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Abstract 

Foot-and-mouth disease virus (FMDV) is endemic in Vietnam, a country that plays an important role in livestock trade 
within Southeast Asia. The large populations of FMDV-susceptible species in Vietnam are important components of 
food production and of the national livelihood. In this study, we investigated the phylogeny of FMDV O/PanAsia in 
Vietnam, reconstructing the virus’ ancestral host species (pig, cattle or buffalo), clinical stage (subclinical carrier or clini-
cally affected) and geographical location. Phylogenetic divergence time estimation and character state reconstruction 
analyses suggest that movement of viruses between species differ. While inferred transmissions from cattle to buffalo 
and pigs and from pigs to cattle are well supported, transmission from buffalo to other species, and from pigs to buf-
falo may be less frequent. Geographical movements of FMDV O/PanAsia virus appears to occur in all directions within 
the country, with the South Central Coast and the Northeast regions playing a more important role in FMDV O/PanA-
sia spread. Genetic selection of variants with changes at specific sites within FMDV VP1 coding region was different 
depending on host groups analyzed. The overall ratio of non-synonymous to synonymous nucleotide changes was 
greater in pigs compared to cattle and buffalo, whereas a higher number of individual amino acid sites under positive 
selection were detected in persistently infected, subclinical animals compared to viruses collected from clinically dis-
eased animals. These results provide novel insights to understand FMDV evolution and its association with viral spread 
within endemic countries. These findings may support animal health organizations in their endeavor to design animal 
disease control strategies in response to outbreaks.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Foot-and-mouth disease (FMD) is a highly transmis-
sible viral disease of cloven hooved animals and is con-
sidered one of the most important diseases of livestock. 
Countries in Southeast and East Asia have varying lev-
els of FMD endemicity, with Cambodia, Thailand, Laos, 
China and Vietnam having relatively high FMD inci-
dence throughout the year [1]. Vietnam is the largest pig 
trader in Southeast Asia, so FMD control in this country 
is critical for the entire region [2]. The economic bur-
den of FMD is substantial for large and small-scale pig 

producers and pig owners [3]. Cattle and water buffalo 
(Bubalus bubalis) have similar and important roles in 
agricultural practice in Vietnam [2, 4]. Both species are 
kept in varying degrees of intensity for dairy and meat 
production and are additionally used for draught pur-
poses. Both species are often allowed to range freely for 
variable periods of time, and are frequently moved across 
country borders [5].

A study carried out in Vietnam, targeting areas with 
recent history of FMDV, found 22.3% seropositivity (to 
non-structural proteins) amongst subclinical buffalo and 
cattle sampled [6]. FMDV serotypes A and O currently 
circulate in Vietnam, while serotype Asia 1 has not been 
reported in Vietnam since 2008 [7–9]. FMDV serotype 
O is the most prevalent in the country; a recent study 
sequenced 71 serotype O viruses from samples collected 
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between 2009 and 2013 in Vietnam, 65 of these viruses 
belonged to O/ME-SA/PanAsia lineage, while only 6 were 
classified as O/SEA/Mya-98 [6, 8]. However, in Vietnam 
from 2014–2016 it is believed that there has been a resur-
gence of O/SEA/Mya-98 (Dung and Long, unpublished 
data). Additionally, an incursion of O/ME-SA/Ind2001d 
lineage was reported for the first time in the country in 
2016 [10].

Ruminants infected with FMDV may either clear the 
virus within 1–2 weeks after initial infection or develop 
a subclinical, persistent infection [11–13]. The World 
Organization for Animal Health (OIE) defines persistent 
FMDV infection as the recovery of FMDV from oro-
pharyngeal fluids >28 days post-infection (dpi). However, 
recent work has demonstrated that, under experimental 
conditions, cattle that clear the infection can be differen-
tiated from those that develop persistent infection at 14 
dpi for vaccinated animals and 21 dpi amongst non-vac-
cinated animals [14, 15]. These persistently infected ani-
mals are referred to as FMDV carriers [13, 16] and earlier 
studies have estimated that the proportion of infected 
cattle that become carriers range from 50 to 65% [14, 
17]. The role of carriers in disease transmission amongst 
cattle has been extensively debated [17–19]. Researchers 
have conducted numerous experimental studies, but have 
failed to detect transmission from carrier cattle to sus-
ceptible animals, while others have concluded that trans-
mission from persistently infected cattle may occur to a 
very limited extent [20, 21].

There are intrinsic challenges to investigating FMDV 
transmission between herds and between different host 
species under field conditions in areas where animal 
movements and husbandry practices are variable and 
inconsistently regulated. Molecular techniques used to 
study the evolution of a pathogen through phylogenetic 
reconstruction can help understand the geographical 
spread, transmission between species and transmission 
from carrier and acutely infected animals, respectively 
when records about animal movements and contacts are 
not available [22, 23].

The objective of this study was to reconstruct the phy-
logeny, inferred inter-species transmission, and geo-
graphic spread of FMDV using VP1 coding sequences 
obtained from different host species, clinical stages, 
and locations in Vietnam. These analyses can help iden-
tify characteristics of the host species, geographic loca-
tion, and disease status that are associated with specific 
changes in the viral genome and selection pressures.

Materials and methods
Data source
This investigation of FMDV phylodynamics in Vietnam 
was based on 125 FMDV VP1 coding region sequences 

[639 nucleotides (nt) total length]. The VP1 capsid pro-
tein comprises approximately 7.6% of the FMDV genome, 
and is commonly used for first-line phylogenetic analy-
ses because it is known to be the most variable region 
of FMDV due to selective pressure on the immunogenic 
epitopes contained therein [24]. These sequences were 
obtained from three sources: (1) previous studies con-
ducted by our group wherein 77 FMDVs collected in Viet-
nam were sequenced at the Plum Island Animal Disease 
Center, United States and identified as FMDV O/ME-SA 
topotype, PanAsia lineage as described in previous pub-
lications [6, 25], (2) eleven sequences generated by the 
OIE/FAO World Reference Laboratory for Foot-and-
mouth disease (WRLFMD, The Pirbright Institute, UK), 
delivered directly to the Vietnam Department of Animal 
Health and deposited in GenBank for this study, and (3) 
37 recently described, genetically related sequences that 
were retrieved from GenBank, 34 of which are from 
Vietnam, two from Kazakhstan and one from China. All 
sequences used in the study are currently available (see 
Additional file  1; Table  1). No animal experimentation 
or euthanasia was performed for the sake of completing 
this study. Because several VP1 sequences were shorter 
than complete length of the protein-coding segment (639 
nt), we trimmed the alignment to the first 621 nt, to have 
consistent data for phylogenetic reconstruction.

Phylogenetic reconstruction using divergence time 
estimation
We reconstructed the phylogeny of FMDV and esti-
mated divergence times. Sequences were aligned using 
the MUSCLE algorithm [26]. To estimate the best codon 
partition and best substitution model, we analyzed the 
sequences using Partition Finder [27] and selected the 
best partition scheme based on the Bayesian Information 
Criterion (BIC). The purpose of this selection is to iden-
tify the best codon partition scheme and the best nt sub-
stitution model for each partition.

Table 1  Bayesian stochastic search variable selection anal-
ysis results

Significant (Bayes factor > 3) non-zero transmission rates between species and 
between outbreak and persistent animals are shown.

Discrete character Bayes factor

Species

 Cattle to pig 5900

 Cattle to buffalo 5900

 Pig to cattle 1179

Persistent and outbreak

 Carrier to clinical 871

 Clinical to carrier 871
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Using the best partition scheme and corresponding 
substitution model, we reconstructed the phylogeny of 
O/ME-SA/PanAsia FMD virus using a Bayesian statisti-
cal approach (Bayesian Evolutionary Analysis by Sam-
pling Trees), implemented in BEAST 1.8.2 [28]. The 
sampling dates were specified to estimate times of diver-
gence. We used the lognormal uncorrelated relaxed clock 
model, and the Coalescent Bayesian Skyline tree prior. 
The analysis was run for 2 × 108 iterations within a web-
based platform with access to computational resources 
available in CIPRES [29]. Convergence of the chain was 
assessed using Tracer 1.6, by visualizing traces of param-
eters of trees sampled and confirming that mixing of the 
chain had been achieved so that the effective sample size 
of all parameters was >200 [30]. From all trees sampled, 
the maximum clade credibility tree (MCC) was anno-
tated and depicted using FigTree 1.4.2 [31]. The initial 
10% sampled trees were discarded as burn-in. Time to 
most recent common ancestor (tMRCA) of all nodes and 
95% highest posterior densities (95% HPD) were obtained 
from the MCC tree.

Phylogeographic analysis and ancestral character state 
reconstruction
We used discrete ancestral character state reconstruction 
to estimate the viral history, specifying traits according 
to 3 different characteristics: the host species, the clini-
cal status, and the location. To reconstruct the host spe-
cies, we defined three discrete characters: cattle, pig or 
buffalo. For the clinical status, we used two characters: 
sequences described as “Clinical” were obtained from 
samples derived from vesicular lesions of animals dur-
ing outbreaks of clinical FMD in Vietnam, whereas “Car-
rier” sequences were obtained from oropharyngeal fluid 
(probang) from subclinical cattle and buffalo identified 
through active surveillance as previously described [6]. 
To infer ancestral states with respect to geographical 
location we categorized each viral sequence assigning 
one of the 8 different geographical regions defined within 
Vietnam: Northeast, Northwest, Red River Delta, North 
Central Coast, South Central Coast, Central Highlands, 
Southeast, and the Mekong River Delta.

For each host species, clinical disease and geographic 
location traits, we reconstructed the inferred charac-
ter state for each node within the phylogenetic tree. We 
analyzed the inferred transmission rates between char-
acter states using an asymmetric model for the discrete 
traits and estimated the significance of the network with 
Bayesian stochastic search variable selection (BSSVS), 
which tests the hypothesis of non-zero transmission 
rates between discrete characters [22]. Statistical support 
was assessed using Bayes Factor (BF) for discrete traits 

implemented in SPREAD1.0.6 [32], we considered BF > 3 
as significant non-zero transmission. The analysis was 
carried out in BEAST 1.8.2 and the number of iterations 
and assessment of chains were performed as described 
above. Additionally, we obtained the count of charac-
ter transitions (“jumps”) from all trees (excluding initial 
burning). The 95% high-density interval (95% HDI) of the 
values collected for each character state change that had 
a non-zero rate BF > 3.0 was computed using HDInterval 
package in R [33].

Evolutionary selection of nucleotide sites across different 
species and between clinically versus persistently infected 
animals
The VP1 coding region of the 122 FMDV O/ME-SA/
PanAsia sequences described above and the addi-
tional related sequences (n  =  3) from Kazakhstan and 
China were analyzed for positive and negative selection. 
Sequence groups from different species (cattle, pigs and 
buffalo-excluding samples from persistently infected 
animals) as well as clinical or persistent status were ana-
lyzed independently to study differences in viral selec-
tion by nt site and overall selection. The mean ratio of 
non-synonymous (dN) and synonymous changes (dS) 
(global ω = dN/dS ratio) was computed using the single-
likelihood ancestor counting (SLAC) method, and 95% 
confidence intervals estimated from the data and the 
likelihood profile [34]. Individual site selection was also 
computed by the fixed effects likelihood (FEL) method 
and by the random effects likelihood (REL; which was 
used for the species groups but not for the clinical/carrier 
groups due to the size restriction -number of sequences- 
of the analysis) [34]. Only unique sequences were used in 
this analysis (i.e. identical sequences were removed). The 
HKY85 nt substitution model was used. A site was con-
sidered positively or negatively selected if identified by at 
least one of the methods described (dN-dS > 0 with a p 
value cutoff 0.1 for SLAC, 0.1 for FEL and 50 BF for REL). 
We displayed the dN-dS values computed for each codon 
position and indicated the statistically significant posi-
tively selected sites. The analyses were performed in the 
HyPhy2.2.1 software package [34, 35].

Results
Divergence time estimation and ancestral character 
reconstruction
The partition scheme and substitution models selected 
were the K80  +  I for codon positions 1  +  2, and the 
HKY + G substitution model, for codon position 3. The 
mean substitution/site/year for VP1 coding segment 
the O/ME-SA/PanAsia phylogeny reconstructed was 
1.66 × 10−2 (95% HPD 1.21–2.11 × 10−2).
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Ancestral state character reconstruction
Host species
The MCC tree depicting the reconstruction based on 
FMDV host species is presented in Figure 1. The current 
FMD O/ME-SA/PanAsia viruses circulating in Vietnam 
diverged into two different clades in June 2010 (95% HPD 
March 2010 to September 2010). One of these lineages 
(Figure 1, branch A), initially found in all three hosts spe-
cies, diverged into a cluster of viruses that subsequently 
were found predominantly in pigs. Transitions between 
host species character state inferred from the MCC tree 
(and 95% HDI) occurred from cattle to pigs (7 events 95% 
HDI 5–10), pigs to cattle (2 events 95% HDI 1–3), and 
from cattle to buffalo (8 events 95% HDI 7–11). Results 

of the analysis to estimate significant transmission rates 
between species, BSSVS, are shown in Table  1. With 
respect to host species, non-zero inferred transmission 
rates were detected from cattle to pig, from cattle to buf-
falo and from pig to cattle.

Clinical status
The MCC tree showing the ancestral reconstruction 
of clinically affected animals (“Clinical”) and subclini-
cally infected animals (“Carriers”) is shown in Figure  2. 
In the upper main branch of the tree (Figure  2, branch 
A), there are two viruses from persistently infected ani-
mals (KT153098-O/VIT/12/2012pro and KT153128-
O/VIT/25/2012pro) likely originating from previous 

A

B

Figure 1  Maximum clade credibility tree of FMDVs in Vietnam and related viruses from China and Kazakhstan between 2010 and 
2014. The color of tree branches and nodes indicates the ancestral host species for the reconstructed phylogeny. Clades A and B represent the two 
main O/ME-SA/PanAsia sublineages that have diverged recently in Vietnam. Characteristics of the sampled viruses (clinical stage: C., host species: H., 
and location: L.) are indicated in colored columns aligned to the right of the tree, color coding is indicated in the metadata legend.
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outbreaks. However the tMRCA with the most closely 
genetically related ‘clinical’ viruses was relatively long 
(compared to tMRCA of related viruses), suggesting that 
they had already diverged approximately one year (1.32 
and 0.53  years for viruses O/VIT/12/2012pro and O/
VIT/25/2012pro respectively) from their ancestral “clini-
cal” sample sequences. The lower branch of the tree (Fig-
ure  2, branch B) includes closely related viruses from 
9 different persistently infected animals. The ancestral 
reconstruction of the set of viruses analyzed suggests that 
these viruses may have initiated an outbreak with clinical 
disease, which includes several closely related viruses (Fig-
ure 2, *).

Inferred non-zero transmission rates estimated by 
BSSVS analysis (Table 1), which is used to detect signifi-
cant non-zero transmission from carrier to clinical and 
from clinical to carrier categories.

Phylogeographic analysis
The phylogeographic reconstruction of the viruses 
is shown in Figure  3. The common ancestor of all O/
ME-SA/PanAsia sequences included in this study was 
located in the northeast region. Putative movements 
of this lineage from the Northeast of Vietnam into 
China and from the Northwest Region of Vietnam into 
Kazakhstan can be observed in Figure 3—branch A and 

A

B

Figure 2  Maximum clade credibility FMDV O/ME-SA/PanAsia viruses collected in Vietnam (and additional 3 sequences from China 
and Kazakhstan) between 2010 and 2014. Nodes and branches of the trees are colored according to the clinical stage reconstructed in the 
phylogeny. The ancestral reconstruction of the viruses analyzed suggests 1 instance where outbreak viruses may have originated from carriers 
(*). Clades A and B represent the two main O/ME-SA/PanAsia sublineages that have diverged recently in Vietnam. Characteristics of the sampled 
viruses (clinical stage: C., host species: H., and location: L.) are indicated in colored columns aligned to the right of the tree (color coding legend for 
the columns is indicated in Figure 1).
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may have occurred in December of 2010. The phylogeo-
graphic analysis demonstrates that the upper part of Fig-
ure 3—branch A, which contains a cluster of pig-derived 
viruses (Figure 2, branch A), may have initially originated 
from the Northeast and then spread into the Northwest, 
and the Red River Delta Regions.

To visualize the significant inferred transmission rates 
(BF  >  3) between the geographical regions we over-
laid these results on a map of Vietnam (Figure  4). The 
most significant inferred transmissions were detected 
from Northeast and South Central Coast to their corre-
sponding adjacent regions, as well as transmission from 
Mekong River Delta into Southeast region. Inferred 
disease spread occurred in northern and southern 

directions, however there was a general trend of higher 
BF for southbound transfer of viruses. BF-inferred trans-
mission is also shown in the heatmap displayed in Fig-
ure  4, and it further evidences that the South Central 
Coast and the Northeast are the regions from where the 
viruses are more frequently spread into other regions.

Evolutionary selection of sites in different species 
and clinically versus persistently infected animals
Results of the global dN/dS ratio (ratio of non-synony-
mous to synonymous changes) estimated by category are 
shown in Table  2. Considering only viruses from clini-
cal outbreaks, pig-derived viruses had a higher overall 
positive selection ratio (dN/dS) compared to buffalo and 

A

B

Figure 3  Maximum clade credibility FMDV O/ME-SA/PanAsia viruses collected in Vietnam (and additional 3 sequences from China 
and Kazakhstan) between 2010 and 2014. Nodes and branches of the trees are colored according to the location with the higher posterior 
probability in the reconstructed phylogeny. Ancestors of the two divergent clusters are inferred to exist in the Northeast. Clades A and B represent 
the two main O/ME-SA/PanAsia sublineages that have diverged recently in Vietnam. Characteristics of the sampled viruses (clinical stage: C., host 
species: H., and location: L.) are indicated in colored columns aligned to the right of the tree, color coding is indicated in the metadata legend.
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Figure 4  Results from the Bayesian stochastic search variable selection of the Phylogeographic reconstruction of O/ME-SA/PanA-
sia in Vietnam regions, and related sequences from Kazakhstan and China. Only Bayes factor > 3 are represented as arrows as significant 
non-zero transmission of O/ME-SA/PanAsia. Most significant transmissions were inferred for some adjacent regions, although inferred transmission 
between some distant regions was also statistically supported. The heatmap in the lower area of the figure depicts the magnitude of the statisti-
cal support (Bayes factor) for transmission rate between geographic regions in Vietnam. This heatmap allows visualizing that more transmission 
occurred from South Central Coast and the Northeast regions into other areas, whereas the Red River Delta and Mekong Delta were the ones with 
more incoming transmission from other regions.
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cattle; however, only the difference with cattle was statis-
tically significant at p < 0.05 (based on non-overlapping 
95% confidence intervals). The extent of positive selec-
tion was similar in buffalo and cattle. Similarly, viruses 
collected from persistently infected animals and from 
clinically affected ones had almost the same dN/dS values 
(Table 2).

Results of the specific site selection for every codon 
(dN-dS) in all categories are shown in Figures 5A and B. 
No specific sites under positive selection were found to 
be statistically significant when analyzing viral sequences 
collected from cattle and buffalo, whereas few sites were 
detected when analyzing viral sequences from pig (site 
numbers: 1, 152, 153 and 172). Several statistically sig-
nificant negatively selected sites were found for cattle (23 
sites), pigs (28 sites), and buffalo (7 sites). Overall positive 
selection was mainly found within the known antigenic 
sites (GH loop, BC loop). Two statistically significant 
positively selected sites were found in the GH loop in 
pigs, compared to none in buffalo and cattle groups.

Although the global positive selection ratio was the 
same in carrier and clinically diseased animals, when dis-
secting the specific positively selected amino acid sites 
in the antigenic domains, carrier animals had a higher 
number of statistically significant positively selected 
sites compared to selection in viruses from clinical sam-
ples: Four statistically significant positively selected sites 
in the GH loop (near the RGD motif ) and one in the 
BC loop were found in carriers, whereas two positively 
sites in the GH loop and two sites in the BC loop with-
out statistical significance were found in clinical sam-
ples from cattle and buffalo (Figure 5B). Three additional 
sites of significant positive selection were also identified 
in viruses from carriers, but in non-antigenic regions. 
When analyzing all viral sequences together, several posi-
tively selected (non significant) sites were found within 
the GH-loop and the BC loop, whereas numerous sig-
nificantly negatively selected sites were found throughout 

VP1. Site 73 was consistently negatively selected (higher 
expected number of synonymous changes) in all group 
categories. Only one site (154) was detected as both posi-
tive and negatively selected depending on the category; 
while positive selection was detected within the carrier 
animals category, this site was identified as a negatively 
selected for pig viral sequences.

Discussion
In the current study, we analyzed phylodynamics of 
FMDV O/ME-SA/PanAsia viruses recovered from live-
stock in Vietnam between 2010 and 2014. The results 
presented herein provide a novel overview of compara-
tive viral evolution of field samples collected from differ-
ent host species, locations, and different clinical stages of 
infection. These data suggest differences in viral evolu-
tion within distinct animal groups, which may contrib-
ute to understanding of the mechanisms of maintenance, 
emergence and spread of viruses across Vietnam.

Using viruses sampled between 2010 and 2014 from 
different species, stages of infection and provinces of 
Vietnam, we found two main sublineages of FMDV O/
ME-SA/PanAsia. One of these sublineages has been 
most frequently recovered from pigs since 2011 while the 
other main sublineage has been most frequently found 
in cattle. Some FMDV strains may have a predilection to 
certain host species; this phenomenon has been exten-
sively described with porcinophilic FMDV serotype O 
of the Cathay topotype [36, 37]. However, the data pre-
sented herein is not sufficient to determine limited host 
range of the mostly pig-derived FMDV subclade found in 
this study. This is because several other factors, includ-
ing sampling bias, could have determined the apparent 
species-specificity. The hypothesis of limited host range 
could be confirmed by follow up studies in tissue culture 
or in vivo to determine if these viruses have evolved to a 
specific pig host predilection.

The substitution rate calculated herein for VP1 of 
FMDV O/ME-SA/PanAsia circulating in Vietnam 
between 2009 and 2014 was similar to a previous esti-
mate of serotype O Cathay topotype (1.06 × 10−2) [38]. 
However, the rate estimated for this study was higher 
than those computed across other serotype O viruses 
estimated at 6.65  ×  10−3 [39], 6.34  ×  10−3 [40], or 
4.81 × 10−3 (serotype O collected globally between 1939 
and 2010) [41] substitutions/site/year. The high mutation 
rate found in our analyses may be a result of capturing 
mutations that do not become fixed in a population, as 
a consequence of sampling a high number of outbreaks 
in a relatively short period of time. In contrast, isolated 
sequences from different regions sampled over longer 
periods may reflect fixed mutations, which may result 
in computing a different substitution rate. However, the 

Table 2  Results of the global dN/dS ratio estimated for 
each of the categories and corresponding 95% confidence 
interval

a  Sequence from virus collected from clinical samples.
b  Sequences from viruses collected from cattle and buffalo only.

Category ω = dN/dS ratio Lower 95% CI Upper 95% CI

Cattlea 0.161 0.107 0.23

Piga 0.272 0.205 0.351

Buffaloa 0.181 0.094 0.312

Carrierb 0.160 0.112 0.222

Outbreakb 0.160 0.11 0.224

All 0.209 0.173 0.249
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A

B

Figure 5  Site selection (dN-dS) by VP1 coding region in alignments of FMDV sequences. A Site selection (dN-dS) results per VP1 coding 
region in alignments of cattle viral sequences (excluding persistently infected), buffalo (excluding persistently infected) and pigs. Values >0 repre-
sent positive selection. Bars colored in red indicate sites where selection is statistically significant. Grey shaded areas correspond to known antigenic 
sites within VP1: BC loop (sites 43–45), GH loop (sites 238–254), and C terminus (sites 200–207). Pink-shaded sites correspond to the RGD integrin-
binding motif. B Site selection (dN-dS) results per VP1 coding region in alignments including of all viral sequences, “clinical” (cattle and buffalo) viral 
sequences and “carrier” (cattle and buffalo) infected animals.
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specific underlying mechanisms driving these differences 
across studies using different geotemporal conditions 
remain undetermined.

Inferred transmission as deduced by ancestral char-
acter reconstruction suggests that cattle have a relevant 
role in inter-species dissemination. Various factors may 
contribute to this phenomenon including subclinical 
infection in vaccinated cattle and a longer duration of 
FMDV infectiousness in cattle compared to other spe-
cies [12, 13]. Similarly, our study also provides evidence 
of inferred transmission of viruses from pigs to cattle. 
This may be explained by the large pig population in the 
country, and husbandry practices including the highly 
common practice of co-mingling pigs with other species 
in rural households and villages. In contrast, based on the 
sequences obtained, we did not identify putative trans-
mission from buffalo to either cattle or pigs. Although 
transmission from cattle to buffalo, and buffalo to cattle 
is known to occur [42, 43], to our knowledge, compara-
tive quantitative estimates of transmission rates of these 
two species have not been estimated. We detected sev-
eral instances of transfer of viruses from cattle to buf-
falo, but none from buffalo to cattle. The lack of detection 
may either represent lesser ability of buffalo to transmit 
the disease to cattle, differential ranging and transport of 
buffalo and cattle within and between different areas in 
Vietnam, or it may be an effect of sampling bias.

Phylogenetic analyses in this study, suggest that there 
are instances in which viruses found in carrier animals 
may have been the ancestors of viruses that later caused 
outbreaks. However, it is also possible that undersam-
pling of outbreak sequences around the period of the 
apparent carrier-to-clinical transfer may have created 
sampling bias which influenced these results (Figure  2). 
Transmission from carriers to susceptible animals has 
been either low or inexistent in controlled experiments. 
However, the potential epidemiological role of the FMDV 
carrier state in maintaining FMDV and being the source 
of new outbreaks is still highly controversial [13, 17, 44]. 
Quantitatively, it has been estimated that the transmis-
sion rate from acutely (clinically) infected animals is 
more than 500 times that of the carrier [20]. However 
even though the probability is exceedingly low, it would 
only require one successful transmission event within the 
thousands of contacts to start an outbreak and thus have 
a substantial impact.

Overall, the number of outbreaks and potential 
infected animals included herein is low compared to the 
actual number of outbreaks and infections that occurred 
in the field. Thus, such findings must be interpreted con-
servatively. Because of the inability to obtain every rel-
evant virus from the field, analyses derived from studies 
such as this, contain intrinsic sampling bias and must be 

interpreted as generating, rather than confirming hypoth-
eses. Similarly, these phylogenetic analyses were carried 
out using only VP1 coding sequence of FMDV, which 
is 639 nt long of the ~7000 nt ORF length. This genetic 
segment is the most variable within FMDV genome and 
contains the most relevant antigenic sites. Full genome 
sequences in sufficient quantities to enable these studies 
of phylodynamics of Vietnam, were not available at the 
time of this work.

Geographic spread of FMD within Vietnam inferred by 
viral sequence suggests that transmission occurs between 
several different regions of the country. However trans-
mission seems to be more frequent from South Central 
Coast and Northeast into other parts of the country. 
As expected, the greatest extent of transmission was to 
immediately adjacent regions, but also to distant parts 
of the country. These findings are partially consist-
ent with previous studies conducted by the OIE, which 
assessed the livestock movement in Vietnam and neigh-
boring countries [5]. That report describes that substan-
tial ruminant movement occurs from central areas of the 
country into northern and southern regions. Within the 
northern regions, this flow tends to be towards north-
eastern region, whereas in the south, animal movement 
converges into northern areas of the Mekong River Delta 
region. In contrast, pig movement occurs mostly from 
northern into southern areas of Vietnam and from north-
ern areas into China. Transmission occurring in different 
geographic directions inferred by our analysis reflects the 
combination of these reported pig and ruminant species 
movement. The movement of large ruminants and pigs 
into China, however, is supported by our current inferred 
viral transmission data. Additionally, animal movement 
from Thailand, Cambodia and Laos into Vietnam occurs 
frequently [5].

Selection pressure may be an important driver of viral 
evolution [45]. It is biologically plausible that selection 
pressures differ in different host species, or through dif-
ferent phases of infection within the same host (e.g. acute 
clinical infection in contrast to persistent infection). Viral 
evolution comparing different groups of infected animals 
has not been extensively explored previously. Potential 
specific molecular changes in the FMDV genome that 
establish persistent infection have been reported in few 
controlled studies [17, 21, 46]. Here, we found that the 
global positive selection of VP1 tended to be similar in 
carrier animals compared to viruses recovered from clin-
ical outbreaks. Although the value of the global positive 
selection rate was almost equal in carrier and outbreak 
groups, the quantity of individual (statistically signifi-
cant) positive selected codon sites was higher in carrier 
animals compared with those with acute clinical infec-
tion, especially in the antigenic regions.
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Because animal movement and mixing animals from 
different origins is a common practice in Vietnam, persis-
tently infected animals may play an important role in dis-
ease spread. Understanding specific molecular (genomic 
and/or antigenic) changes can eventually help to under-
stand the mechanisms through which FMDV persistence 
is established and maintained. Although analyses of our 
data demonstrate potentially relevant trends, results 
should be interpreted carefully with mindfulness of the 
relatively low quantity of samples from carrier animals 
(n = 12).

Additionally, we found that statistically significant 
positive selection was greatest in pigs compared to buf-
falo and cattle, and that these sites were found mostly 
in regions that code for the known antigenic domains. 
This suggests that the viral evolution in the pig popula-
tion may provide an important contribution to antigenic 
diversity and strain emergence compared to other spe-
cies. Previous work has shown that most of the genomic 
variation occurs early in the course of infection, when 
there is greater viral replication [47].

In conclusion, the current study suggests that inferred 
virus transmission patterns in Vietnam may differ 
depending on the host species and clinical status of 
infected hosts. This may be related to differences in viral 
selection between species and in the persistently infected 
animals compared to clinically affected individuals. These 
differences can help to elucidate viral evolution within-
host, across host species, and within populations. Appli-
cation and combination of the methodologies described 
herein to study specific aspects of FMDV evolution may 
help to gain new knowledge in our understanding of 
FMDV, ultimately contributing to disease control and 
eradication in endemic countries.
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