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consequences
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Abstract 

For the global pig industry, classical (CSF) and African swine fever (ASF) outbreaks are a constantly feared threat. 
Except for Sardinia, ASF was eradicated in Europe in the late 1990s, which led to a research focus on CSF because this 
disease continued to be present. However, ASF remerged in eastern Europe in 2007 and the interest in the disease, 
its control and epidemiology increased tremendously. The similar names and the same susceptible species suggest 
a similarity of the two viral diseases, a related biological behaviour and, correspondingly, similar epidemiological 
features. However, there are several essential differences between both diseases, which need to be considered for the 
design of control or preventive measures. In the present review, we aimed to collate differences and similarities of the 
two diseases that impact epidemiology and thus the necessary control actions. Our objective was to discuss criti-
cally, if and to which extent the current knowledge can be transferred from one disease to the other and where new 
findings should lead to a critical review of measures relating to the prevention, control and surveillance of ASF and 
CSF. Another intention was to identify research gaps, which need to be closed to increase the chances of a successful 
eradication of ASF and therefore for a decrease of the economic threat for pig holdings and the international trade.
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1  Introduction
Similar names suggest similar disease characteristics for 
African and classical swine fever (ASF and CSF). In fact, 
ASF was even thought to be caused by the same virus as 
CSF [1] before Montgomery [2] described it as an inde-
pendent disease entity in Kenya. Yet, despite the similar 
clinical signs and some shared pathogenic characteris-
tics, the two diseases are caused by completely different 
viruses [1, 3, 4].

Nonetheless, both diseases are frequently mentioned 
at the same time or compared to each other, especially 
when it comes to epidemiology and disease control. They 
are both listed by the World Organization for Animal 
Health (OIE). Diseases found on this list are of consider-
able international interest and subject to specific regula-
tions [5]. ASF as well as CSF are viral diseases affecting 
pigs (Suidae) exclusively. In the case of an outbreak, both 
diseases may generally entail substantial economic con-
sequences for the affected country or region, particularly 
in western European countries with a considerable pig 
industry [6–10].

Up to very recently, most central and eastern Euro-
pean countries had mainly experience with CSF, and 
in many cases, control strategies for ASF were copied 
from CSF-contingency plans of the past. However, the 
recent developments of the ASF epidemics in the Bal-
tic EU Member States and in Poland showed that the 
disease dynamics did not follow the expected pattern 
and several open questions remain [11, 12]. The dis-
ease neither died out nor spreads with high speed as 
predicted [13]. So far, the affected countries encounter 
new cases every week and the situation is out of con-
trol in the wild boar population. In this review, our 
focus was put on similarities and differences of the 
two viral diseases and the subsequent epidemiologi-
cal consequences. Due to the particular difficulties to 
control the diseases in the wild boar population and 
the constant threat, the presence of the virus in wild 
boar poses to domestic pig holdings, we focused on 

the epidemiology in wild boar. By including the lat-
est available scientific findings, this review may help 
to improve our understanding of the epidemiology 
of CSF and ASF and thus to optimize prevention and 
control measures. Furthermore, existing uncertain-
ties were identified and thereby new research can be 
inspired.

2 � Virus
2.1 � ASF
2.1.1 � Virus taxonomy and morphology
The ASF virus (ASFV) is a large enveloped double-
stranded deoxyribonucleic acid (DNA) virus and the only 
DNA arbovirus (arthropod borne) known so far. The 
virus belongs to the Asfarviridae family; genus Asfivirus 
[14]. The genome consists of a linear double-stranded 
DNA molecule of 170–190  kbp with terminal inverted 
repetitions and hairpin loops [15]. The viral genome 
codes for more than 50 structural proteins and several 
non-structural proteins. ASFV molecular polymorphism 
has been investigated by partial sequencing of the gene 
encoding the major capsid protein p72, and 22 distinct 
genotypes were defined [16]. Recently, an additional 
genotype was described by Gallardo et  al. [17]. Addi-
tional sequence information is gathered through partial 
sequencing of the B602L gene (CVR) or the gene encod-
ing p54. The virus strains involved in the current eastern 
European outbreaks belong to genotype II and are highly 
identical. They show so far only very minor differences. 
The virus strains circulating on Sardinia are of geno-
type I and also showed only minor variability, even after 
decades. In the study of Frączyk et  al. [18], they identi-
fied genetic variability within genes related to evasion of 
host immune system. According to Frączyk et al. [18] this 
could help tracing the direction of ASFV isolates molecu-
lar evolution. However, studies, identifying further new 
genetic markers are clearly needed that allow higher 
resolution molecular epidemiology and thus outbreak 
tracing.

Table 1  Characteristics of the four manifestations of an infection with the African swine fever virus

Peracute form Acute form Subacute form Chronic form

Virulence High High/moderate Moderate Low

Clinical signs High fever, appetite loss,  
lethargy, hyperpnoe

High fever, appetite loss,  
lethargy, gastro-intestinal signs

See acute form but less 
pronounced

Respiratory signs, lameness

Pathology Erythema Erythema, petechial haemorrhages 
in several organs, lung oedema, 
abortion

Erythema, petechial haem-
orrhages in several organs, 
haemorrhagic lymph 
nodes, abortion

Arthritis, necrotic skin, pneu-
monia, pericarditis, abortion

Mortality High High Variable Low

Partly adapted from Sanchez-Vizcaino et al. [20]
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2.1.2 � Clinical signs and pathology
The occurrence and the manifestation of clinical signs 
depend on different factors. Decisive factors can for 
example be the virulence of the virus strain, the infection 
route and dose and the constitution of the affected ani-
mal. The incubation period is described to be 2–7  days 
[19]. According to Sanchez-Vizcaino et al. [20] it can be 
5–15 days. Peracute, acute, subacute and chronic form of 
disease can be distinguished [20]. The ASFV strains caus-
ing the outbreaks in eastern Europe are highly virulent 
and the clinical courses are usually acute and lethal [17, 
21]. Experimentally infected wild boar showed also a very 
high mortality, independently of sex or age [21, 22]. This 
does not preclude very unspecific courses that can almost 
go unnoticed. Some characteristics of the different dis-
ease forms are outlined in Table 1.

As described in Table 1, mortality may vary according 
to the virulence of the ASF virus. Infections with high 
virulent virus strains usually lead to 90–100% mortality.

2.1.3 � Immune response and vaccination
Pigs recovering from ASFV infection are usually pro-
tected against homologues challenge, but cross-protection 
against heterologous strains is often missing. Generally, 
the existence of an antibody-mediated protection, i.e. virus 
neutralization, is controversially discussed. It is possible to 
confer a certain level of protection by passive transfer of 
hyperimmune sera [23]. However, several authors suggest 
the complete absence of neutralizing antibodies [24], oth-
ers found that antibodies could reduce virus titers or neu-
tralize ASF virus to a certain extent in vitro [25–27].

It has been reported that animals surviving ASF can 
become long-term carriers [28, 29]. This may have a tre-
mendous impact in wild boar populations. So far, it is not 
clear how many of the survivors may act as carriers and 
how long they remain infectious. Evidence exists indicat-
ing that at least not all animals become long-term carri-
ers [30].

While the role of antibodies is controversially dis-
cussed, cytotoxic T-cell responses seem to play a major 
role in mediating antiviral protection. It was demon-
strated that depletion of CD8+ cells leads to abrogation 
of protection [31].

Safe and efficacious vaccines against ASF do so far not 
exist, although several approaches have been pursued 
to develop immunization protocols [32]. Thus, a control 
strategy in both domestic pigs and wild boar has to rely 
on veterinary hygiene.

2.2 � CSF
2.2.1 � Virus taxonomy and morphology
The agent causing CSF is a small, positive single-
stranded, enveloped RNA virus. The CSF virus (CSFV) 

belongs to the genus Pestivirus within the Flaviviri-
dae family [33]. The genome consists of approximately 
12.3 kb and includes one large open reading frame (ORF) 
flanked by two non-translated regions (NTRs) [34–36]. 
The viral genome codes for eleven viral proteins, four 
structural and seven non-structural (NS) proteins. In 
detail, the core (C) protein along with three envelope gly-
coproteins (E1, E2, and Erns) constitutes the virion, and 
Npro, p7, NS2-3, NS4A, NS4B, NS5A, and NS5B are NS 
proteins [37, 38].

CSFV strains can be assigned to three distinct geno-
types with three to four subtypes [39–41]. This classifica-
tion is based on the nucleotide sequences of fragments of 
the 5′-non-translated region (5′-NTR), and of the region 
encoding the glycoprotein E2 [39, 42]. Different subtypes 
show a particular geographical distribution and genetic 
typing is used to understand both gross and molecu-
lar epidemiology [39, 43, 44]. Recent European strains 
belong to genotype 2, especially subtypes 2.1 and 2.3. 
Most often, these virus strains are moderately virulent.

2.2.2 � Clinical signs and pathology
Also for CSF, the course of disease depends on several 
factors like viral virulence, virus dose, health status and 
particularly the age of the affected animal. Three differ-
ent courses of infection are known, namely the acute, 
chronic and prenatal form. The latter can lead to the so 
called “late onset” form [7, 45]. The incubation period is 
in the range of 4–10 days. The acute form of CSF mani-
fests often in fever, respiratory and gastro-intestinal 
signs, lethargy, and inappetence. The acute lethal form 
can be accompanied by severe hemorrhagic or neurologi-
cal signs. Mortality in piglets can be very high, whereas 
older animals can withstand an infection and develop a 
life-long immunity [46].

The chronic form is caused by viruses with a lower 
virulence and usually effects unspecific symptoms like 
runting, secondary infections of both respiratory and 
gastro-intestinal tract, skin lesions, and, in the case of 
sows, reduced fertility. Sometimes, animals can show an 
initial recovery, however after several months all animals 
succumb to infection and die. During the whole time 
of infection, the affected animals shed large amounts of 
virus [46, 47]. This course can play an important role in 
the maintenance of virus transmission.

The outcome of transplacental infection depends on 
the stage of gestation. In early pregnancy, CSFV infec-
tion usually causes abortion, still birth, mummification 
or malformation [47]. However, infections in the 2nd and 
3rd  month of pregnancy may lead to the development 
of persistently infected piglets. These piglets are immu-
notolerant towards the causative virus strain and may be 
born healthy. However, they usually runt and develop the 
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so-called late onset form of CSF. Also, these animals con-
stantly shed virus until they eventually die [45, 47, 48].

Regarding the pathology of acute forms, lymph nodes, 
spleen and kidneys as well as other organs may be edem-
atous and hemorrhagic. Moreover, spleen infarctions and 
necrotic regions in the tonsils are sometimes found. In 
animals dying due to the chronic form of CSF, the typical 
hemorrhages are usually missing, while necrotic lesions 
in the gastrointestinal tract are more common [47]. Sec-
ondary infections may dominate the pathological lesions. 
The same is true for the late-onset form [49].

2.2.3 � Immune response and vaccination
Protection against CSFV upon vaccination or an over-
come infection is mediated by both humoral and cel-
lular immune responses. Animals that have recovered 
from field virus infection and animals vaccinated with a 
conventional live-attenuated vaccine develop antibod-
ies against the structural proteins E2 and Erns as well 
as the non-structural protein NS3 [50–52]. Especially 
the E2 antibodies are able to neutralize CSFV and anti-
body titers can be determined using cell culture-based 
neutralization assays [53]. Measurable titers are usually 
found between days 14 and 21 post infection and persist 
probably lifelong. Moreover, antibodies are transferred 
by immune sows to their offspring via colostrum. These 
antibodies have a half-life of roughly 12–14 days and are 
able to passively protect suckling piglets for a couple of 
weeks [54]. Beside humoral responses, cell-mediated 
immunity plays an important role in early protection 
upon vaccination and in beneficial immune responses 
upon field virus infection.

Safe and efficacious vaccines exist for both intramuscu-
lar vaccination of domestic pigs and oral vaccination of 
wild boar [55]. The latter have proven that they can be 
an important tool for CSF eradication from affected wild 
boar populations [56].

3 � Epidemiology
3.1 � ASF
3.1.1 � Transmission and contagiosity
Three main transmission cycles are described for ASF 
[57]. A distinction is made between the sylvatic cycle, 
the tick-pig cycle, and the domestic cycle. The sylvatic 
cycle refers to the circulation between the African wild 
suid population and soft ticks. This cycle can be seen in 
African countries where ASF and ticks of the genus Orni-
thodoros are endemic. The tick-pig cycle is present in 
Africa and played a role on the Iberian Peninsula, where 
ticks infested pig pens and shelters. In the domestic cycle, 
direct or indirect transmission occurs between domestic 
pigs. The same applies to transmission among wild boar 
in the sylvatic cycle in eastern Europe [57, 58]. Direct 

contact between infected and susceptible animals is a 
very effective transmission route, but still depending on 
the virulence of the virus [28, 59]. Indirect transmission 
is described through people, vehicles etc. [60]. Although 
officially banned in most European countries, feeding 
contaminated meat products or fodder to wild boar or 
domestic pigs is assumed to play a considerable role in 
the transmission of ASF [61]. The introduction of the 
ASF virus from Africa to Portugal in 1957 as well as the 
introduction into Georgia in 2007 happened most likely 
through swill feeding of waste from ships at international 
harbors [62]. ASF virus could be found in boar semen, 
therefore a transmission through sexual contact or artifi-
cial insemination cannot be ruled out [63]. According to 
Penrith and Vosloo [64] there is no evidence for intrau-
terine transmission. This is in line with our own unpub-
lished observations.

Ferreira et  al. [65] detected viral DNA in air samples 
and showed a significant association between the detec-
tion of virus in feces and in air samples. However, due to 
the high virus load needed, airborne transmission is not 
thought to be a major transmission route for ASFV.

Infected animals excrete virus through body fluids like 
blood, nasal fluid and through feces and urine. How-
ever, the amount of virus differs in different fluids. Sev-
eral studies demonstrated a considerable virus burden 
in the blood of infected animals, while it was consider-
ably lower in nasal or rectal fluids [22, 58, 66]. Accord-
ingly, contact to infectious blood appears to be the most 
effective transmission route for ASF [19]. Also, Depner 
et al. [13] hypothesized that due to the necessary direct 
contact, the contagiosity of ASF is lower than previously 
assumed. Results of experimental and field studies sup-
port this hypothesis [22, 67]. Following infection stud-
ies, the oral infectious dose can vary between 10 000 and 
18 000 TCID50 (50% tissue culture infective dose) [68].

Virus transmission can be described by the basic repro-
ductive number (R0), which defines the number of sec-
ondary infected animals that result from one infected 
animal. Existing data about the R0 value for different 
ASF virus strains varies considerably in different studies, 
ranking from 0.5 to 18.0. However, independently of the 
virus strain, R0 was generally lower when transmission 
happened only through indirect contact [22, 58, 59].

3.1.2 � Vectors and carriers
In addition to domestic pigs, wild suids play an important 
role in the transmission pathways of ASF. In Africa, espe-
cially warthogs and bush pigs are known as an asymp-
tomatic reservoir for ASFV [60]. Transmission between 
warthogs has not been described so far: the presence of 
soft ticks is therefore believed to be necessary for the 
spread of the disease [69]. The epidemiological role of 
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other African wild suids such as giant forest hogs in the 
distribution of ASF has not been conclusively evaluated 
[57]. Many studies demonstrated that the European wild 
boar is as susceptible to ASF as domestic pigs and can 
thus act as reservoir under European conditions [69].

As described further above, ASFV is an arbovirus that 
can replicate in soft ticks. In areas, where ticks of the 
Ornithodoros genus are endemic, they can play an impor-
tant role in the transmission of the ASFV [57, 58]. There 
is no indication that birds or rodents from infected farms 
contracted ASF [58]. These findings could be confirmed 
by Penrith and Vosloo [64]. Mellor et al. [70] could exper-
imentally transmit ASFV from Stomoxys flies to pigs. For 
central Europe, there is no evidence that soft ticks could 
play a role [71]. There is no evidence that Ornithodoros 
spp. occur in this region. Moreover, hard ticks do not 
seem to play a role either [72].

3.1.3 � Tenacity
It is known that the survival time of the virus can be up 
to 18  months in serum at room temperature. However, 
the survival time decreases with increasing temperature 
and can be longer in frozen material. The virus is stable 
across a wide range of pH-levels; it can resist a pH level 
between 4 and 13 [73]. Several studies demonstrated 
that ASFV can stay infective in raw ham or sausage but 
also in treated meat products for several months. How-
ever, it was also shown, that cooking meat kills the virus 
within few minutes, whereas it can stay infectious at least 
1000 days in frozen meat [74–76].

3.2 � CSF
3.2.1 � Transmission and contagiosity
Virus can be excreted through feces and all body fluids 
like saliva and urine. Infected animals may excrete large 
amounts of virus over a relatively long period [77]. Infec-
tion usually happens oro-nasally often through direct 
but potentially also through indirect contact [7, 78, 79]. 
The infectious dose through oro-nasal infection ranges 
between 10 TCID50 and 80 TCID50 [65]. Different indi-
rect transmission routes are described. Indirect contact 
to wild boar, for example through contact to contami-
nated hunting material or vehicles could be identified 
as an important source for virus introduction into com-
mercial pig holdings [80, 81]. Also, indirect transmission 
through infected feed or garbage (illegal swill feeding) 
has been suggested as a common source for virus intro-
duction into a naïve population [7, 80]. Movements of 
persons entail the risk of transmission through contami-
nated clothes, vehicles or repeatedly used needles [82–
84]. Indirect transmission via excretions are described to 
be rather unlikely [85].

The CSFV is able to cross the placental barrier and con-
sequently to infect fetuses in the uterus [45, 86]. Virus 
transmission through boar semen has also been reported 
[87–89]. Transmission via air was suspected in farms 
where secondary outbreaks without any detectable direct 
or indirect contact to the originally affected farm have 
occurred [82]. Potential virus transmission via air could 
be documented under experimental conditions [15, 90, 
91]. Weesendorp et  al. [92] and Weesendorp et  al. [93] 
detected CSF virus in a pen where infected pigs had been 
housed. However, Weesendorp et  al. [91] showed that 
the transmission rate was significantly higher among pigs 
housed in the same pen then between pigs housed in dif-
ferent pens or via air, which emphasizes the importance 
of the transmission routes mentioned above.

The R0 value for CSF virus depends on the number of 
susceptible animals, on the population density and also 
on the virulence of the CSF virus [7, 45, 94]. Several stud-
ies determined a high R0 values for within-herd transmis-
sion, indicating a high contagiosity when direct contact 
between the animals is possible [86, 95, 96]. However, 
Weesendorp et  al. [94] showed that direct transmission 
is highly dependent on the virulence of the virus strain. 
They found that pigs that had direct contact with animals 
infected with a low virulent strain did not get infected.

Besides the direct relationship between population 
density and the R0, a reduced number of highly suscep-
tible young pigs decreases the chance of disease persis-
tence in a population [7, 97–99]. Stegeman et  al. [100] 
found that the transmission of CSF virus among breeding 
pigs was clearly lower with a R0 of 2.9 than in herds of 
weaned piglets and slaughter pigs.

3.2.2 � Vectors and carriers
Although the role of various animal species as potential 
vectors for CSF has been intensively studied, transmis-
sion seems to occur mainly if not exclusively between 
pigs. Neither arthropods nor rodents or birds could be 
reliably identified as vectors for the virus [82, 101, 102]. 
Wild boar constitute an important carrier of CSFV and 
therefore pose a constant risk to introduce the virus into 
pig farms [7, 80]. Everett et al. [103] showed in their study 
that warthogs as well as bushpigs can be infected with 
CSF virus and can also transmit the disease.

3.2.3 � Tenacity
Similar to ASFV, the tenacity of CSFV in the environ-
ment depends on a number of factors. Several stud-
ies could demonstrate a relationship between ambient 
temperature and the tenacity of the virus [77, 104–107]. 
Accordingly, the period of time, the virus remains infec-
tious, decreases with increasing temperature. In the study 
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of Weesendorp et  al. [104] it was calculated that virus 
would remain infectious for a few days in feces and urine 
at 22 °C. However, at 5 °C infectious virus would remain 
detectable for several weeks. Botner and Belsham [108] 
could show that the tenacity of CSF virus in slurry was 
short when it was heated, but the virus remained infec-
tious for weeks at cool temperatures.

Farez and Morley [107] describe in their study a tenac-
ity of years in meat frozen at −70  °C. They also listed 
time periods, for which the virus stayed infectious in dif-
ferent meat products, illustrating that these periods may 
range from 40  days to several years, depending on the 
treatment. Treatments like salt-cures and smoking do 
not seem to reduce the infectivity of CSF virus signifi-
cantly, whereas pasteurization and cooking inactivates 
the virus [105]. Also, the protein concentration in the 
matrix influences the tenacity of the virus. The higher 
the protein concentration, the longer stays the CSF virus 
infectious [77]. Another factor affecting the stability of 
the virus is the pH-value [105–107, 109]. It was found 
that virus is inactivated below a pH-level of 4 and above 
pH 11 [109].

4 � History and today’s distribution
4.1 � ASF
The first time, when ASF was identified as an independ-
ent disease entity, was in Kenya in 1910 [2]. After its 
first detection, ASF was found to circulate in several 
African states until it was introduced into Portugal in 
1957. After successful eradication in Portugal, the dis-
ease was reintroduced in 1960 and spread to several 
European countries. Before it was finally eradicated in 
1995, ASF stayed endemic on the Iberian Peninsula [6, 
61, 64]. Since the virus was newly introduced into Sar-
dinia in 1978, ASF has remained endemic in several 
parts of Sardinia [110]. The disease did not only reach 
Europe, but also different countries in South and Cen-
tral America, from where it was successfully eradicated. 
For many years, ASF could be found endemic only in 
African states and Sardinia [61]. However, in 2007 ASF 
was again detected in Europe, namely in Georgia, from 
where it spread into the neighbor states Armenia, Azer-
baijan and the Russian Federation [62, 111]. In 2012 
and 2013, also the Ukraine and Belarus reported an 
ASF outbreak [20]. In 2014, ASF reached the European 
Union, where outbreaks were confirmed in Lithuania, 
Latvia, Estonia and Poland [11, 12, 20, 112]. Currently, 
the virus is still circulating in all four countries with 
frequent new outbreaks, mainly in wild boar, but occa-
sionally also in domestic pigs (Figure  1). In addition, 
ASF cases were detected in Moldova for the first time in 
October 2016 [113].

4.2 � CSF
The first official reports about the occurrence of 
CSF virus originate from Ohio, USA, where the dis-
ease was first described in 1833. Between 1860 and 
1970 the CSF was widely distributed over the Ameri-
can and the European continents [105]. In 1978, CSF 
was eradicated in North America [109]. Since then, 
North America and Australia are officially free from 
CSF [114]. Mainly due to inadequate reporting and 
lack of surveillance, the disease situation in Africa 
remains unclear. However, it is known, that CSF has 
been endemic in parts of Asia as well as in areas of 
Central and South America since several years [114]. 
After devastating outbreaks in the Netherlands and in 
Germany in the late 1990s and sporadic outbreaks that 
occurred thereafter, the last outbreaks in Europe were 
reported in domestic pigs from Latvia in 2014. In wild 
boar, however, the disease was at least present until 
2016 in the latter country [115].

5 � Prevention and control measures
5.1 � ASF
Currently, no vaccination for ASF is available. To pre-
vent the introduction of ASF, movement restrictions 
regarding pigs, pork, blood and other products from 
pigs kept in affected areas as well as potentially con-
taminated material, vehicles etc. are in place. Follow-
ing European Commission [116], necessary biosecurity 
measures are defined, e.g. swill feeding, in commercial 
pig farms as well as in wild boars, must be prohibited, 
especially in high risk areas. Direct or indirect contact 
to wild boar or to any by products has to be avoided. 
The measures that have to be taken in a case of ASF 
suspicion or an actual outbreak in the European Union 
have been specified by European Commission [117]. 
When an outbreak of ASF in a farm has been confirmed, 
all pigs of the premise must be culled. In addition, fur-
ther measures like the safe disposal of all potentially 
contaminated material, restriction (minimum radius 
of 3  km) and surveillance (minimum radius of 10  km) 
zones with movement restrictions for pigs and products 
of porcine origin have to be set up. Specific regulations 
have been defined for both zones in European Commis-
sion [117].

5.2 � CSF
The prevention and control measures regarding CSF in 
domestic pigs are very similar to the ones described for 
ASF. Detailed regulations applying for member states 
of European Commission [118]. However, in the case 
of specific epidemiological situations, vaccination can 
be used to control CSF in domestic pigs. Vaccination of 
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Figure 1  Current distribution of African swine fever cases in domestic pigs and wild boar in the affected countries of the European 
Union. (Source: ADNS Data, Status 21.2.2017).

wild boar can be also be applied and may represent the 
method of choice in combination with other elements of 
surveillance and control [118].

6 � Conclusions
Following the introduction of ASF into the Trans-Cau-
casian countries and the Russian Federation in 2007 
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and into the European Union in 2014, several countries 
including Germany sought to set up and update their 
surveillance and control plans (contingency plans) for the 
disease.

Especially the countries with previous CSF experience 
tried to use their CSF contingency plans as a blue print 
and copied most of the measures that had been found 
suitable to control CSF.

For the control measures of ASF in wild boar popula-
tions, this approach does not seem to be promising as the 
disease dynamics proved to be too different for the two 
diseases: Neither self-limitation, which was assumed to 
occur due to the high virulence of the virus strain circu-
lating in Eastern Europe nor fast spread due to high con-
tagiosity and connected habitats took place [13]. Thus, 
reconsideration of control and surveillance options is 
needed.

In this review, we tried to point out major similarities 
and differences of CSF and ASF with the overall objec-
tive to provide background information on disease biol-
ogy and dynamics that could feed into adapted strategies. 
Some of the most important similarities/differences are 
summarized in Table 2.

The similarities mainly concern the range of vertebrate 
hosts as well as clinical signs and pathomorphologi-
cal lesions that necessitate swift and reliable diagnostic 
tools. Both diseases are usually accompanied by a steep 
increase in mortality when introduced into a naïve popu-
lation. This gives passive surveillance high impact for the 
early detection of disease introduction into both domes-
tic pigs and wild boar [119]. With regard to the detection 
and differentiation of the diseases, molecular tools have 
been developed and validated that allow both steps in 
one assay (e.g. [120, 121]). Moreover, both routine sample 
sets and alternative sample matrices work for both dis-
eases with quite similar performance [122].

Another similarity is the quite high tenacity of the 
causative agents, especially under cold conditions [74, 76, 
105]. Both viruses, ASFV and CSFV, are able to remain 
infectious for several weeks under adequate climatic con-
ditions (cold environment). Elevated temperatures inac-
tivate both viruses rather quickly. Moreover, both are 
stable within a wide range of pH-values [73, 109].

Apart from these basic features, which could at least 
lead to combined passive surveillance approaches in dis-
ease free areas that are at risk, several differences exist 
between ASF and CSF that take effect especially when 
wild boar populations are concerned.

6.1 � Epidemiologically relevant facts concerning CSF
Recent European CSFV strains have shown moder-
ate virulence and an age-dependence of clinical symp-
toms. This is important for the target population of 

active surveillance but also disease dynamics as it can 
be assumed that older animals will survive [119]. Survi-
vors will be safe as they are protected probably livelong 
from reinfection. Immune sows will confer protection 
to young piglets via maternally derived antibodies in the 
colostrum.

In outbreak regions with moderate to high wild boar 
density, the seroprevalence often rises very quickly and 
antibody detection is a most valuable tool to characterize 
the outbreak extent.

Long-term shedders will most probably be present 
(chronically infected animals and persistently infected 
piglets after transplacental transmission), but meet 
increasing population immunity. Shedding is generally 
high in all se- and excretions and thus, swift spread is 
likely within a sounder.

Also, CSF has shown potential to become endemic in 
wild boar populations rather than dying out. This is prob-
ably due to the high wild boar density in affected areas 
in Europe in combination with the above mentioned low/
moderate virulence. For this virus, this virulence level 
could be an optimum for long-term maintenance [123]. 
However, vaccination exists as an additional tool to eradi-
cate CSF from a wild boar population and most probable, 
even production and application of a DIVA (differentia-
tion of infected from vaccinated animals) vaccine is fea-
sible [58].

6.2 � Epidemiologically relevant facts concerning ASF
Recent European ASFV strains have shown high viru-
lence [124], almost no age-dependence of clinical symp-
toms and a high case-fatality ratio [19]. The fate of 
survivors is still not clear as these animals could act as 
long-term carriers. In fact, survivors will at least be posi-
tive for prolonged periods [28, 125]. In the later stages of 
their infection, mobility can be assumed and thus possi-
ble increase in infectious contacts. However, there is also 
evidence that this is not inevitable [30].

In outbreak regions, the seroprevalence is rising stead-
ily but slowly. It often stays below 10%, even in heav-
ily affected areas. Thus, serology is an important tool to 
understand and investigate disease dynamics but a dif-
ficult target for active surveillance (sample sizes that 
could detect seropositivity with a sufficiently low preva-
lence threshold and acceptable confidence can hardly be 
obtained).

Shedding is generally low in most se- and excretions 
and thus, blood contact is the main source of infection. 
Even within groups of animals that have close contact, 
transmission might be slow and some animals may even 
go uninfected within a highly affected sounder. Yet, due 
to the high tenacity of the virus in blood, infectiousness 
can be assumed for long periods and thus, carcasses and 
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blood contaminated fomites can act as long-term source 
of infection. Transplacental transmission has not been 
described for ASF [64].

Little is known about the role of maggots or other 
insect larvae, the fate of carcasses under different condi-
tions, and environmental factors such as so soil under-
neath a carcass. It could recently be demonstrated that 
several of these matrices are positive for ASFV genome, 
but live virus is probably rare or non-existent.

Although not involved in the current situation in East-
ern Europe, soft ticks can play a role in ASF transmission. 
This may add another player and more complexity to the 
control scenario. It has been proven that tick involvement 
can have high impact on outbreak duration.

No vaccine exists that could aid control options. Devel-
oping a vaccine for the wild boar population would mean 
to develop a safe and efficacious oral vaccine. So far, there 
is no such vaccine at the horizon.

Thus, besides the shared common features, the differ-
ences between ASF and CSF clearly dominate and entail 
more serious epidemiological consequences. With regard 
to surveillance actions, the focus for CSF on piglets is 
clearly counterproductive for the current ASF situation. 
For ASF, herd immunity does not play an important role 
for a long period of time and thus time does not act nec-
essarily as beneficial factor. CSF and ASF have different 
levels of contagiosity and thus transmission characteris-
tics, for example, the R0 for ASF is lower than for CSF. 
However, there is a relatively low number of studies, in 
which these values were estimated. Moreover, different 
algorithms, virus strains, diagnostic tools and host char-
acteristics were used, which makes those studies hardly 
comparable. Nonetheless, experimental as well as field 
studies refute previous assumptions of a high contagios-
ity of ASF. Based on the low contagiosity but high tenac-
ity of the virus in carcasses and blood, ASF surveillance 
has to focus even more on detecting dead individuals 
to avoid any direct contact and therefore further spread 
[126].

Regarding ASF, further studies should focus on ASF 
transmission in the field and on environmental fac-
tors, like soil and organisms around wild boar car-
casses. Moreover, the role of survivors needs further 
investigation.

One of the research gaps concerning CSF relates to the 
final licensing of the available DIVA vaccine. The use of 
such a vaccine would help to better understand the bal-
ance between vaccine induced and natural immunity and 
thus dynamics of epidemics and their control.

To close these gaps and to deduce appropriate control 
options, collaboration is needed among research institu-
tion of affected and non-affected countries.
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