from the basal membrane and move upward, a process 
called delamination, they lose their proliferating prop-
erty and start to differentiate and express keratin 1 and 
keratin 10. Basal keratinocytes isolated from the epider-
mis are able to propagate in vitro for several generations 
[36]. In fact, only 10% of human basal keratinocytes from 
the interfollicular epidermis and the hairless skin (soles) 
are stem cells and able to form foci that give rise to an 
epidermis in culture [35]. The interfollicular epidermis 
reservoir is located in the upper part (the bulge) of the 
outer root sheath of the hair follicle [37] (see Figure  1). 
Basal keratinocytes from domestic mammals (dog [38, 
39], cat [40], horse [41, 42], sheep [43, 44], rabbit [45], 
and chicken [46]) have also been isolated and propagated 
in culture. Chicken basal keratinocytes express p63, a 
keratinocyte stem cell marker found in mammals [46]. 
Interestingly, proliferative keratinocytes, comparable to 
basal-like keratinocytes can be derived from embryonic 
stem cells in human, mouse, chicken [26, 47, 48], or from 
induced pluripotent stem cells or iPSC, in horse [49].

Interfollicular dermal stem cells have also been iden-
tified in mouse and human skin [50]. These cells are 
important for dermis renewal and epidermal homeosta-
sis regulation. It is important to note that these cells are 
multipotent cells and can differentiate into other cells of 
mesodermal and neural lineages [50].

After being hypothesized for a while, stem cells were 
also discovered in the hair follicle, predominantly in the 
bulge area [32] and in the dermal papilla [51]. There are 
two predominant types of stem cells in the bulge region: 
self-renewable cells and multipotent cells [52, 53] (for 
review see [54]). The former allows the renewal of the 
hair follicle and sebaceous gland, but also contribute to 
re-epithelialization of the epidermis during wound repair 
[55]. The latter are the hair follicles-associated pluripo-
tent cells (HAP cells), which have the ability to differ-
entiate into other cell types (i.e., nerve cells, glial cells, 
smooth cells) [56]. A characteristic of stem cells is that 
they remain in a prolonged quiescent state and are acti-
vated in response to hair renewal or skin injury. Differ-
ent stem cells with have also been identified in the upper 
part of the hair follicle (isthmus and junction zone) [57]. 
Stem cells of the follicle hair bulge region have been 
identified in different mammalian species: dog [58–60], 
sheep [61], and pig [62]. In birds, epithelial stem cells are 
located in the collar bulge of the feather follicle above the 
dermal papilla [63]. In mammals, the bulge also harbors 
melanocytes stem cells [64], which in the human scalp 
have a shorter lifespan than hair stem cells, as they are 
programmed for around 20 hair cycles (D. Dhouailly, 
personal communication). Melanocyte stem cells serve 
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as a reservoir for hair and skin melanocytes [6]. In birds, 
the melanocytes stem cells are located in an orthologous 
region of the feather follicle and serve only as reservoir 
for the feather melanocytes [7].

The dermal papilla, which is known to induce hair fol-
licle [65], is located at the base of the hair follicle, and 
hosts mesenchymal stem cells. These cells are another 
source of iPSC [51]. Such cells were isolated in horse 
[66]. In chicken, comparable cells were also isolated in 
the dermal papilla of the feather follicle [67]. Interest-
ingly, hair follicles constitute an important source of stem 
cells for regenerative medicine in mammals due to their 
easy accessibility. Moreover, basal keratinocytes and der-
mal fibroblasts are key cells for the development of skin 
equivalents.

2 � Tools and techniques of 3D skin culture—
decades of innovations for human

2.1 � 3D versus 2D skin models
Numerous human skin models have been developed in 
the last 70  years, from skin explants cultivated ex  vivo 
to in vitro reconstitution of skin equivalents or bioprint-
ing techniques. One of the first mammalian skin model 
was developed by Medawar in 1948 [68]. It consisted of 
ex vivo skin cultures directly obtained from biopsies (rab-
bit, human). Quickly, in the 1950′s, these preliminary 
skin explant models were overshadowed by the advent 
and standardization of 2D cell culture methods. 2D mod-
els, are monolayer cells cultured on a solid surface under 
regular physico-chemical conditions. 3D models involve 
co-cultivation of the cells in three dimensions (in a sphe-
roid or others volumes) in a way that they proliferate and 
interact with each other horizontally and vertically within 
an extracellular environment [69]. Despite its limits, the 
use of conventional 2D cell culture has prevailed for a 
long time to study different types of skin cells (keratino-
cytes, fibroblasts, melanocytes…) [1, 70]. It is only in the 
late 1970′s that 3D skin models saw a renewal thanks to 
Howard Green [36, 71]. 3D culture allows to obtain well 
differentiated cells and to co-cultivate different cell types 
together (e.g. keratinocytes associated with fibroblasts 
[72], with or without melanocytes [73, 74]). Moreover, it 
offers more possibilities than 2D culture by allowing to 
conduct more elaborate studies and in a wider range of 
applications (reviewed in [1, 75]). Indeed, with 3D mod-
els, various factors can be explored: (i) Environmental 
factors, such as spatial orientation and mechanical forces 
[76]; (ii) Physiological factors such as gradient of nutri-
ents, gases (e.g., O2 with normoxia or hypoxia zones), or 
signalling molecules [1] and (iii) Interaction factors, such 
as cell-to-cell, cell-to-ECM, and cell-to-environment (like 
air) interactions [77]. In addition, 3D tissue cultures lead 
to material with an architecture close to real skin and 

provide better prediction of in vivo results. These mod-
els give also more accurate results for drug testing than 
2D cell cultures, for which the results were increasingly 
questioned [78]. In addition, reconstructed skin turned 
out as an alternative to animal experimentation, notably 
for testing cosmetic products, transdermal drug deliv-
ery [79], toxicological assays [78], and UV effects [80]. 
Reconstructed skin has therefore emerged as a potent 
cost-effective, practical, and more ethical solution in 
response to the increasing demand for skin testing. In 
the last 30 years, extensive research has been conducted 
for human skin, from which numerous innovations and 
models have emerged. These models have various levels 
of complexity depending on the type of supports used, 
the number of cell types involved, and their positioning. 
The main human and mouse 3D skin models are listed 
in Table 1 and the principles to obtain some of them are 
described in the following paragraphs.

2.2 � Reconstructed human epidermis (RHE)
Human epidermis can be reconstructed (Figure  2) by 
cultivating keratinocytes on a support: (i) an acellular 
de-epidermized (aDED) matrix, (ii) inert filters, or (iii) 
a biomaterial structure forming a hydrogel or a lattice 
(Table  1). The aDED matrix was the first support uti-
lized to produce a RHE exhibiting a cornified layer on its 
surface [81, 82]. To achieve this, primary keratinocytes 
isolated from human biopsies are seeded onto an aDED 
and allowed to differentiate for 2 weeks at the air–liquid 
interface (ALI) [81, 83]. Similar reconstructed epidermis 
(RE-aDED) are also developed for mouse [84]. Prunieras’ 
discoveries opened the way for the intensive development 
of in vitro epidermis reconstructive methods. Indeed, in 
most RHE models, primary keratinocytes are isolated 
from a donor and cultured as a monolayer to be ampli-
fied. Keratinocytes are next seeded onto a matrix support 
to allow their adhesion and proliferation. This support 
is subsequently lifted to the ALI to bring keratinocytes 
in contact with air. In about 2 weeks, the differentiation 
and stratification of keratinocytes results in a multilay-
ered stratified epidermis similar to that found in  vivo 
(reviewed in [85, 86]).

The second technique to produce RHE is a protocol 
using a support, a dermal substitute (DS), consisting of 
biomaterials only (e.g., collagen, alginate, hyaluronic 
acid, fibrin, etc.) (reviewed in [87]). The chosen bio-
material is often structurally similar to natural con-
stituents of the extracellular matrix [88]. RHE-DS 
originated from the landmark study of Tinois [89], 
in which the support synthesis implies the crosslink-
ing of collagens layers (with human collagen IV on 
the top). Collagen IV, the major in  vivo component of 
the basal membrane, appeared to be a great substrate 
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for keratinocytes, favoring both cell proliferation and 
anchoring to the dermal substitute support. With this 
method, a well-organized multilayered RHE with a 
structured basement membrane is obtained. This model 
was standardized, scaled up, and produced at factory 
level, leading to EpiSkin™ product (L’Oréal), one of the 
first reconstructed skin validated for in vitro corrosivity 
testing and irritation testing of chemicals (reviewed in 
[90]). This model has taken a step forward in reducing 
animal testing for chemicals and legitimated the high 
potential of reconstructed 3D skin models.

Culturing keratinocytes onto acellular inert filter sup-
ports is another alternative to produce RHE. Polycar-
bonates filters were first tested by Rosdy et al. [91]. With 
this support, a well differentiated and multilayered skin 

RHE and reconstructed mouse epidermis RME) were 
obtained, similar histologically to real skin [91–94]. This 
method was at the origin of a skin production factory, 
supplying a novel reconstructed skin (SkinEthic™), ini-
tially for testing cosmetics and later for testing chemical 
corrosion and irritation [93].

RHE models are commonly used to evaluate cosmet-
ics or topical drug products for irritation, phototoxicity 
(response to UV-lights) [95], corrosion, or skin sensitiv-
ity (due to immune reaction) [96]. Permeation of the skin 
and efficacy of cosmetic products are also determined on 
RHE skin models [92].

Table 1  Major 3D skin models in humans and mice 

Type of models Species Specificities References

Skin explants cultivated ex vivo (from biopsies) Mouse Skin explants cultured on chick chorioallantoic membrane 
(CAM)

[22]

Reconstructed human epidermis: on an acellular de-epider-
mized dermis (aDED) support

Human Primary keratinocytes cultured onto an aDED to reconstruct 
an epidermis. The keratinocytes being differentiated 
through ALI

[81, 83]

Reconstructed mouse epidermis: on an acellular de-epider-
mized dermis (aDED) support

Mouse [84]

Reconstructed human epidermis: on plastic filter support Human Keratinocytes cultured at ALI on an inert surface (e.g. polycar-
bonate insert filter)

[91, 92]

Reconstructed mouse epidermis: on plastic filter support Mouse [94]

Reconstructed human epidermis: on a dermal substitute 
made of biomaterials

Human Seeding of keratinocytes on a dermal substitute made of 
biomaterials (collagen, hyaluronic acid, alginate…). A mul-
tilayered epidermis is obtained following the differentiation 
of keratinocytes at ALI

[89, 95]

Full thickness skin: on dermal substitute made of biomateri-
als and populated with fibroblasts

Human Seeding of keratinocytes on a living dermal substitute (colla-
gen mixed with fibroblasts). A multilayered skin equivalent 
is obtained following the differentiation of keratinocytes 
at the ALI

[99–101]

Mouse Mouse skin epidermis model. Mouse keratinocytes cultured 
at ALI on a living dermal substitute (type-I collagen with 
murine dermal fibroblasts)

[102]

Full thickness skin:
DED populated with fibroblasts

Human Keratinocytes seeded on a DED populated with fibroblasts 
and cultured at ALI

[97]

Full thickness skin: combining a DED populated with fibro-
blasts

Human Keratinocytes seeded on a DED populated with fibroblasts 
and cultured at ALI

[98]

Complex Full thickness skin: pigmented models Human Skin equivalent additionated with melanocytes [121]

Complex Full thickness skin: skins diseases related models Human Psoriasis or melanoma models [123, 127]

Immunocompetent 3D skin equivalent Human 3D skin model comprising of: dendritic cells (incl. Langer-
hans cells) or T-cells

[120, 123–125]

Full thickness skin: reconstituted from immortalized cells Human 3D skin culture techniques using immortalized keratinocytes 
and fibroblasts to produce a multilayered human skin 
equivalent

[109, 110]

Full thickness skin: reconstituted from iPSCs-derived cells Human Multilayered epidermal structure reconstituted from human 
keratinocytes and fibroblasts cells derived from iPSCs

[113]

Full thickness hair-bearing skin: organoid system Human Multilayered epidermal structure exhibiting hairs reconsti-
tuted thanks to an organoid system

[117]

3D Skin obtained by bioprinting Human Automated process used to overlay sheets of cells to obtain 
a complex skin architecture

[129]

Skin-on-chip systems Human Technology combining reconstructed skin tissues with 
microsystems

[132]
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2.3 � Full‑thickness skin (FTS) models
Going one step further, human FTS models can be pro-
duced using a living dermal equivalent populated with 
fibroblasts (Fig.  2). As such, the reconstituted 3D skin 
possesses two compartments: one dermal compart-
ment with fibroblasts and one epidermal compartment 
with keratinocytes. The living dermal substitute can be 
produced either on (i) a DED matrix [97, 98] or (ii) a 
biomaterial scaffold support, in which fibroblasts are 
incorporated. Referring to the method of Bell [99, 100], 
human and mouse FTS can be produced using a fibro-
blast-populated collagen lattice [101, 102]. The collagen 

scaffold retracts when submerged in a defined medium 
forming a solid lattice. The integrated fibroblasts are, 
in the Bell’s model, restricted to the retracted biomate-
rial [103]. The matrix contraction occurs due to physical 
forces exerted by incorporated fibroblasts [104, 105]. A 
variety of biomaterial has also been used in combination 
with fibroblasts to produce FTS [106]. These 3D scaffold 
matrices are presumed to be similar to the real dermal 
tissue at functional, structural, and mechanical levels [1, 
107]. Moreover, the proliferation of fibroblasts is, in fact, 
inhibited in the dermal equivalent due to retrocontrol 
mechanisms and to biochemical confinement [103, 108].

Figure 2  Schematic representation of main 3D skin model techniques. A To reconstruct human epidermis (RHE), keratinocytes can be seeded 
either onto an inert filter support or on a cell-free matrix/support. B To obtain human FTS with both a dermal and an epidermal equivalent, the 
matrix/support is populated with fibroblasts. In both models (A, B), the differentiation of the keratinocytes is promoted by cultivation at ALI. This 
step triggers the three-dimensional stratification of keratinocytes in multiple layers. In the most perfected models, the cornification process can be 
completed, resulting in skin or epidermis equivalents with all epidermis layers, including a well-defined cornified layer at their surface.
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FTS can be reconstructed with primary cells as 
described above, but also with immortalized cells or skin 
cells derived from stem cells (iPSC or others). Indeed, one 
major issue was to reconstitute 3D skin independently of 
skin donors and primary cells. Physiologically relevant 
FTS was obtained using human TERT-immortalized 
keratinocytes and fibroblasts (TERT-HSE) [109]. Recon-
struction of well-differentiated skin was also established 
using immortalized primary human foreskin keratino-
cytes [110]. Pioneer studies demonstrated that human 
and mouse keratinocytes obtained from embryonic stem 
cells were usable for full reconstruction of pluristratified 
epidermis [47, 48]. More recent studies have shown that 
iPSC can be differentiated into keratinocytes [111, 112], 
fibroblasts [113], or melanocytes [114]. Basal membrane 
obtained with iPSCs-derived fibroblasts were proven 
to exhibit similar characteristics to primary fibroblasts 
(review in [115, 116]). Itoh et  al. obtained for the first 
time a well differentiated full-thickness 3D skin equiva-
lents using exclusively human iPSC-derived keratino-
cytes and fibroblasts [113]. Recently, hair-bearing human 
skin was reconstructed by using human pluripotent stem 
cells only, thanks to an organoid system [117].

2.4 � Complexification of 3D skin models: toward fully 
functional skins

Current challenges are now focusing on engineering even 
more physiologically relevant skin models (reviewed 
in [118]). This complexification can be made by incor-
porating different types of skin components such as 
vasculature [119], appendages (hair follicles, glands), pig-
mentation, innervation, immune cells [120], or hypoder-
mis. Reconstructed human pigmented epidermis (RHPE) 
possessing melanocytes cells is available [121] and com-
mercialized (e.g., SkinEthic RHPE™, MelanoDerm™). 
Many other improvements have been obtained by incor-
porating other cell types. For example, fat sub-cutane-
ous hypodermis was reproduced by adding adipocytes 
[122], and reconstructed immune-competent skin was 
obtained (see Table  2) following the addition of T-cells 
[123], Langerhans cells [124, 125], or mDCs [120]. The 
development of skin disease models is also the object of 
many efforts (reviewed in [126]), like in vitro skin cancer 
models (constituted with melanoma cells and/or mel-
anocytes [127]) or psoriasis models [123]. These models 
often required optimized immuno-competent 3D skin 
due to the complex cross-talk involved between various 
immune cell types and cytokines [128].

The elaboration of the next generation of 3D skin mod-
els benefits from the development of more advanced 
technologies. For example, bioprinting is one promis-
ing solution that had emerged over the last decade. Skin 

reconstitution by bio-fabrication can be made accord-
ing to three techniques: (i) Inkjet-based, (ii) pressure-
assisted, or (iii) laser-assisted bioprinting (reviewed in 
[129]). Bioprinting is an automated approach consist-
ing in the deposition of cells and biomaterials (e.g., bio-
inked hydrogels) so as to imitate very closely the real 
skin structure [130]. This technique is highly reproduc-
ible and allows a precise positioning of the cells. In the 
past years, a broad range of biomaterials has been uti-
lized as “bio-ink” to produce full thickness skins: natural 
polymers including collagen, gelatin, alginate, and syn-
thetics polymers including polyethylene glycol and poly 
lactic-co-glycolic acid [130]. The expansion of bioprinting 
skin manufacturing has rendered possible the produc-
tion of very complex 3D skin exhibiting, for example, 
both vasculature and lymphatic capillaries [131]. The last 
improvement in these models is the development of skin-
on-chip models, a technology combining cell/tissue with 
microsystems (see review of [132]).

3 � 3D skin models for livestock, poultry 
and companion animals: current and future

There is a huge gap between 3D skin research for human 
and for veterinary purposes, both in abundance and in 
complexity. Although skin models were first conceptual-
ized in animals, animal skin models are no longer consid-
ered relevant for use in the pharmaceutical and cosmetic 
industry since the development of human 3D skin mod-
els. As a result, the number of animal 3D skin models 
available nowadays is very limited [133]. These models 
are either old models developed for human purposes 
(notably explants) or novel models developed for veteri-
nary medicine or comparative biology. Nowadays, animal 
skin model development is focusing on animal compan-
ion species known to have predispositions for skins dis-
eases, like dogs. The available 3D skin models related to 
livestock (pig, cow, sheep, rabbit), poultry (chicken), and 
companion animals (dog, horse) are listed in Table 2.

3.1 � Skin explants in animals
Skin explants were reported in rabbit, pig, cow, and dog 
as referenced in Table 2. Initial skin explants were devel-
oped in the 1940s and abandoned in favor of monolayer 
cell cultures. A resurgence of interest appeared with 
Kondo’s study using rabbit ear skin biopsy as split thick-
ness skin explant which contains an epidermis with an 
upper dermis portion. This model can be cultured stably 
up to 12  weeks in a diffusion chamber [134]. It opened 
the way to skin explants in other farm animals such as 
sheep, cow, or pig. Epidermis explant from bovine hoof 
was cultured at the ALI and remained viable in short-
term culture [135]. Interdigital skin explant from ovine 
hoof cultivated in anaerobic conditions was viable during 
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72 h [136]. Pig skin initially elicited the most interest as 
human skin model until the availability of human RHE 
and FTS [133]. Domestic pig skin was an interesting 
model due to its similarity with human skin in term of 
lipids composition and permeability [137–139] and the 
low amount of hair [140]. Pig skin biopsies were used for 
testing drug/products either (i) directly on freshly col-
lected skins or (ii) after a time of culture of the skin for 
2 weeks. Protocols using skin collected from other parts 
of the pigs’ body or shaving down the dermis so as to 
render skin thickness more representative of human skin 
(e.g. [141]) have been reported. For chicken, skin explants 
and skin culture from chick embryos have been used. 
Chicken skin explants can be cultivated at the ALI on a 
grid or an insert [142], on semi-solid agar, or grafted on 
a chorioallantoic membrane (CAM) [22]. Note that the 
grafted method on CAM is also feasible with human or 
mouse explants [22, 143] (Table 1). Chicken skin explants 
were frequently used in the past to study skin appendage 
development (for e.g. [22, 144]). Two canine skins explant 
models which could be maintained viable for 2  weeks 
were recently published [133, 145].

3.2 � Skin equivalents in animals
To date, fewer than a dozen skin equivalent 3D cultures 
have been published for domestic animals, and only for 
dog, horse, and sheep (Table 2). In these models, meth-
ods developed with human skin were adapted to veteri-
nary species. Reconstructed epidermis was obtained for 
dog and horse. For that, primary isolated keratinocytes 
were cultured onto: (i) pig acellular DED matrix [39], or 
(ii) an inert transwell matrix [41]. Well-differentiated FTS 
equivalents were also obtain with a modification of the 
Bell’s method (see above paragraph 2.3) for four species: 
ovine [43, 44], canine [38, 146], feline [40], and equine 
[42]. Of note, Watson incorporated efficiently whole 
derma papilla or cultured papilla cells into reconstructed 
ovine skin [44]. Other protocols utilized long-term pro-
genitor epidermal cells lines. Canine 3D organotypic skin 
models were obtained using canine progenitor epidermal 
keratinocytes onto an acellular collagen gel layer. Two 
studies based on this protocol produced canine epider-
mal equivalent with a well-defined cornified layer [147, 
148]. Keratinocytes derived iPSC [149] and bulge cells-
enriched keratinocytes from dog hair-follicles [150] have 
also been used in reconstructed equine and canine epi-
dermis, respectively. As of today, there are no skin equiv-
alents for birds.

3.3 � The future of 3D skin models in veterinary medicine
As mentioned above, the availability of 3D animal skin 
models for veterinary purposes (health, well-being, 

research) is very limited. With the remarkable develop-
ment of human skin equivalents, animal skin models 
are no longer models for humans, but may benefit from 
human skin model developments.

The animal 3D skin models are still important for com-
parative biology and for several skin diseases, notably 
dermatitis (e.g., Staphylococcus aureus skin infection and 
atopic dermatitis in dog). In different species, such mod-
els could be used to investigate the effects of microbiota 
on skin permeability. In the vaccinology field, they may 
become more important in the future to study transcuta-
neous delivery of antigens for vaccination, a new promis-
ing mode of vaccine administration to animals. Such skin 
models may also help develop molecule administration 
through the skin for a general effect. Several antiparasitic 
molecules are already delivered by such a way (“spot on” 
administration) with great success (e.g., Fipronil against 
fleas and ticks in cats and dogs). Lastly, these animal 
models could allow to evaluate the impact of toxic prod-
ucts for animal skin, notably for animals bred for human 
consumption and for food products containing skin 
components.

Skin 3D models were previously shown to be valuable 
models to study virus/skin interactions, notably with her-
pesviruses (e.g., Varicella Zoster Virus and Herpes Sim-
plex Virus 1) [151, 152]. Our research interests focus on 
the Marek’s disease virus, an oncogenic avian herpesvirus 
that is persistently shed into the environment by infected 
chickens, whether vaccinated or not. This virus is pro-
duced by the epidermal cells of the feather follicles wall. 
The feather follicle epithelium is the only tissue capable 
of producing tremendous amounts of infectious mature 
virions. The ultimate goal in poultry production is to stop 
virus shedding in skin danders in order to eradicate the 
disease. Compared to live animal experimentation, using 
3D chicken skin models would be useful as they allow 
various manipulations (e.g., addition of drugs, gene over-
expression, gene knock-in or knock-out) do not necessi-
tate an animal facility, and are more acceptable in term 
of ethics. Therefore, a reconstituted chicken epidermis 
or FTS model would offer a better opportunity to iden-
tify cellular and viral molecular determinants involved in 
virions shedding and to develop new strategies to coun-
teract it.

4 � Conclusion
The available protocols for 3D skin in human are ple-
thoric and still expanding. They are already used for 
many applications in cosmetology and toxicology and 
are regularly adapted to develop new in vitro models of 
skin diseases. Importantly, these models represent great 
alternatives to animal experiments for skin testing. 
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Although the number of such protocols are still lim-
ited in domestic animals, their feasibility with methods 
commonly used in humans was recently demonstrated 
in a few veterinary species. The development of such 
new models may greatly help the study of skin diseases 
as well as the examination of transcutaneous delivery of 
pharmaceutical molecules and vaccine antigens.
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