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The extracellular thioredoxin Etrx3 
is required for macrophage infection 
in Rhodococcus equi
Álvaro Mourenza1  , Cristina Collado1, Natalia Bravo‑Santano2  , José A. Gil1  , Luís M. Mateos1*   
and Michal Letek1* 

Abstract 

Rhodococcus equi is an intracellular veterinary pathogen that is becoming resistant to current antibiotherapy. Genes 
involved in preserving redox homeostasis could be promising targets for the development of novel anti-infectives. 
Here, we studied the role of an extracellular thioredoxin (Etrx3/REQ_13520) in the resistance to phagocytosis. An 
etrx3-null mutant strain was unable to survive within macrophages, whereas the complementation with the etrx3 
gene restored its intracellular survival rate. In addition, the deletion of etrx3 conferred to R. equi a high susceptibility to 
sodium hypochlorite. Our results suggest that Etrx3 is essential for the resistance of R. equi to specific oxidative agents.
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Introduction, methods, and results
Rhodococcus equi is an actinobacterial pathogen that can 
infect immunocompromised humans and foals by caus-
ing a fatal pyogranulomatous bronchopneumonia [1]. R. 
equi is distributed worldwide, being highly prevalent in 
farms because of its colonization of the horse intestine 
[2]. This pathogen is usually transmitted by inhaling R. 
equi-contaminated dust or respiratory particles produced 
by infected animals [2].

During the past few decades, a lot of effort has been 
focused on identifying and studying genes of R. equi 
that could be involved in host–pathogen interactions in 
search of new strategies to tackle the infections caused 
by these Actinobacteria. The rise of multidrug-resistant 
R. equi strains is making current antibiotherapies ineffec-
tive [3, 4]. In addition, any attempts to develop a vaccine 
against R. equi have been unsuccessful so far [5]. Because 
of this, hyperimmune plasma administration has been 

implemented as a preventative primary intervention in 
foals, despite of its high costs and variable efficacy [6].

It is becoming clear that the virulence associated pro-
teins (Vaps) of R. equi are major determinants of the 
control of intraphagolysosomal pH during cell infection 
[7]. Furthermore, different members of the pVAP mega-
plasmids family carry specific complements of vap genes, 
which are essential for the intracellular survival of R. equi 
and they are considered the main driving factor of the 
host tropism of this pathogen [8].

On the other hand, bacterial proteins involved in 
redox homeostasis have been traditionally considered 
very attractive targets for the development of novel anti-
infectives against many pathogens [9, 10]. Importantly, R. 
equi is exposed to high concentrations of reactive oxygen 
and nitrogen species (RONS) during phagocytosis, which 
may affect membrane lipids, nucleic acids, housekeep-
ing proteins and virulence factors of the pathogen [10]. 
During phagocytosis, the production of RONS is trig-
gered by the activation of NOX and iNOS proteins in the 
macrophage [11]. In response, R. equi resists the oxida-
tive stress in the phagosome with catalases, superoxide 
dismutases, alkyl hydroperoxide reductases and thiol 
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peroxidases [12]. Furthermore, R. equi is well equipped 
with protein-repairing genes encoding mycothiol and 
mycoredoxins (Mrx), which are only present in Actino-
bacteria [13]. Moreover, there are several genes in the 
genome of R. equi encoding proteins with thioredoxin 
domains. The main thioredoxin-based antioxidant sys-
tem is well conserved in bacteria and, in particular, this is 
encoded by REQ_47340-50 in R. equi [12].

However, a detailed analysis of the R. equi genome 
annotation [12] revealed the presence of four genes 
encoding putative extracellular thioredoxins (Etrx), which 
were named as Etrx1 (REQ_05180), Etrx2 (REQ_08580), 
Etrx3 (REQ_13520) and Etrx4 (REQ_37440) (Additional 
file 1). All four R. equi putative Etrx proteins were aligned 
to extracellular thioredoxins previously studied as impor-
tant virulence factors in Streptococcus pneumoniae [14–
16] and Mycobacterium tuberculosis [17] (Additional 
file 1). All Etrx proteins showed a high sequence homol-
ogy in the domains containing a thioredoxin-active site 
(WCxxC).

Furthermore, we clustered all Etrx proteins of R. equi in 
an evolutionary distance tree (Additional file 2). Etrx2 of 
R. equi was not rooted with any of the other Etrx proteins 
included in this analysis, whereas Etrx1 was clustered 
with CcsX of M. tuberculosis. Interestingly, both Etrx3 
and Etrx4 were grouped with Rv0526 of M. tuberculo-
sis, suggesting that these proteins were two orthologs of 
Rv0526. Rv0526 has been previously characterized as an 
extracellular protein anchored to the bacterial membrane 
in mycobacteria, but very little is known about its possi-
ble role in virulence [18].

In addition, all Etrx proteins were analysed with SignalP 
[19], TMHMM [20], Pfam [21] and pDomTHREADER 
[22] to determine their signal peptides, trans-membrane 
helix domains and other protein domains (Figure 1). As 
expected, the overall structure of Etrx3 and Etrx4 was 
quite similar to that from Rv0526 of M. tuberculosis 
(Figure 1).

Therefore, we analysed the genome regions carrying 
etrx3 and etrx4 of R. equi and M. tuberculosis or the non-
pathogenic Rhodococcus erythropolis using the Artemis 

Figure 1  Protein domains of different extracellular thioredoxins. The protein sequences of extracellular thioredoxins from R. equi, S. 
pneumoniae and M. tuberculosis were analysed with SignalP 5.0, TMHMM server, Pfam and pDomTHREADER.
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Comparison Tool [23] (Additional file 3). The gene clus-
ter carrying etrx4 in R. equi was inverted but very well 
conserved in both M. tuberculosis and R. erythropolis 
(Additional file  3A). In addition, etrx3 is an ortholog of 
Rv0526 of M. tuberculosis (Additional file 3B). However, 
the synteny of the region carrying etrx3 was very poorly 
conserved in all three genomes analysed (Additional 
file  3C). In addition, this region was not acquired by 
horizontal  gene transfer according to a previous analy-
sis of the R. equi 103S+ genome [12]. This suggested that 
etrx3 might have been acquired by a duplication of etrx4 
in R. equi, and the new copy of the gene was created in 
a region made of recurrent genomic rearrangements. 
Overall, our in silico analysis indicated that Etrx3 might 
be an extracellular thioredoxin that is unique to R. equi. 
Therefore, we generated an etrx3-null mutant strain to 
study its role in the control of the redox homeostasis of R. 
equi during phagocytosis.

To generate an unmarked in-frame deletion of etrx3 
(REQ_13520) in R. equi 103S+ (Additional file  4), we 
amplified by PCR two 1.5 kbp DNA fragments corre-
sponding to the upstream and downstream sequences 
of the gene (Additional file  5). The resulting amplicons 
were used as the DNA template of a fusion-PCR reac-
tion to generate a 3 kbp DNA cassette harbouring an in-
frame deletion of etrx3, which was cloned into pSelAct 
(Additional file  4) as previously  described for the dele-
tion of other genes in R. equi [10]. The resulting vector 
(pSelActΔetrx3—Additional file  4) was electroporated 
into R. equi 103S+ and its integration was verified by 
PCR in several apramycin resistant transformants result-
ing from the electroporation. The deletion of the etrx3 
gene in R. equi Δetrx3 was achieved by means of a sec-
ond recombination event, making use of 5-fluorocyto-
sine counterselection, as previously described [10]. The 
in-frame deletion of the gene was confirmed by PCR 
amplification.

To complement the etrx3-null mutant with a single 
copy of etrx3, the gene was amplified under the control 
of its own promoter and cloned in the integrative plasmid 
pSET152, as described previously for the complementa-
tion of other gene deletions in R. equi [10]. The resulting 
vector (pSETetrx3—Additional file  4) was used to elec-
troporate R. equi Δetrx3, transformants were selected 
by apramycin-resistance, and the integration of the vec-
tor in R. equi Δetrx3 + pSETetrx3 was confirmed by PCR 
(Additional file  5). All vectors produced in this study 
were verified by DNA sequencing.

Optical density at 600 nm (OD600) was used to establish 
the growth curves in trypticase soy broth (TSB) of the 
mutant strains produced in this study in order to discard 
any polar effects on their replication rate that could pos-
sibly result from genetic engineering. When compared to 

the wild type strain, the replication rate of both R. equi 
Δetrx3 and R. equi Δetrx3 + pSETetrx3 was unaltered, 
which facilitated the analysis of their intracellular pro-
liferation rate during infection assays (Additional file 6). 
Statistical analyses were conducted using IBM® SPSS® 
statistics v24. One-way ANOVA and post hoc Tukey’s 
multiple-comparison tests were routinely employed to 
identify statistically significant differences across condi-
tions in this study.

Macrophage infection assays were performed as previ-
ously  described [12] using low-passage J774A.1 murine 
macrophages (American Type Culture Collection) cul-
tured in Dulbecco’s Modified Eagle Medium (DMEM—
Thermo-Fisher Scientific). Macrophages were infected at 
a multiplicity of infection of 10 with exponentially grow-
ing cultures (OD600 ≈ 1) of R. equi in TSB. The presence 
of the virulence plasmid pVAPA was verified by PCR in 
all R. equi strains tested preceding each infection assay, 
as previously described [10]. After 1 h of incubation, the 
medium was replaced with DMEM supplemented with 
5 µg/mL vancomycin to kill extracellular bacteria, as pre-
viously described [24]. At different time points, cells were 
lysed with 0.1% Triton X-100 and serial dilutions of the 
lysates were spread onto trypticase soy agar (TSA) plates 
for colony forming unit (CFU) counting.

We infected J774A.1 cells with R. equi Δetrx3 and R. 
equi Δetrx3 +  pSET-etrx3. In parallel, we also infected 
macrophages with the R. equi 103S+ wild type strain and 
the virulence plasmid cured derivative R. equi 103S−, 
which were respectively considered positive and nega-
tive controls of macrophage infection (Figure  2). Inter-
estingly, the internalization rate of the etrx3-null mutant 
strain was significantly higher when compared to the 
wild type strain (Figure 2A). Despite of this, the R. equi 
Δetrx3 strain was unable to persist in the intracellu-
lar environment. In contrast, the internalization and 
intracellular survival of the R. equi Δetrx3 + pSET-etrx3 
complemented strain was comparable to R. equi 103S+ 
(Figure 2). Overall, these results suggest that Etrx3 has an 
essential role in R. equi’s macrophage infection.

To cast some light on the role of Etrx3 during phago-
cytosis, we analysed the resistance of the R. equi 
Δetrx3 mutant strain to different oxidative stressors as 
previously described [10]. Exponential growth phase 
cultures (OD600 = 1) were diluted 1:10 in plain TSB 
or in TSB supplemented with 10  mM H2O2, 5  mM 
NaClO, or minimum medium supplemented with free 
methionine sulfoxide (MetSO−) at different concentra-
tions, and incubated at 30  °C and 220  rpm. At differ-
ent time points, each culture was serially diluted and 
spread on TSA plates, which were incubated for 24  h 
at 30  °C. The number of CFUs was then quantified 
and results were normalized to the survival rate of R. 
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equi 103S+. In contrast, to determine the susceptibil-
ity to DETA NONOate (a nitric oxide donor), R. equi 
exponential growth phase cultures (OD600 = 1) were 
1:10 diluted in 10  mL of liquefied TSA (0.6% agar) at 
50 °C and spread over 10 mL of settled TSA. Nitrocel-
lulose disks were then placed on the surface of R. equi-
containing TSA plates. Finally, DETA NONOate was 
added to paper disks at defined concentrations and 
plates were incubated at 30 °C for 24 h.

Our results showed that R. equi Δetrx3 was signifi-
cantly more susceptible to sodium hypochlorite than 
the wild type strain or the R. equi Δetrx3 + pSET-
etrx3 complemented strain (Figure  3). In contrast, R. 
equi’s resistance to nitric oxide or free methionine 
sulfoxide (MetSO−) was not altered in the etrx3-null 
mutant (Additional files 7 and 8), and its resistance to 
H2O2 was even increased (Additional file  9). Impor-
tantly, sodium hypochlorite is considered a source of 
hypochlorous acid, which is produced by a myeloper-
oxidase expressed in professional phagocytes such as 
macrophages [25, 26]. Therefore, the low survival rate 
of R. equi Δetrx3 within murine macrophages might be 
due to its high susceptibility to sodium hypochlorite.

To verify this, we also analysed the ratiometric 
response of Mrx1-roGFP2 in this context, a reengi-
neered redox biosensor that allows to evaluate changes 
in mycothiol levels in response to an oxidative stressor 
[10]. The redox status of Mrx1-roGFP2 was measured 

as described before by means of confocal micros-
copy [10]. Interestingly, the deletion of etrx3 in R. 
equi delays the oxidation of Mrx1-roGFP2 caused by 
NaClO (Figure  4). Overall, our results suggest that 
Etrx3 has a role in counteracting the redox stress 
exerted by NaClO.

Figure 2  Macrophage infection assays. Percentages of internalization (A) and intracellular survival at 48 h (B) in J774A.1 macrophages of the 
wild type R. equi 103S+ strain, the virulence plasmid cured R. equi 103S− strain, R. equi Δetrx3, and R. equi Δetrx3 + pSET-etrx3 (Δetrx3 + etrx3). Bacterial 
viability was calculated by quantifying the number of colony forming units (CFUs) of each strain and by normalizing these data against R. equi 103S+ 
CFUs. Data are expressed as mean ± SD of three technical replicates repeated in three independent experiments. One-way ANOVA and post hoc 
Tukey’s multiple comparison tests were performed to assess for statistical significance in relation to the wild type strain. **p-value < 0.01.

Figure 3  Resistance of different R. equi strains to 5 mM NaClO. 
Data were normalized by the percentage of R. equi 103S+ CFUs and 
are expressed as mean ± SD of three technical replicates repeated 
in three independent experiments. One-way ANOVA and post hoc 
Tukey’s multiple comparison tests were performed to assess for 
statistical significance across conditions. *p-value < 0.05.
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Discussion
During phagocytosis, R. equi is exposed to RONS gen-
erated by host myeloperoxidases, nitric oxide synthases 
and NADPH oxidases [11]. The control of the patho-
gen’s extracellular redox homeostasis could be essential 
to maintain the reduced state and activity of its secreted 
virulence factors. Otherwise, the reactive oxygen and 
nitrogen species generated by the macrophage may inac-
tivate essential pathogen’s proteins by oxidation of their 
cysteine or methionine amino acids.

In Actinobacteria, the thioredoxin/thioredoxin reduc-
tase (Trx/TrxR) system act together with the mycore-
doxins/mycothiol (Mrx/MSH) system to maintain the 
reduced state of proteins [13]. The mycoredoxins/myco-
thiol system restores the reduced state of cysteine resi-
dues [13]. The methionine oxidized residues could be 
reduced by methionine sulfoxide reductases (Msr), which 
are in turn reduced by a transfer of electrons from the 
active CxxC site of thioredoxins to the Msr disulphides. 
Finally, the oxidized thioredoxins are reduced by an 
NADPH-dependent thioredoxin reductase.

There is an increasing evidence demonstrating the 
essential role of thioredoxins in the virulence of many 
bacterial pathogens. In Listeria monocytogenes, TrxA 
maintains the reduced status of the master regulator of 
virulence PrfA and the key regulator of flagellar synthe-
sis MogR [27]. TrxA is also essential for the intracellular 
induction of Salmonella pathogenicity island 2 (SPI2) 
type III secretion system (T3SS) and, consequently, for 
the intracellular replication of Salmonella enterica  sero-
var Typhimurium [28].

In addition, several extracellular thioredoxins have 
been recently described with essential roles in the viru-
lence of M. tuberculosis, S. pneumoniae or Agrobacterium 
tumefaciens [14–17, 29]. In S. pneumoniae, it is becom-
ing clear that the functional paralogues Etrx1 and Etrx2 
and the methionine sulfoxide reductase MsrAB2 are part 
of an extracellular electron pathway. This is required to 
maintain the redox state of methionine residues pre-
sent in surface-exposed proteins that are essential for 
the pathogen’s survival to phagocytosis [14, 15]. How-
ever, extracellular thioredoxins may have other functions 
in the cell. For instance, the extracellular thioredoxin 
CcsX of M. tuberculosis is involved in the maturation 
of cytochrome c oxidase. In all cases, these extracellu-
lar redoxins are probably coupled to electron transport 
chains in the pathogen’s cytoplasmic membrane, which 
act as the source of their reducing power.

Similarly, here we describe the importance of the extra-
cellular thioredoxin Etrx3 on the intracellular survival of 
R. equi, an actinobacterial pathogen causing infections 
that are becoming very difficult to treat due to antibac-
terial resistance. Overall, our data suggest that Etrx3 is 
essential for the survival of R. equi to phagocytosis, and 
that this extracellular thioredoxin is required to preserve 
the redox homeostasis of R. equi when the pathogen is 
exposed to NaClO.

However, the high resistance of R. equi Δetrx3 to H2O2 
suggests that the deletion of etrx3 leads to a compensa-
tory effect that may implicate the overexpression of other 
proteins involved in redox homeostasis. Similarly, a ccsX-
null mutant of M. tuberculosis exhibited high resistance 
to H2O2 due to the overexpression of the cytochrome 
bd oxidase [17]. In addition, a double etrx1/etrx2-null 
mutant of S. pneumoniae was found to be more resist-
ant than the wild type strain to the superoxide-generating 
compound paraquat [15]. Further studies are necessary 
to understand the role of Etrx3 in this context. Nonethe-
less, the high resistance to H2O2 of R. equi Δetrx3 had 
no impact on macrophage infection, since the etrx3-null 
mutant strain was still unable to survive phagocytosis 
(Figure 2).

On the other hand, the deletion of etrx3 did not alter 
R. equi’s resistance to the oxidative stress induced by 
free methionine sulfoxide (Additional file  8). This is in 
stark contrast to the susceptibility of Etrx1 and Etrx2-
null mutants of S. pneumoniae to MetSO− [15], suggest-
ing that the role of Etrx3 is not related to the reduction 
of Msr proteins in R. equi (encoded by REQ_01570 and 
REQ_20650).

Further research is required to elucidate the precise 
function of Etrx3. However, the essential role of this 
extracellular thioredoxin during macrophage infec-
tion makes the etrx3-null mutant strain an attractive 

Figure 4  Ratiometric response of Mrx1-roGFP2 biosensor 
expressed in R. equi 103S+ and R. equi Δetrx3, which were 
cultured in TSB supplemented with 1 mM NaClO. Data 
represent mean ± SD of three technical replicates repeated in three 
independent experiments.
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candidate for the development of an attenuated vaccine. 
The Δetrx3 deletion strain might be able to elicit a strong 
immune response against R. equi since it was unable to 
survive phagocytosis despite of carrying a functional 
pVAPA virulence plasmid, which is required to generate 
both cell-mediated and humoral immune responses [5].
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