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Vaccination with recombinant 
adenovirus expressing peste des petits 
ruminants virus‑F or ‑H proteins elicits T cell 
responses to epitopes that arises during PPRV 
infection
José Manuel Rojas, Miguel Avia, Elena Pascual, Noemí Sevilla and Verónica Martín* 

Abstract 

Peste des petits ruminants virus (PPRV) causes an economically important disease that limits productivity in small 
domestic ruminants and often affects the livestock of the poorest populations in developing countries. Animals that 
survive PPRV develop strong cellular and humoral responses, which are probably necessary for protection. Vaccination 
should thus aim at mimicking these natural responses. Immunization strategies against this morbillivirus using recom-
binant adenoviruses expressing PPRV-F or -H proteins can protect PPRV-challenged animals and permit differentia-
tion of infected from vaccinated animals. Little is known of the T cell repertoire these recombinant vaccines induce. 
In the present work, we identified several CD4+ and CD8+ T cell epitopes in sheep infected with PPRV. We also show 
that recombinant adenovirus vaccination induced T cell responses to the same epitopes, and led to memory T cell 
differentiation. T cells primed by these recombinant adenovirus vaccines expanded after PPRV challenge and prob-
ably contributed to protection. These data validate the use of recombinant adenovirus expressing PPRV genes as DIVA 
strategies to control this highly contagious disease.
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Introduction
Peste des petits ruminants virus (PPRV) causes an eco-
nomically important disease that limits productivity in 
small domestic ruminants [1, 2]. Infection of naïve popu-
lations can be devastating, particularly in goats, leading 
to mortality rates of up to 90% [3–5]. PPRV is endemic 
in Central and East Africa, the Arabian Peninsula, Tur-
key, and India. Its prevalence in developing countries and 
its host spectrum often implies that the poorest popu-
lations within these countries are affected [6]. PPRV is 
highly contagious and in acute infections produces severe 
pyrexia, nasal and ocular discharges, pneumonia, enteri-
tis and diarrhea [4, 5].

PPRV is a morbillivirus that belongs to the Paramyxo-
viridae family [7]. This genus of single-stranded negative 
sense enveloped RNA viruses causes relevant diseases 
(like measles or canine distemper) in human and ani-
mals. PPRV single-strand RNA genome encodes 6 struc-
tural and 2 non-structural proteins [1]. PPRV infection 
is immunosuppressive, which can lead to opportunistic 
pathogen infections that contribute to the high mortality 
and morbidity rates of infected animals [4, 8].

Current vaccines are based on live attenuated viruses 
that control the disease but cannot differentiate infected 
from vaccinated animals (the so-called DIVA approach) 
[9]. Traditional live attenuated vaccine can also produce 
immunosuppression, albeit to a lower extent than natural 
infections [10]. These drawbacks highlight the need for 
alternative vaccination strategies against this disease.
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Most immunologically relevant determinants for pro-
tection in morbillivirus have been mapped to the sur-
face fusion protein (F) and hemagglutinin (H) as well as 
to the nucleoprotein (NP) [11–15]. Recombinant vectors 
expressing these subunits thus represent attractive strate-
gies for vaccination [16–22]. DIVA vaccines with recom-
binant adenovirus expressing the F or H protein can be 
protective in small ruminants [23–25], and potentially 
facilitate PPRV infection status monitoring.

Animals that survive PPRV infection develop a strong 
cellular and humoral response [11, 23, 26], which is 
probably essential for virus clearance and protection. In 
infection with the morbillivirus prototype measles virus 
(MeV), cellular and humoral immunity contribute to 
protection. Humoral immunity can protect against MeV 
re-infection, whereas cellular immunity controls virus 
clearance and dissemination [27–30]. Moreover, induc-
tion of neutralizing antibodies alone was also insuffi-
cient to protect cattle against rinderpest virus challenge, 
a virus closely related to PPRV [31]. It thus appears that 
protective natural immunity to morbilliviruses requires 
both humoral and cellular components of the adap-
tive immune system. Recombinant adenovirus vaccines 
should therefore aim at replicating the naturally occur-
ring PPRV immunity. The immune responses that these 
vaccines elicit to the transgene are nonetheless not fully 
characterized. For instance determining whether the T 
cell repertoire they elicit is comparable to that of animals 
that recover from the disease could be indicative of vac-
cine efficacy.

In the present work, we set out to characterize T cell 
epitopes in mice and sheep from the main PPRV immu-
nological determinants. We then assessed whether the 
responses to these immunogenic T cell epitopes over-
lapped in PPRV-infected and in recombinant adenovi-
rus-vaccinated sheep. Finally, we measured the T cell 
functionality induced by these vaccines after heterolo-
gous PPRV challenge.

Materials and methods
Cells
Vero Dog-SLAM (VDS) and RMA/s cell lines were kindly 
provided by Dr Parida (IAH, Pirbright, UK) and Dr 
McArdle (The Nottingham Trent University, UK) respec-
tively. HEK-293 (ATCC CRL-1573), VDS and RMA/s cell 
lines were maintained as described in [16, 32].

PPRV and replication‑defective recombinant adenovirus 5 
(Ad5) vaccines
PPRV vaccine strain Nigeria 1975/1 (PPRV Nig’75; line-
age II) and PPRV infective strain Ivory Coast 1989 (PPRV 
IC’89; lineage I) were kindly provided by Dr Batten (IAH, 
Pirbright, UK). PPRV stocks were grown in VDS cells, 

purified as described in [16], and inactivated as described 
in [33]. Replication-defective recombinant adenovirus 
5 construction expressing the F (Ad5-F) or H (Ad5-H) 
gene from PPRV Nig’75 vaccine strain is described [16]. 
Recombinant adenovirus stocks were grown in HEK-293 
cells and purified as described [23].

PPRV peptide prediction and binding assays
Peptide binding to H-2b haplotype from PPRV Nig’75-F 
(GenBank #CAJ01699.1), -H (GenBank #CAJ01700.1) 
and -NP (GenBank #CAA52454.1) proteins was pre-
dicted using three algorithms available on the web [34–
37]. Peptide F10 was selected as a PPRV-F homologue 
to a cross-reactive morbillivirus T cell epitope [38, 39]. 
Peptides were synthesized by AltaBioscience (UK) and 
H-2Db and H-2Kb binding assessed by flow cytometry 
using RMA/s cells and normalized to the lymphocytic 
choriomeningitic virus (LCMV) peptide gp (33–41) 
(KAVYNFATC) as described [32].

Animal experimentation
Six week old female C57BL/6 mice (H-2b) were pur-
chased from Harlan. Two-month old naïve female “Col-
menareña” breed sheep were purchased from a certified 
provider. Experiments were performed in a disease-
secure isolation facility (BSL3) at the Centro de Investi-
gación en Sanidad Animal (CISA), in strict accordance 
with the recommendations of the Code for Methods and 
Welfare Considerations in Behavioural Research with 
Animals (Directive 86/609EC; RD1201/2005). Experi-
ments were approved by the Committee on the Ethics 
of Animal Experiments (CEEA) of the Spanish Instituto 
Nacional de Investigación y Tecnología Agraría y Ali-
mentaria (INIA) and the “Comisión de ética estatal de 
bienestar animal”. A 2-week acclimatization period prior 
to experimentation was observed during which animals 
were monitored daily for general health status.

PPRV infection in mice and splenocyte preparation
Eight week-old C57BL/6 female were inoculated intra-
peritoneally with 1  ×  105 plaque forming units (PFU) 
PPRV IC’89 three times at 2  week interval. Mice were 
sacrificed 3  days after the last inoculation and spleno-
cytes prepared and cultured as described [32].

Sheep infection, peripheral blood mononuclear cell 
(PBMC) isolation and in vitro peptide restimulation
Sheep were randomly divided in 4 groups of 4 animals. 
PPRV IC’89 infection and recombinant adenovirus vac-
cination were performed as described in [23]. Control 
groups received two inoculations at 21  day interval of 
PBS or replication-defective recombinant empty Ad5 
vaccine (Ad5-empty). Vaccinated groups received two 
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Table 1  PPRV-F, -H and -NP peptide prediction and binding assays to H-2Db and H-2 Kb molecules

PPRV protein 
(position)

Sequence Predicted 
allele binding

Score 
SYFPEITHI

Score 
ProPred-I

Score NetMHC 
(predicted 
affinity nM)

Binding 
assay scorea

F1 F(53–61) KLMPNITAI Db 23 138.312 365.28 ++
F2 F(135–143) QSLMNSQAI Db 25 3281.040 34.37 ++
F3 F(369–377) GTTSNRFIL Db 19 286.272 3413.74 +
F4 F(342–350) NALYPMSPL Db 16 30.240 1927.14 −

Kb 18 0.330 791.56 +++
F5 F(435–443) SVYLHKIDL Kb 11 0.100 68.79 +
F6 F(278–286) IAYPTLSEI Db 18 4.234 3403.64 +

Kb 9 1.650 168.59 +
F7 F(7–21) LVFLFLFPNTVTCQI I-Ab NA NA 79.2 NA

F8 F(117–131) VALGVATAAQITAGV I-Ab NA NA 192.1 NA

F9 F(341–355) QNALYPMSPLLQECF I-Ab NA NA 351.5 NA

F10 F(284–298) LSEIKGVIVHKIEAI Homologue to morbillivi-
rus epitope [38, 39]

NA NA 5014.3 (I-Ab) NA

H1 H(270–278) FHMTNYLTV Db 21 17.280 43.88 +++
H2 H(158–166) AAVKSVEHI Db 21 50.168 593.13 +++
H3 H(547–555) RSSSYFYPV Kb 18 1.100 70.29 ++
H4 H(549–557) SSYFYPVRL Kb 18 5.500 8.75 +++
H5 H(551–559) YFYPVRLNF Db 7 0.000 42 098.88 +

Kb 7 0.120 1250.29 −
H6 H(44–52) VMFLSLIGL Db 15 14.334 6563.96 ++

Kb 11 2.000 44.36 +++
H7 H(426–434) VITSVFGPL Kb 21 12.000 96.10 +++
H8 H(441–455) MDLYNNPFSRAAWLA I-Ab NA NA 42.2 NA

H9 H(427–441) ITSVFGPLIPHLSGM I-Ab NA NA 74.8 NA

H10 H(448–462) FSRAAWLAVPPYEQS I-Ab NA NA 319.6 NA

NP1 NP(29–37) RGIKNVIIV Db 19 38.880 265.97 +++
NP2 NP(72–80) VMISMLSLF Db 18 36.318 3827.32 −

Kb 11 0.030 97.12 +++
NP3 NP(294–302) STIESLMNL Db 18 12.773 7155.04 −

Kb 12 1.320 117.94 ++
NP4 NP(335–343) YAMGVGVEL Db 16 30.240 6163.56 +
NP5 NP(354–362) RSYFDPAYF Db 11 0.091 4399.92 −

Kb 8 0.158 1703.38 −
NP6 NP(228–236) SLRRFMVSL Kb 12 0.264 184.41 ++
NP7 NP(298–306) SLMNLYQQL Kb 22 26.400 85.56 +
NP8 NP(435–449) REEVKAAIPNGSEGR I-Ab NA NA 95.2 NA

NP9 NP(327–341) GAYPLLWSYAMGVGV I-Ab NA NA 290.8 NA

NP10 NP(176–190) ILLAKAVTAPDTAAD I-Ab NA NA 355.6 NA

NA: not available, +++ strong binder (ratio > 0.9), ++ moderate binder (0.7 < ratio < 0.9), + weak binder (0.5 < ratio < 0.7), − no binder (ratio < 0.5).
a  Peptide score was ranked relative to LCMV gp33-41 peptide binding (ratio PPRV peptide MFI vs gp 33–41 MFI) [32].

immunizations at 21  day interval with Ad5-F or Ad5-H 
replication-defective recombinant vaccines [16]. All 
sheep were challenged intravenously with 1 ×  106 PFU 
heterologous virulent PPRV IC’89 strain on day 42. 
Clinical details of vaccination results are reported in 
[23]. PBMC were prepared [33] and stored frozen until 
use. For in vitro peptide expansion, PBMC were thawed, 

rested for 2  h, stimulated with 10  µg/mL peptide for 
6–7 days, washed and then used in functional assays.

ELISPOT and proliferation assays
Murine splenocytes or ovine PBMC (2  ×  105) were 
plated with 10  µg/mL peptide overnight. As posi-
tive control, cells were activated with 0.5  µg/mL 
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concanavalin-A (Con-A) or 20  ng/mL phorbol myri-
styl  acetate (PMA)  +  1  µg/mL ionomycin. PPRV 
responses were measured with inactivated virus. Murine 
IFN-γ ELISPOT assays were performed according to the 
manufacturer’s protocol (Diaclone, France). Ovine IFN-γ 
ELISPOT assays are described in [33]. ELISPOT assays 
were considered valid when control well spot counts 
were below 25; and positive counts were > 10 and at least 
2 standard deviations above background [23, 32, 40]. Pro-
liferation assays were performed as described [33].

Intracellular cytokine staining and flow cytometry
Ovine PBMC were stimulated overnight with 10  µg/
mL PPRV peptide and brefeldin-A (5  µg/mL) added to 
the culture for the last 4  h incubation. As positive con-
trol, cells were stimulated with inactivated PPRV IC’89 
or 20  ng/mL PMA  +  1  µg/mL ionomycin. Cells were 
stained with anti-ovine CD45RO (ILA116A; KingFisher 
Biotech), anti-ovine CD4 (44.38; Biorad) and anti-ovine 
CD8 (38.65; Biorad), fixed in 4% paraformaldehyde, 
permeabilized with 0.2% saponin and stained with anti-
bovine IFN-γ (CC302; Biorad). Appropriate isotype and 
fluorescence minus one-channel controls were used in 
these experiments for gate setting. Gating strategies are 
detailed in Additional file  1. FACScalibur was used for 
data acquisition and FlowJo software (Tree Star Inc.) for 
flow cytometry analysis.

Flow cytometry cytotoxicity assays
For cytotoxicity assays, in vitro peptide-stimulated ovine 
PBMC were used as effector cells and autologous LPS-
blast cells (differentiated with 2  µg/mL LPS and 7  µg/
mL dextran sulfate [32, 41]) were used as target cells. 
LPS-blast cells were labelled with PKH67 green fluo-
rescent linker [42], and pulsed with relevant peptide or 

inactivated PPRV IC’89. Effector cells (E) and targets 
cells (T) were incubated for 4  h at 37  °C in 96 U-bot-
tom well plates at different ratios (E:T). Cells were then 
transferred to FACS tubes; dead cells labelled with pro-
pidium iodide (PI) (2  µg/mL); and samples immediately 
analyzed by flow cytometry. Gating strategy is given in 
Additional file 1. Target cells were gated on bright FL1+ 
cells. Positive maximum cell death controls (target cells 
in PBS + 0.2% saponin) and spontaneous cell death con-
trols were used in all experiments. The percentage of spe-
cific target cell lysis was calculated following the formula: 
% specific lysis = 100 × (% PI+ target − % spontaneous 
death)/(% maximum death − % spontaneous death).

Results
Identification of PPRV T cell epitopes in sheep
After characterizing PPPRV-F, -H and -NP binders to 
MHC class I molecules (Table 1) as well as their immu-
nogenic potential in C57BL/6 mice (Additional file 2), the 
immunogenicity of these putative PPRV T cell epitopes 
was also explored in sheep. Peptide-specific IFN-γ pro-
duction was measured in PBMC obtained 17–21  days 
after PPRV (IC’89) infection. Since previous work estab-
lished that unvaccinated and Ad5-empty vaccinated 
sheep were naïve towards PPRV [23], sheep PBMC from 
both groups were used in these assays. As predicted, T 
cell responses to PPRV peptides depended on individual 
sheep as these animals are outbred. No differences in 
response frequency to peptides were observed between 
unvaccinated and Ad5-empty-vaccinated sheep and 
thus data are presented as one group. ELISPOT assays 
showed that peptides F3, F8, F9, F10, H4, H6, H9, H10, 
NP7, NP8 and NP9 induced significant IFN-γ production 
in at least 2 sheep (Figure 1). Since these peptides could 
contain epitopes that elicit T cell responses in several 

Figure 1  PPRV epitope screening in infected sheep. Sheep PBMC obtained 17–21 days post-PPRV (IC’89) infection were stimulated with pre-
dicted F, H or NP peptides and specific IFN-γ production assessed in ELISPOT assays. Data were normalized to spots detected in unstimulated cells. 
The dotted horizontal line represents the positive stimulation threshold (positive counts > 10 and at least 2 standard deviations above background; 
control well spot counts < 25).
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sheep, we focused our efforts on characterizing them fur-
ther by intracellular IFN-γ staining (Figure  2). Peptides 
F8, F9, F10, H9, NP8 and NP9 induced IFN-γ production 
in CD4+ and CD8+ T cells. Peptides F3 and H6 induced 
specific IFN-γ production in CD4+ T cells, and peptides 
H4 and H10 induced IFN-γ production in CD8+ T cells. 
Peptide NP7 was not assessed in these assays due to lim-
ited PBMC availability. We also evaluated the cytotoxic 
T lymphocyte (CTL) response of CD8+ T cell epitopes 
against peptide-pulsed autologous target cells (Figure 3). 
Peptides F10, H4, H9, H10, NP8 and NP9 produced 
CTL responses (Figures  3A  and B). Peptides F8 and F9 
were also tested in these assays but no CTL activity was 
detected in the tested sheep (n =  2) (Table 2). F10, H4, 
H9, H10, NP8 and NP9 peptide-responding CTL could 
lyse target cells pulsed with inactivated PPRV IC’89 (Fig-
ure  3C). This indicates that these peptides are naturally 
processed and presented by target cells during PPRV 
infection.    

Our data thus show in sheep that peptides F3, F8, F9, 
F10, H6, H9, NP8 and NP9 contain CD4+ T cell PPRV 
epitopes and peptides F8, F9, F10, H4, H9, H10, NP8 and 
NP9 contain CD8+ T cell epitopes. Moreover, peptides 
F10, H4, H9, H10, NP8 and NP9 contain CTL epitopes. 
Based on the response frequency (Table 2), peptides F8, 
F9, F10, H9, H10, NP8 and NP9 are shared by several ani-
mals and could represent interesting targets for inclusion 
in PPRV vaccines.

Recombinant Ad5 vaccination primes T cell responses 
to PPRV epitopes that arise during infection
Since several T cell epitopes in PPRV-infected sheep were 
characterized, we wanted to determine whether vaccina-
tion with recombinant adenovirus expressing PPRV-F or 
-H proteins from the Nig’75 vaccine strain would trigger 
T cell responses to the F and H epitopes defined in animals 
infected with a heterologous strain (IC’89). In these exper-
iments, we used PBMC from Ad5-F or Ad5-H immunized 
sheep obtained 21  days after booster vaccination and 
prior to PPRV challenge. PBMC from Ad5-F or Ad5-H-
immunized sheep produced IFN-γ in response to peptides 
F3, F8, F9, F10 and H4, H6, H9 and H10 (Figures 4A and 
B), respectively. Vaccination therefore stimulated T cell 
responses towards F and H epitopes that coincide with 
some of those raised during PPRV infections. As observed 
in infected animals, peptides F3, F8, F9, F10, H6 and H9 
induced CD4+ T cell IFN-γ production (Figures 4C and D) 
while peptides F8, F9, F10, H4, H9 and H10 induced CD8+ 
T cell IFN-γ production (Figures 4E and F) in recombinant 
Ad5-vaccinated animals. Thus Ad5-F or Ad5-H vaccina-
tion in sheep induced CD4+ and CD8+ T cell responses 
that are directed to several epitopes presented also during 
the course of a natural PPRV IC’89 infection.

Figure 2  IFN-γ CD4+ and CD8+ T cell responses to PPRV pep-
tides. Sheep PBMC obtained 17–21 days post-PPRV (IC’89) infection 
were expanded in vitro with peptide for 1 week and IFN-γ production 
was assessed by flow cytometry using intracellular staining. Repre-
sentative dot-plots from 2 to 5 sheep are presented.
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Table 2  Responses to F, H and NP peptides in PPRV IC’89-
infected sheep

Due to limited PBMC numbers it was not possible to use all three techniques 
described on all sheep PBMC.

n: number of animal tested, ND: not done.

Peptide ELISPOT (posi‑
tive/total sheep)

Intracellular 
IFN-γ staining

Cytotoxicity assay

F3 2/8 CD4+ (n = 2) ND

F7 1/8 ND ND

F8 5/8 CD4+/CD8+ 
(n = 4)

Not detected 
(n = 2)

F9 3/8 CD4+/CD8+ 
(n = 3)

Not detected 
(n = 2)

F10 7/8 CD4+/CD8+ 
(n = 5)

Positive (n = 2)

H4 2/8 CD8+ (n = 2) Positive (n = 1)

H6 2/8 CD4+ (n = 2) ND

H7 1/8 ND ND

H8 1/8 ND ND

H9 3/8 CD4+/CD8+ 
(n = 2)

Positive (n = 1)

H10 3/8 CD8+ (n = 2) Positive (n = 1)

NP1 1/8 ND ND

NP3 1/8 ND ND

NP7 2/8 ND ND

NP8 3/8 CD4+/CD8+ 
(n = 2)

Positive (n = 1)

NP9 3/8 CD4+/CD8+ 
(n = 2)

Positive (n = 2)

NP10 1/8 ND ND

Figure 3  Cytotoxic T lymphocyte responses to PPRV epitopes. 
In vitro peptide-stimulated PBMC obtained 17–21 days post-infection 
from PPRV (IC’89)-infected sheep were used as effector cells (E) in 
cytotoxicity assays. Autologous LPS-blast cells were used as target 
cells (T) and labeled with PKH67 cell linker dye. Cell cytotoxicity was 
measured by propidium iodide staining at different effector cells (E) 
to target cells (T) ratios (E:T). Gating on bright PKH67+ and propidium 
iodide+ events by flow cytometry was used to calculate the percent-
age of target cell lysis. A Specific lysis (mean ± SD) to F10, H4, H9, 
H10, NP8 and NP9 peptides in PPRV IC’89 infected sheep. Student’s 
t test (peptide vs no peptide); *p < 0.05. B Representative dot-plots 
showing dead target cells gating. C Specific lysis (mean ± SD) of 
unpulsed, peptide-, or PPRV IC’89-pulsed autologous target cells. One 
way ANOVA with Dunnett’s post-test (peptide or PPRV IC’89 vs no 
peptide); *p < 0.05.

Recombinant Ad5 vaccines produce memory T cells 
that expand after PPRV challenge
We next evaluated whether Ad5-F or Ad5-H vacci-
nation produced memory T cells by measuring the 
expression of the memory marker CD45RO [43, 44] on 
IFN-γ-producing cells that responded to PPRV immuno-
genic peptides. Anti-PPRV CD4+ (Figure 5A) and CD8+ 
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(Figure  5B) IFN-γ-producing T cells predominantly 
expressed the memory marker CD45RO, which indi-
cated that these cells are antigen-experienced. Ad5-F and 
Ad5-H vaccination therefore led to anti-PPRV memory T 
cell differentiation.

To evaluate anti-PPRV memory T cell function, we 
measured the amplitude of the T cell responses by ELIS-
POT assays in Ad5-F- or Ad5-H-vaccinated sheep prior 
to PPRV challenge (21  days after booster vaccination) 
and 15  days after challenge. PPRV (IC’89) challenge 
increased T cell responses to the virus and to several F 
(Figure  5C) and H (Figure  5D) immunogenic peptides. 
These data confirm that Ad5-F and Ad5-H can induce a 
productive memory T cell response that can be reacti-
vated after PPRV challenge.

Discussion
Recombinant adenovirus vector vaccines are highly 
immunogenic and induce innate and adaptive immunity. 
Adenoviruses are recognized through pattern recognition 
receptors in transduced cells [45–48] thus producing adju-
vancy towards the transgene [49]. Adenoviruses induce 
B, CD4+ T, CD8+ T cell responses to the adenovirus [50–
54] and to the inserted transgene [16, 17, 22–24, 55–57]. 
Recombinant Ad5 immunization therefore represents a 
promising tool for recombinant vaccine development.

Recombinant adenovirus expressing the protein F or 
H from the economically important morbillivirus PPRV 
are immunogenic [16, 17, 22], and can protect sheep 
and goats from virulent virus challenge [23–25]. These 
recombinant adenovirus vaccines can also overcome 
PPRV-induced immunosuppression [23], an aspect of 
PPRV infection that can result in infected animals suc-
cumbing to opportunistic infections. Adenoviral vec-
tors are known to induce strong T cell responses to 
the transgene. However, the extent to which this T cell 
response mimics the protective repertoire induced by 
the pathogen is not fully understood. In the present work 
we detect a clear overlap between the CD4+ and CD8+ 
T cell responses triggered after recombinant Ad5 vacci-
nation and PPRV experimental infections. Responses to 
the tested PPRV-F and -H epitopes elicited during PPRV 
infections were also induced by Ad5 vaccination.

CD8+ T cell responses to transgene expressed by 
adenovirus depend on dose and route of injection; with 
high antigen dose leading to CD8+ T cell activation 
but impaired memory development [55]. This impaired 
memory differentiation in CD8+ T cells after high dose 
adenoviral vaccine inoculations could be due to anti-
gen persistence that exhausts CD8+ T cells, in a similar 
manner to that observed in LCMV chronic infections 
[58, 59]. An inverse correlation between vector dose and 
T cell response to the transgene has been observed in 

Figure 4  Ad5-F and Ad5-H vaccination activates T cell responses to 
epitopes induced in PPRV infections. The IFN-γ production to A F and 
B H epitopes was assessed in Ad5-F- and Ad5-H-vaccinated sheep, respec-
tively by ELISPOT assays. The PBMC used in this experiment were from Ad5-F 
or Ad5-H immunized sheep obtained 21 days after booster vaccination and 
prior to PPRV challenge. Data are presented as mean IFN-γ spots normal-
ized to control for each sheep. Inactivated PPRV IC’89 was used as positive 
control. The dotted horizontal line represents the positive stimulation 
threshold (positive counts > 10 and at least 2 standard deviations above 
background; control well spot counts < 25). C–F Intracellular IFN-γ staining 
and flow cytometry analysis used to identify T cell subsets responding to F 
and H epitopes in PBMC expanded with peptide for 1 week. Representative 
dot-plots of CD4+ T cell responses to C F epitopes and control (no peptide) 
in Ad5-F-vaccinated sheep and D H epitopes and control (no peptide) in 
Ad5-H-vaccinated sheep. Representative dot-plots of CD8+ T cell responses 
to E F epitopes and control (no peptide) in Ad5-F-vaccinated sheep and F H 
epitopes and control (no peptide) in Ad5-H-vaccinated sheep.



Page 8 of 11Rojas et al. Vet Res  (2017) 48:79 

adenoviral vaccinations [60]. Repeated adenovirus vac-
cine administrations at moderate doses however do not 
affect CD8+ T cell memory development [61]. In the 
present work, sheep were immunized twice with 108 
PFU of Ad5-F or Ad5-H vaccines, a low dose compared 
to murine T cell exhaustion studies that often used more 
than 109 PFU. This vaccine dose in sheep permitted 
CTL generation and memory differentiation of CD8+ T 
cells specific for PPRV-F and -H epitopes. Since CD8+ 
T cells limit the dissemination of the morbillivirus pro-
totype MeV [27–30], the activation of these memory 
anti-PPRV CD8+ T cells could have thus contributed 
to sheep protection against virulent virus challenge 
[23]. Another study found that a single inoculation at 
similar concentrations of recombinant adenovirus vac-
cine expressing PPRV-F or -H could protect goats when 
challenged 12 weeks post-immunization with infectious 

PPRV [25]. This implies that even a moderate single dose 
of Ad5-F or Ad5-H is likely to induce memory T cell 
differentiation.

Recombinant adenovirus vaccines can also be manip-
ulated to alter epitope hierarchy and favor the CD8+ T 
cell response to subdominant epitopes [62]. This strategy 
could be used in sheep to broaden the T cell repertoire 
in viral infections that narrowly focus the T cell response 
[63, 64]. Importantly, adenovirus vaccines can also pro-
duce inflationary CD8+ T cell memory to some epitopes 
[65–67]. This memory population is characterized by 
the enrichment in peripheral organs of functional anti-
gen-specific CD8+ T cells at high frequency. These cells 
could thus constitute a first line of peripheral defense 
capable of swiftly responding to viral infections. We 
observed increased T cell responses to some PPRV-F and 
-H peptides after virus challenge, which could indicate 

Figure 5  Ad5-F and Ad5-H vaccination produces functional memory T cells to PPRV immunogenic peptides. PBMC from Ad5-F- or Ad5-
H-vaccinated sheep (21 days after booster and prior to PPRV challenge) were stimulated with PPRV immunogenic peptides and stained for CD4, 
CD8, the memory marker CD45RO and intracellular IFN-γ. A Mean (± SEM) IFN-γ production in CD45RO+ and CD45RO− A CD4+ or B CD8+ T cells in 
two to four Ad5-F- or Ad5-H-immunized sheep is plotted. PMA and ionomycin was used as positive control. Representative IFN-γ and CD45RO stain-
ings in A CD4+ or B CD8+ T cells from Ad5-F- or Ad5-H-vaccinated sheep in response to PPRV immunogenic peptide stimulation. Student’s t test 
(CD45RO+ vs CD45RO−); *p < 0.05. IFN-γ production in PBMC from C Ad5-F- or D Ad5-H-vaccinated sheep was measured pre-challenge and after 
PPRV IC’89 challenge by ELISPOT assays. Data were normalized to spots detected in unstimulated cells. p ≤ 0.1 in paired Student’s t tests are shown.
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that Ad5-F and Ad5-H vaccination induced inflationary 
memory responses to some PPRV epitopes, although fur-
ther characterization of the responding T cells is neces-
sary to confirm this observation.

Adenovirus vaccines also produce mucosal trafficking 
of antigen-specific CD4+ T cells [68–70]. In the present 
study, we detected anti-PPRV memory CD4+ T cells in 
PBMC after recombinant Ad5 vaccination. It would be 
interesting to determine in future work whether these 
antigen-specific experienced cells are detected in the 
mucosa of Ad5-F- or Ad5-H-vaccinated sheep, particu-
larly in the oral mucosa that PPRV uses as a gateway 
for infection. Recombinant adenovirus vaccination has 
therefore the potential to produce inflationary CD8+ T 
cell responses to the transgene and recruit CD4+ T cells 
to the mucosa, both of which could contribute to Ad5-F 
and Ad5-H vaccine efficacy.

Overall, we identified several PPRV-F, -H and -NP T 
cell epitopes after PPRV infection in sheep and mice 
(Additional file  2). The immunogenic regions identified 
in the present work could be useful for monitoring T cell 
responses induced by novel recombinant vaccines, which 
potential efficacy is usually tested in murine models. This 
is particularly relevant in morbillivirus vaccines, in which 
induction of a strong T cell response is probably neces-
sary for successful vaccination. Sheep immunization with 
recombinant Ad5 vaccines expressing PPRV-F or -H 
genes mimicked the analyzed T cell repertoire induced by 
PPRV infection. Ad5-F and Ad5-H vaccination induced 
CD4+ and CD8+ T cell memory differentiation that could 
be re-activated by virulent PPRV challenge. These anti-
PPRV memory T cells probably contributed to Ad5-F and 
Ad5-H protective effects. These data validate the use of 
recombinant Ad5 vaccines for PPRV control. A better 
understanding of the T cell memory response induced 
by recombinant adenovirus vaccines could ultimately 
improve memory cell activation by these therapies.

Additional files

Additional file 1. Gating strategies for IFN-γ detection, cytotoxic-
ity assays and CD45RO expression. (A) For IFN-γ detection, cells were 
selected by FSC/SSC discrimination. Gating for IFN-γ+ events was set 
using fluorescence minus one antibody (isotype) staining for CD4+ and 
CD8+ events. This gating was then maintained to measured IFN-γ+ events 
in stimulated cells. (B) In cytotoxicity assays, FSC/SSC discrimination was 
applied to gate putative live and dead cell events. Target cells labelled 
with the cell membrane marker PKH67 were first run on the cytometer to 
set up the target cell gate (PKH67+ events). Propidium iodide was used 
to discriminate live and dead cells. Bright PKH67+ and propidium iodide+ 
events were considered dead target cells. For each target cells, spontane-
ous and maximum cell death controls were acquired. In cytotoxicity 
co-culture assays, specific target cell lysis was assessed in the bright 
PKH67+gate. (C) For CD45RO expression, cells were first selected selected 
by FSC/SSC discrimination followed by CD4 or CD8 gating. Within these 
CD4+ or CD8+ gates, CD45RO+ gate was set using fluorescence minus 
one antibody (isotype) staining.

Additional file 2. PPRV T cell repertoire in mice: identification of 
immunoreactive PPRV-T cell epitopes in H-2b context. To determine 
whether recombinant adenovirus vaccination elicits T cell responses to 
determinants that are also targeted during PPRV infection, we first set out 
to identify T cell epitopes in mice. Since few PPRV T cell epitopes have 
been reported [11–14], we attempted to describe new determinants 
in our experimental settings. We focused our approach on the F, H and 
NP proteins as T cell determinants involved in morbillivirus responses 
are usually mapped to these. Peptides predicted to bind to murine H-2b 
molecules (Db, Kb or I-Ab) were selected using algorithms available online 
(Table 1) [34–37] and synthesized. Using the TAP-deficient cell line RMA/s, 
we performed binding assays for MHC class I predicted binders. Most 
peptides bound their predicted MHC class I molecules. Only peptide NP5 
did not bind to Db or Kb molecules. All 3 algorithms employed predicted 
Db binders quite accurately. The NetMHC prediction was nonetheless 
more accurate for Kb binding than ProPred-I or SYFPEITHI. PPRV-F, -H and 
-NP peptide immunogenicity data in C57BL/6 mice are presented in 
the figure of Additional file 2. PPRV peptide immunogenicity was tested 
on splenocytes from C57BL/6 PPRV-infected mice (IC’89; 1 × 106 PFU) 
using (A–C) IFN-γ ELISPOT and (D–F) proliferation assays. Responses to 
predicted peptides from PPRV (A and D) -F, (B and E) -H and (C and F) -NP 
proteins were measured in 8 mice per group. ELISPOT data are presented 
as average spots counted for 2 × 105 cells and proliferation as stimulation 
index (cpm ratio in test vs control). One-way ANOVA (Dunnett’s post-test: 
peptides vs control); *p < 0.05; **p < 0.01; ***p < 0.001. (A–C) Significant 
IFN-γ production was detected to peptides F2, F3, F7, F8, F9, F10, H2, H5, 
H6, H9, NP5, NP8, NP9 and NP10. (D–F) Significant splenocyte proliferation 
was detected to peptides F2, F7, H2, H5 and H9. Peptides F9 and F10 only 
tended to induce higher proliferation.
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