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Abstract 

Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus responsible for a widespread conta‑
gious disease of domestic pigs with high economic impact. Switzerland is one of the rare PRRSV-free countries in 
Europe, although sporadic outbreaks have occurred in the past. The PRRSV isolate IVI-1173 from the short outbreak in 
Switzerland in 2012 was entirely sequenced, and a functional full-length cDNA clone was constructed. Genetic and 
antigenic characterization of IVI-1173 revealed the importance of amino acid 90 of the nucleocapsid protein N as part 
of a conformational epitope. IVI-1173 was not detected by SDOW17, a monoclonal antibody against N widely used 
to detect PRRSV-infected cells. Substitution of alanine at position 90 of N [N(A90)] with a threonine [N(T90)] restored 
reactivity of vIVI1173-N(T90) to SDOW17 completely. The relevance of this amino acid for the conformational SDOW17 
epitope of PRRSV N was further confirmed by the opposite substitution in a functional cDNA clone of the genotype 2 
isolate RVB-581. Finally, N proteins from ten genotype 1 strains differing from threonine at position 90 were analysed 
for reactivity with SDOW17. N(A90) totally disrupted or severely affected the epitope in 7 out of 8 strains tested. Based 
on these findings, 225 genotype 1 strains were screened for the prevalence of N(A90). N(A90) is rare in classical subtype 
1 and in subtype 3 strains, but is frequent in Russian subtype 1 (70%) and in subtype 2 (45%) isolates. In conclusion, 
this study highlights the variable antigenic properties of N among genotype 1 PRRSV strains.
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Introduction
Porcine reproductive and respiratory syndrome (PRRS) is 
one of the economically most important viral disease of 
domestic pigs worldwide [1, 2]. The PRRS virus (PRRSV) 
has emerged in the late 1980s [3], with 2 genotypes, the 
European genotype 1 and the North American genotype 
2 that have evolved independently in Europe and USA 
with approximately 60–70% nucleotide identity [4]. Gen-
otype 1 is further subdivided in subtypes 1–3, while gen-
otype 2 strains are classified into nine distinct lineages [5, 
6]. In 2006, highly virulent genotype 2 strains emerged in 
China and Vietnam giving rise to outbreaks with severe 
symptoms of haemorrhagic fever [7]. More recently, gen-
otype 1 strains with enhanced virulence were described 

in Eastern Europe [8]. Currently, only few countries are 
officially free from PRRSV, among which are Australia, 
New Zealand, Norway, Sweden and Switzerland [9–11].

PRRSV belongs to the genus Arterivirus of the family 
Arteriviridae, along with equine arteritis virus (EAV), 
lactate dehydrogenase elevating virus (LDV) of mice 
and simian haemorrhagic fever virus (SHFV) [12, 13]. 
According to the recent description of thirteen new 
arterivirus species, and in order to account for the clear 
divergence of the European and North American geno-
types of PRRSV, it was proposed to reorganize the Arteri-
viridae family and to split PRRSV into two species, the 
Suid 1 rodartevirus and Suid 2 rodartevirus, grouped 
along with Muroid rodartevirus species in the genus 
Rodartevirus [14].

PRRSV is a small enveloped virus with a positive-sense, 
single-stranded RNA genome of approximately 15 kb car-
rying at least ten open reading frames (ORFs) [12]. ORF 
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1a and 1b encode 14 non-structural proteins processed 
proteolytically from the two polyproteins pp1a and 
pp1ab, and two additional proteins nsp2TF and nsp2N 
resulting from ribosomal frameshifts within the nsp2 
gene [15, 16]. The remaining ORFs encode the structural 
proteins on a nested set of subgenomic messenger RNAs. 
ORF 2a, 2b and ORFs 3–5 encode the glycoprotein GP2, 
the small envelope protein E (ORF2b), the glycoproteins 
GP3 to 5 and the ORF5a protein. ORF6 and ORF7 are 
translated in the non-glycosylated membrane protein M 
and in the nucleocapsid protein N, respectively (reviewed 
in [17]).

The nucleocapsid protein N is a multifunctional, highly 
basic 15  kDa phosphoprotein whose major role is to 
associate with the viral genomic RNA to form the ribo-
nucleocapsid [18–20]. N can self-associate through both, 
covalent and noncovalent interactions [21], and is found 
in the nucleus, nucleoli, and cytoplasm of infected cells 
[22]. It is the most abundant viral protein produced dur-
ing PRRSV infection, inducing early antibody responses 
that do however not correlate with protection [23, 24]. 
N is one of the most conserved protein within isolates 
of the same genotype, although its heterogeneity within 
genotype 1 increased with the discovery of new Eastern 
European subtypes [5]. The N protein of genotype 1 and 
2 PRRSV has a length of typically 128 and 123 amino 
acids, respectively, but its size varies between 124 and 
132 amino acids for the subtypes 2 and 3 [5, 25–27]. N 
is the antigen of choice for PRRS serology and for moni-
toring infected cells during PRRSV isolation [28–30]. 
Epitopes of N were mapped accordingly, and broad react-
ing anti-PRRSV monoclonal antibodies (mAbs) against 
N were established [31–39]. SDOW17 is one of the most 
commonly used anti-N mAb which is considered to rec-
ognize N of nearly all European and North American 
PRRSV isolates except the PrimePac PRRS vaccine virus 
[31, 34, 40]. Accordingly, the SDOW17 mAb has been 
widely applied in immunohistochemistry [41, 42], immu-
nofluorescence [43–45], virus titration [46], and flow 
cytometry [43, 47]. However, SDOW17 failed to detect 
the virus that caused the short PRRSV outbreak in Swit-
zerland in 2012. This outbreak was due to import of con-
taminated semen from Germany and was resolved within 
a few months thanks to strict policy measures [48].

The present study was aimed at characterizing the iso-
late IVI-1173 recovered from an infected pig during this 
latter outbreak in Switzerland. The complete nucleotide 
sequence of IVI-1173 was determined and aligned with 
the currently known full-length PRRSV sequences, and 
a functional full-length cDNA clone was constructed. In 
particular, amino acid 90 of N was found to be critical for 
the recognition of N by the mAb SDOW17. Antigenic 
comparison of N from selected genotype 1 subtype 1, 2 

and 3 PRRSV revealed the amino acid requirements of 
the SDOW17 epitope at position 90 of N.

Materials and methods
Cells
Porcine monocyte-derived macrophages (MDM) were 
generated as previously described [49]. Briefly, peripheral 
blood mononuclear cells were isolated from the blood of 
6- to 18-month-old specific pathogen-free (SPF) Large 
White pigs from the breeding facility of The Institute of 
Virology and Immunology IVI in Switzerland (in compli-
ance with the Swiss animal protection law, under licence 
number BE88/14 approved by the animal welfare com-
mittee of the canton of Bern, Switzerland) using ficoll-
paque density centrifugation (1.077  g/L; GE Healthcare 
Life Sciences). Monocytes were then enriched by positive 
selection for CD172a with the antibody clone 74-22-15A 
(hybridoma kindly provided by Dr A. Saalmüller, Veteri-
nary University of Vienna, Austria) using the magnetic 
cell sorting system (MACS) with LS columns (Miltenyi 
Biotec GmbH). The enriched monocytes were seeded at a 
density of 5 × 105 cells per millilitre in Dulbecco’s modi-
fied Eagle’s medium (DMEM) without phenol red, sup-
plemented with Glutamax (Life Technologies) and 10% 
heat-inactivated porcine serum from SPF pigs (IVI), and 
cultured at 39  °C with 5% CO2 for 72  h for differentia-
tion to MDM which were then further maintained in this 
medium. BHK-21 cells were obtained from the German 
Cell Culture Collection (DSZM) and grown in Glasgow’s 
Minimum Essential Medium (Life Technologies) sup-
plemented with 5% Tryptose Phosphate (Sigma-Aldrich) 
and 5% foetal bovine serum (Biowest). MARC-145 cells 
(ATCC, LGC Standards) were grown in DMEM (Life 
Technologies) supplemented with 10% foetal bovine 
serum. The BHK-21 and MARC-145 were maintained at 
37 °C with 5% CO2.

Viruses
PRRSV IVI-1173 was isolated in 2012 in the North-East-
ern part of Switzerland from a secondary-infected pig 
following insemination of sows with contaminated boar 
semen imported from Germany [48]. The virus was pas-
saged two times in porcine MDM. PRRSV RVB-581 was 
a kind gift from Martin Beer (Friedrich-Loeffler-Institut 
FLI, Greifswald-Insel Riems, Germany). The virus was 
collected in China in 2008 and isolated in porcine alveo-
lar macrophages and MARC-145 cells at the FLI [50, 51]. 
PRRSV CReSA-2982 was isolated in MDM and kindly 
provided by Enric Mateu, Centre de Recerca en Sanitat 
Animal (CReSA, IRTA-UAB), Campus de la Universitat 
Autònoma de Barcelona, Bellaterra, Spain. All virus stocks 
were propagated in MDM. Cells were lysed by freezing 
and thawing at 50% cytopathic effect (CPE), clarified by 
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centrifugation at 3000 × g and 4  °C for 10 min, and the 
supernatants were frozen at −70 °C. Lysates from MDM 
were used for mock infection controls. All strains were 
titrated in MDM by endpoint dilution using the immu-
noperoxidase monolayer assay (IPMA) with  the PRRSV 
anti-N mAb SR30. Titers were expressed as 50% tissue 
culture infective dose/mL (TCID50/mL).

Antibodies, IPMA, immunofluorescence (IF) and flow 
cytometry (FCM)
The anti-N mAbs SR30, SDOW17 (both from RTI, LLC) 
and 13E2 (kindly provided by Hans Nauwynck, Univer-
sity  of Ghent, Belgium) were used for the detection of 
PRRSV by IPMA, IF and FCM. For IPMA, the cells were 
fixed and permeabilized with 80% acetone at room tem-
perature, and incubated with the primary antibody and 
subsequently with goat anti-mouse IgG conjugated with 
horseradish peroxidase (Dako). Positive cells were visu-
alized with AEC peroxidase substrate (0.05% [wt/vol] 
3-amino-9-ethylcarbazole, 0.015% [vol/vol] H2O2, 0.05 M 
sodium acetate buffer, pH 5.5). For IF, the cells were fixed 
with paraformaldehyde 4% during 10 min at room tem-
perature and permeabilized with 0.3% (wt/vol) saponin. 
The cells were then incubated with anti-PRRSV N anti-
body and with Alexa-488-conjugated goat anti-mouse 
IgG as secondary antibody (Thermo Fisher Scientific), 
both in presence of 0.3% (wt/vol) saponin. Nuclei were 
finally stained with DAPI (Sigma-Aldrich). Fluorescence 
microscopy was performed using an Axio Observer Z1 
inverted microscope (Zeiss, Jena, Germany). For FCM, 
the cells were fixed with 4% paraformaldehyde at room 
temperature, and then incubated with the anti-N mAb 
and subsequently with goat anti-mouse IgG conjugated 
with Alexa-488, both in presence of 0.3% (wt/vol) sapo-
nin. FCM acquisition was done on a FACSCanto flow 
cytometer (Becton–Dickinson). Electronic gating based 
on the forward/side scatter plots was applied to identify 
living cells using the FlowJo V.9.7.6 software (Tree Star, 
Inc).

Viral RNA extraction and nucleotide sequence analyses
For determining the complete PRRSV genome sequence 
of IVI-1173, serum from a pig infected during the Swiss 
outbreak of 2012 was passaged two times in MDM. For 
RVB-581, virus that had been passaged twice in MDM 
and once in MARC-145 at the Friedrich-Loeffler-
Institut, Greifswald-Insel Riems, Germany, was used 
to infect pigs at the IVI (in compliance with the Swiss 
animal protection law, under licence number BE119/13 
approved by the animal welfare committee of the canton 
of Bern, Switzerland), and serum at 6  days post infec-
tion was used for sequencing. Viral RNA was extracted 

from serum and MDM supernatant using TRIzol 
(Invitrogen). The final RNA pellet was resuspended 
in deionized water and stored at −70  °C in small ali-
quots. For IVI-1173 and RVB-581, 6 and 4 overlapping 
cDNA fragments  respectively covering the full-length 
genome except the 5′ and 3′ terminal regions were 
synthesized by reverse transcription (RT) with Super-
script III reverse transcriptase (Thermo Fisher Scien-
tific) followed by PCR with Phusion Hot Start II DNA 
Polymerase (Thermo Fisher Scientific). The amplicons 
were inserted in the pJet1.2 plasmid using the CloneJET 
PCR Cloning Kit (Thermo Fisher Scientific). A total of 
4 clones from 4 independent RT-PCR were sequenced 
for each fragment using the dideoxy-chain termina-
tor sequencing chemistries of the BigDye Terminator 
v3.1 Cycle Sequencing Kit (Life Technologies) and an 
Applied Biosystems 3130 automated Genetic Analyzer 
(Applied Biosystems). The DNA was sequenced bi-
directionally with forward and reverse primers. DNA 
sequences were assembled with the DNA baser soft-
ware (version 3.5.3). The 5′ and 3′ termini of the viral 
genomes were determined using the 5′ and 3′ RACE 
System for Rapid Amplification of cDNA Ends (Invitro-
gen). Four clones from 4 independent RACE reactions 
each were sequenced in both directions. The consensus 
sequences of the complete viral genomes of IVI-1173 
(accession number KX622783) and RVB-581 (accession 
number KX650082) were deposited to GenBank.

Genome sequence alignments and phylogenetic analyses
Initial searches for nucleotide and amino acid sequence 
identities were carried out with NCBI’s Basic Local 
Alignment Search Tool for nucleotides (BLASTn) and 
proteins (BLASTp). Pairwise comparison and identity 
calculations were performed with the Clone Manager 
Professional Version 9 software (Scientific & Educational 
Software). Alignments and phylogenetic trees were gen-
erated with the Mega 6 software with bootstrap values 
based on 1000 replicates. All PRRSV genotype 1 strains 
with complete genome sequences deposited in GenBank 
at that time were used to construct the phylogenetic trees 
(see Additional file 1). For the trees based on ORF5 and 
ORF7, the 20 closest neighbours to IVI-1173—as deter-
mined by NCBI BLASTn and BLASTp—were added 
to all genotype 1 strains analysed in Ref. [5]. The geno-
type 2 PRRSV VR-2332 and RVB-581 were used as an 
out-group. Recombination analysis was performed with 
the recombination analysis tool (RAT) from John Innes 
Centre, Norwich Research Park, Norwich, UK, using the 
available full genomes of PRRSV-1 strains [52]. The Gen-
Bank references of all PRRSV strains used in this study 
are listed in the Additional file 1.
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Assembly of functional full‑length cDNA clones of IVI‑1173 
and RVB‑581
The complete viral genomes of IVI-1173 and RVB-581 
were assembled under the control of the bacteriophage 
T7 RNA polymerase promoter in plasmids pACJR1 and 
pACJR2, respectively. These two vectors were derived 
from pACNR1180 [53] by replacing the 261 base pairs 
(bp) AatII to XhoI fragment with a 33  bp cassette con-
taining the BglII and NotI restriction sites to generate 
pACJR1 or with a 32 bp cassette carrying the RsrII and 
NdeI restriction sites to obtain pACJR2, respectively. The 
complete genomes of IVI-1173 and RVB-581 were ampli-
fied by RT-PCR in 4 overlapping cDNA fragments each, 
directly from serum of the respective infected animals 
described above. Primers encoding the restriction endo-
nuclease sites for cloning in pACJR1 or pACJR2 as well 
as the T7 polymerase promoter with 2 guanines at the 
transcription start site upstream of the first nucleotide of 
the genome in the 5′-terminal forward primer and a SwaI 
run-off restriction site in the 3′-terminal reverse primer 
were used to generate cDNA of the 5′ and 3′ ends of the 
genomes (the oligonucleotide sequences used can be 
obtained on request). The overlapping fragments of IVI-
1173 and RVB-581 were assembled stepwise in pACJR1 
and pACJR2 respectively, using the sites described above 
and unique restriction sites in the overlapping regions 
(details of the constructions can be obtained on request). 
All full-length plasmids were propagated in Escherichia 
coli XL-1 Blue and verified by nucleotide sequencing. 
All clones containing the consensus sequences deter-
mined above produced infectious virus upon transfection 
of cells with in  vitro RNA transcripts (see below). The 
cDNA clones pIVI1173 #5 and pRVB581 #1 were used in 
the studies reported here.

Transfection of in vitro transcripts and rescue of PRRSV
The plasmids pIVI1173 #5 and pRVB581 #1 were lin-
earized with the restriction endonuclease SwaI at the 
3′-terminal run-off site downstream of the polyA tail. 
Purified linearized DNA served as templates for in vitro 
transcription of capped RNA using the mMESSAGE 
mMACHINE Ultra T7 kit (Ambion) with m7G(5′)ppp(5′)
G cap analog. The reaction mixture was treated with 
DNaseI to remove the template DNA and then purified 
with Illustra MicroSpin Columns S-400 HR (GE Health-
care Life Sciences). RNA was resuspended in water and 
stored at −70  °C in small aliquots. Size and integrity as 
well as concentration of the capped in  vitro transcripts 
were determined by electrophoresis and measured with a 
Nanodrop 2000c spectrophotometer (Thermo Fisher Sci-
entific), respectively. Virus was rescued by transfection 
of BHK-21 cells followed by infection of MDM. Briefly, 
BHK-21 cells were harvested, washed, and resuspended 

in PBS at a concentration of 20 × 106 cells/mL. Ten μg of 
in vitro transcripts were added to 0.4 mL of cell suspen-
sion and electroporated with 2 pulses of 100 µs at 980 V 
with 1  s interval between the pulses using a ECM 830 
Square Wave Electroporation System (BTX). After elec-
troporation, 90% of the cells were diluted in cell growth 
medium and seeded in T75 flask. The remaining fraction 
of cells was seeded in 24-well plates to monitor PRRSV 
N protein expression by IPMA. At 24  h after transfec-
tion, the supernatant was collected after one freeze–thaw 
cycle, clarified by centrifugation, and used to infect por-
cine MDM. Rescue of infectious virus was confirmed 
by monitoring N protein expression by IPMA 48 h after 
infection of MDM and by virus titration in MDM.

Construction of vIVI1173‑N(T90) and vRVB581‑N(A90)
The mutations encoding the amino acid substitutions 
A90T and T90A in N of pIVI1173 and pRVB581 respec-
tively were generated using site-directed mutagenesis in 
short subcloned cDNA fragments using an overlapping 
extension PCR technique essentially as described before 
[54]. The mutated fragments were verified by nucleotide 
sequencing and transferred in the full-length plasmids. 
Details of the constructions can be obtained on request. 
The viruses vIVI1173-N(T90) and vRVB581-N(A90) 
were rescued as described above.

Construction and transfection of PRRSV‑ORF7 plasmids
The ORF7 cDNA cassettes of vIVI1173 and of the 
vIVI1173-N(T90) mutant were amplified from the respec-
tive functional full-length cDNA clones. The ORF7 cDNA 
cassette of 10 selected PRRSV strains with natural substi-
tutions of threonine at position 90 of N were synthesized 
by GenScript (Piscataway, NJ, USA). All ORF7 cassettes 
were inserted in the NheI and NotI restriction endonucle-
ase sites of pcDNA6/V5-His B and the resulting plasmids 
propagated in Escherichia coli XL-1 Blue. BHK-21 cells 
were transfected with 500 ng of each plasmid DNA puri-
fied with the NucleoBond Xtra Midiprep EF kit (Mach-
erey–Nagel) using Lipofectamine 2000 (Invitrogen). 
Nucleocapsid N expression was monitored by FCM and IF.

Results
IVI‑1173 is a genotype 1 subtype 1 PRRSV with atypical 
protein features
The PRRSV isolate IVI-1173 was recovered in porcine 
MDM from serum of an infected pig that was diagnosed 
PRRSV-positive with a quantitation cycle (Cq) value of 
24 during a recent outbreak in Switzerland. A cytopath-
ogenic effect became visible 24  h after infection, and 
nearly complete lysis of the cell monolayer was observed 
after 72 h. Surprisingly however, a PRRSV-specific stain-
ing of IVI-1173-infected MDM was observed only with 
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the mAbs SR30 and 13E2 but not with mAb SDOW17 
considered to detect nearly all PRRSV. This suggested 
atypical antigenic properties of N of IVI-1173.

In order to further characterize the IVI-1173 isolate, 
the complete nucleotide sequence was determined (Gen-
Bank accession number KX622783) and a functional 
full-length cDNA clone was constructed. The genome of 
IVI-1173 comprises 15065 nucleotides plus a polyA tail. 
The nucleotide identity of IVI-1173 with full-length gen-
otype 1 sequences ranges from 80 to 89% while the virus 
shares only 61% nucleotide identity with the prototype 
genotype 2 strain VR-2332 and the highly pathogenic 
genotype 2 isolate RVB-581 (Table  1). The prototype 
genotype 1 strain Lelystad (LV) is the closest related 
strain overall, with 89% nucleotide identity based on the 
full-length nucleotide sequence. However, the nucleo-
tide and amino acid identities of the individual genes of 
IVI-1173 and LV vary considerably from 81% to more 
than 97% identities depending on the gene or region 
compared (Table  2). Accordingly, separate nucleotide 
BLAST searches with the terminal untranslated regions 
(UTR) and with each ORF individually revealed genotype 
1 strains other than LV that were more closely related 
to IVI-1173 (Table 3). In particular, based on ORF5, the 
closest strain is a German isolate from 2002 with 93% 
nucleotide and 95% amino acid identity, while the 5′ and 
3′ UTR were the closest to Danish isolates. Despite this 
intra-genomic variability, the RAT recombination analy-
sis tool software did not identify any potential recombi-
nation event.  

The different clustering depending on the genome 
region was confirmed with phylogenetic analyses. A phy-
logenetic tree including 55 full-length PRRSV genome 
sequences showed that IVI-1173 belongs clearly to 
genotype 1, clustering with two Austrian, one German 
and two South Korean strains. However, this associa-
tion was supported by a bootstrap value of 55 only (Fig-
ure 1). A phylogenetic tree based on 174 ORF5 sequences 

confirmed the grouping of IVI-1173 within the classical 
subtype 1 PRRSV and the close relationship to strains 
from Austria, Spain, Germany and South Korea (Fig-
ure 2A). The affiliation of IVI-1173 to subtype 1 PRRSV 
was also confirmed with 225 ORF7 sequences, but the 
closest related subtype 1 isolates were from USA, Hun-
gary, Portugal, Denmark, China, Germany and Spain. 
Here, IVI-1173 clustered also with two vaccine strains, 
Amervac and Pyrsvac-187 (Figure 2B).

An important feature was a 33 nucleotide deletion 
in the IVI-1173 genome where the ORF3 and ORF4 
mRNAs overlap, leading to an 11 amino acid deletion 
in each of the two proteins when compared with the 
GP3 and GP4 from LV, near the C-terminal end of GP3 
and downstream of amino acid 58 of GP4, respectively 
(Figures  3A  and B). Moreover, GP3 of IVI-1173 has 4 
additional amino acids at the carboxy-terminal end (Fig-
ure  3A). The N protein of LV and IVI-1173 differ by 7 
amino acids (Figure 4). At position 62 of N (highlighted 
with a triangle in Figure  4), where PrimePac carries a 
tyrosine responsible for the lack of reactivity of N with 
SDOW17 [40], there is a conserved aspartic acid in IVI-
1173. Therefore, this residue could not explain the lack of 
reactivity of IVI-1173 with the SDOW17 mAb. The most 
prominent difference found in IVI-1173 compared with 
other PRRSV was an alanine at position 90 of N [N(A90)] 
instead of a conserved threonine at this position (repre-
sented by a star in Figure 4). 

The amino acid at position 90 of N is critical for the 
conformational epitope recognized by the mAb SDOW17
Since position 62 of N is obviously not involved in the 
lack of reactivity of IVI-1173 with the SDOW17 mAb 
(see above), we investigated the potential role of posi-
tion 90 for this epitope by replacing the N(A90) in the 
cDNA-derived vIVI1173 with the conserved threonine 
[N(T90)]. As expected, cells infected with vIVI1173 
were clearly positive for N expression with mAb SR30 

Table 1  Nucleotide identity of IVI-1173 (15 065a) with representative PRRSV strains (in %)

MV: moderately virulent; HV: highly virulent.
a  IVI-1173 genome length without polyA tail used in the nucleotide sequence comparison.
b  Genome length without polyA used in the nucleotide sequence comparison with IVI-1173.
c  Nucleotide identity with IVI-1173 in %.
d  Not applicable.

LV Amervac Euro-PRRSV 13V091 Lena VR-2332 RVB-581

Genotype 1 1 1 1 1 2 2

Subtype 1 1 1 1 3 N.a.d N.a.

Virulence MV Vaccine Vaccine HV HV MV HV

Genome lengthb 15 098 15 098 15 047 15 020 15 001 15 411 15 320

Nt identityc (%) 89 87 87 84 80 61 61
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whereas no signal was obtained with SDOW17 (Fig-
ure  5B). The threonine at position 90 restored detec-
tion of vIVI1173-N(T90)-infected cells with SDOW17, 
whereas the signal obtained with SR30 remained 
unchanged (Figure  5C), suggesting that threonine at 
position 90 belongs to the conformational epitope rec-
ognized by SDOW17. This was confirmed by disrupt-
ing the putative SDOW17 epitope at position 90 of N 
in the backbone of the genotype 2 strain RVB-581. To 
this end, the N(T90) was substituted with an alanine 
in the cDNA-derived vRVB581. MDM infected with 
vRVB581 were clearly positive for N expression by 
immunodetection with both, SR30 and SDOW17 (Fig-
ure  5D) whereas infection with the mutant vRVB581-
N(A90) was detected with SR30 but not with SDOW17 
(Figure  5E). Moreover, MDM infected with the isolate 
CReSA-2982 harbouring an alanine at position 90 of N 

did not react with SDOW17 neither, while they were 
positive with SR30 (Figure  5F). Altogether, these data 
demonstrate that position 90 of N is part of the confor-
mational epitope recognized by SDOW17 and suggest 
the requirement of a threonine at this position.

Field strains detected by the mAb SDOW17 harbour 
typically threonine or serine at position 90 of N
Based on the results obtained above, we determined 
whether the reactivity of N with SDOW17 can be pre-
dicted from the sequence at position 90 of natural 
PRRSV isolates and whether other residues than threo-
nine are tolerated at this position. To this end, the N 
proteins from ten field strains harbouring natural sub-
stitutions of threonine at position 90 were expressed 
transiently in BHK-21 cells transfected with plasmids for 
eukaryotic expression of the different N genes. Detec-
tion of N by flow cytometry (Figure 6) and immunofluo-
rescence (Additional file 2, panel A) using SDOW17 and 
SR30 in parallel showed that the ratios of the SDOW17 
to SR30 reactivity were significantly reduced in all N car-
rying an alanine at position 90, except for the Korean 
strain IV3140 (Figures  6A  and F; Additional file  2). The 
detection of the 13V117 isolate carrying a valine at this 
position was only partially impaired (Figures  6B  and 
F; Additional file  2) while the two viruses with a ser-
ine at position 90 were detected nearly as efficiently as 
vIVI1173-N(T90) (Figures 6C, D and F; Additional file 2).

Substitutions of threonine at position 90 of N are highly 
prevalent in Russian subtype 1 and in subtype 2 PRRSV 
strains
Considering the requirements of amino acid 90 of N for 
the detection of virus infection by SDOW17, we inves-
tigated the prevalence of an alanine at position 90 of N 
[N(A90)] in a wide panel of N sequences from PRRSV 
genotype 1 strains available from GenBank (Figure  7; 
Additional file 1). It appears that N(A90) is found in 70% 
of the Russian subtype 1 strains and in 45% of the sub-
type 2 strains [5]. Valine and serine at this position are 
less frequent. These findings are certainly to be consid-
ered in PRRSV isolation and detection procedures of 
these subtypes in particular.

Discussion
During a short PRRSV outbreak in Switzerland in 2012 
[48], it was noticed that the virus had unusual antigenic 
properties of N, as infected cells failed to react with the 
mAb SDOW17 commonly used in PRRSV diagnostics. 
Complete genomic sequence analysis of the isolate IVI-
1173 recovered from a viremic pig revealed a genotype 1 
subtype 1 PRRSV with atypical protein features of GP3, 
GP4 and N. Reverse genetics was used to demonstrate 

Table 2  Comparison of nucleotide (nt) and amino acid (aa) 
identities between IVI-1173 and LV

a  Not applicable.
b  Genome length of IVI-1173 without polyA tail.
c  Genome length of LV without polyA tail.

Sequence Gene % nt identity (length) % aa identity 
(length)

Full length 
sequence

N.a.a 88.91% (15 065b/15 098c) N.a.

5′ UTR N.a. 96.38% (221) N.a.

ORF1a N.a. 87.76% (7191) 89.11% (2396)

Nsp1 86.32% (1155) 87.27% (385)

Nsp2 85.33% (2583) 81.30% (861)

Nsp3 90.68% (1341) 95.30% (447)

Nsp4 89.82% (609) 95.57% (203)

Nsp5 91.76% (510) 95.88% (170)

Nsp6 93.75% (48) 93.75% (16)

Nsp7a 86.13% (447) 95.97% (149)

Nsp7b 90.83% (360) 94.17% (120)

Nsp8 88.15% (135) 100% (45)

ORF1b N.a. 90.19% (4392) 95.76% (1463)

Nsp9 90.59% (1935) 96.28% (645)

Nsp10 90.20% (1326) 95.70% (442)

Nsp11 89.88% (672) 95.54% (224)

Nsp12 88.89% (459) 94.08% (152)

ORF2a GP2 92.4% (750) 93.98% (249)

ORF2b E 95.31% (213) 97.15% (70)

ORF3 GP3 81.83% (777/798) 82.26% (258/265)

ORF4 GP4 84.24% (519/552) 83.61% (172/183)

ORF5 GP5 89.77% (606) 90.55% (201)

ORF5a 5a 96.97% (132) 95.35% (43)

ORF6 M 91.76% (522) 95.38% (173)

ORF7 N 94.83% (387) 94.53% (128)

3′ UTR N.a. 94.74% (114) N.a. 
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that the lack of IVI-1173  N detection by SDOW17 was 
due to an alanine at position 90 of N instead of a threo-
nine present in most classical PRRSV subtype 1 isolates. 
Importantly, these data highlight an antigenic feature of 
N with unexpected high prevalence in Russian subtype 1 
and in subtype 2 PRRSV.

The IVI-1173 isolate clustered with the genotype 1 sub-
type 1 strains, irrespectively of whether the phylogenetic 
analyses employed ORF5 or ORF7 sequences used typi-
cally for PRRSV genotyping [5]. This was in line with the 
general observation that subtyping of genotype 1 leads 

to similar results with the two ORFs [18, 50], with the 
exception of Russian strains for which the subtyping is 
incongruent [5, 6]. These latter strains group within sub-
type 1 in phylogenetic trees based on ORF7 and within 
subtype 2 in trees based on ORF5. Interestingly, we found 
a high proportion of strains with N(A90) among both, the 
Russian subtype 1 and the subtype 2 isolates, compared 
to the classical subtype 1 strains. Thus our data high-
light an antigenic characteristic shared essentially by the 
Russian subtype 1 and the subtype 2 isolates (Figure 7), 
which in this case is consistent with subtyping based on 
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Figure 1  Phylogenetic analysis of the IVI-1173 genome in the context of 55 complete genotype 1 PRRSV genomes. The tree was con‑
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Figure 2  IVI-1173 clusters within genotype 1 subtype 1 PRRSV. The trees were constructed by the Neighbor Joining method and represent 
a phylogenetic analysis using 174 ORF5 (A) and 225 ORF7 (B) nucleotide sequences from GenBank. The subtypes are represented with different 
colours.
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A

B

Figure 3  Alignment of the GP3 and GP4 amino acid sequences of selected PRRSV genotype 1 isolates. In comparison with LV, the amino 
acid deletions of different lengths in the overlapping region of GP3 (A) and GP4 (B) of selected PRRSV genotype 1 isolates are boxed, and the 4 
additional amino acids at the C-terminus of GP3 are shaded.
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ORF5 showing a close relationship of these two subtypes 
(Figure 2), as opposed to the phylogeny based on ORF7 
[6].

An interesting observation was the 11 amino acid dele-
tion in each of the two glycoproteins GP3 and GP4. This 
deletion lies within a neutralizing domain of GP3 and 
GP4 identified in LV [55, 56]. Interestingly, a 12 amino 
acid deletion at this same position was reported for the 
isolate AUT14-440 closely related to IVI-1173 and iso-
lated very recently in Austria [57] (Figures 3A and B). The 
deletion may be the consequence of selective pressure 
exerted by neutralizing antibodies. This has already been 
postulated with strains from the early 1990s that exhib-
ited shorter amino acid deletions within this epitope [58] 
(Figure 3A).

Another interesting feature of IVI-1173 was the lack of 
reactivity of N with SDOW17. We used reverse genet-
ics to demonstrate the involvement of amino acid 90 of 
N in the conformational epitope recognized by this mAb. 
Reactivity of N with SDOW17 was restored completely 
by substituting alanine with a threonine at this position 
in the IVI-1173 backbone. Disruption of the epitope in 
the RVB-581 backbone by the opposite substitution dem-
onstrated definitively the importance of this residue for 
detection of PRRSV-infected cells by SDOW17. Several 
mAbs were found to detect common antigenic regions 

of genotype 1 and 2 PRRSV. One common domain was 
found between amino acids 50 and 66 of N using the 
Olot/91 (European) and Québec 807/94 (North Ameri-
can) isolates [32]. Overall, at least 4–5 antigenic domains 
were mapped in N using a panel of mAbs [29, 33, 34, 56] 
(Additional file 2, panel B, Additional file 3). While most 
mAbs reacted with linear peptides, one group of mAbs 
including SDOW17 recognized a discontinuous epitope 
in N of the two genotypes. For the genotype 1 prototype 
LV, SDOW17 recognized amino acids 51–67 and 80–90 
[33] (Additional file 2, panel B, yellow shading). For the 
PA-8 strain, a genotype 2 related to VR-2332, SDOW17 
binding was mapped to residues 30–52 and 112–123 [34] 
(Additional file  2, panel B, dark blue boxes). The SR30 
epitope was localized between residues 69 and 123 in 
PA-8 [34] (Additional file 2, panel B, light blue box). Both, 
the SR30 and SDOW17 mAbs do not detect N in Western 
blots [34]. The epitope recognized by mAb 13E2 could 
not be identified by pepscan analysis [56]. Interestingly, 
SDOW17 was long regarded as a nearly universal anti-
body for PRRSV detection, except for the PrimePac vac-
cine strain that was considered as one of the rare viruses 
not detected by this mAb [40]. The failure of SDOW17 
to detect the PrimePac virus was mapped to a tyrosine 
that had replaced a conserved aspartic acid at position 62 
(Figure 4; Additional file 2, panel B). With amino acid 90, 

Figure 4  Alignment of the N amino acid sequences of IVI-1173 and of representative PRRSV strains. The 7 amino acid differences 
between the genotype 1 prototype strain LV and IVI-1173 are shown in blue bold letters. The red star highlights the substitution of the conserved 
threonine at position 90 of N with an alanine in IVI-1173. Be1 and LA2 (genotype 1) are the closest to IVI-1173 at the nucleotide and amino acid level 
of N. VR-2332 is the prototype genotype 2 PRRSV. Lena and RVB-581 are highly virulent genotype 1 subtype 3 and genotype 2 strains, respectively. 
PrimePac (genotype 2) is the only strain for which the lack of N detection by SDOW17 was reported, which is due to substitution of a conserved 
aspartic acid at position 62 with a tyrosine (red triangle).
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Figure 5  The amino acid at position 90 of PRRSV N is crucial for the epitope recognized by SDOW17. MDM were mock infected (A) or 
infected with vIVI1173 or the mutant vIVI1173-N(T90) (B, C), with vRVB581 or the mutant vRVB581-N(A90) (D, E) or with CReSA-2982 or LV as controls 
(F, G). After 18 h, N detection by flow cytometry (left two panels) and by immunofluorescence staining of the monolayers (right two panels) was 
performed with mAbs SR30 and SDOW17.
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we identified a critical residue from the second domain 
of the conformational epitope of SDOW17. According 
to the crystal structure of N [59], this residue is located 
within a beta-strand. N forms dimers in which the two 
antigenic regions 51–67 and 80–90 are located close to 
each other [59]. Tentative in silico modelling of the effect 
of an alanine substitution at this position using the Gar-
nier-Osguthorpe-Robson method suggests a disruption 
of the beta strand towards a more helical structure (not 
shown).

An important finding resulting from the present data 
demonstrating the role of N(T90) for the SDOW17 
epitope is the unexpected high prevalence of an alanine at 
this position [N(A90)] in the subtype 1 strains from Rus-
sia and in subtype 2 isolates. Most of the PRRSV partial 

sequence data from GenBank are determined from RT-
PCR without virus isolation. Therefore, little is known on 
the antigenic properties of the proteins from the viruses 
sequenced. We used synthetic cDNA fragments to 
express a selection of ten PRRSV N proteins from differ-
ent subtypes, all carrying a predicted disrupted SDOW17 
epitope. Apart from the South Korean isolate IV3140, 
all N proteins carrying the N(A90) residue were not or 
only weakly detected by SDOW17. Serine could substi-
tute for threonine without nearly any loss of function. 
However, the picture was not black and white, suggest-
ing intermediate affinities with alanine or valine at posi-
tion 90 depending probably on compensatory changes 
elsewhere in the conformational epitope. By compar-
ing the sequences of N of the Bor-41, Sid and IV3140 

PRRSV strains
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Figure 6  Comparative reactivity of N from various PRRSV strains with the mAb SDOW17. The PRRSV N genes from genotype 1 PRRSV 
strains of different subtypes (1 = classical subtype 1, 1′ = Russian subtype 1, 2 = subtype 2, 3 = subtype 3) with an alanine (A), a valine (B), a serine 
(C), or a threonine (D) at position 90 were cloned in pcDNA6/V5-His and expressed in BHK-21 cells. N expression was monitored 24 h after lipofec‑
tion by flow cytometry using the SDOW17 and SR30 mAbs. The gate of N-positive cells was determined according to the density plot obtained with 
the cells transfected with the empty plasmid, pCDNA6-Δ (E). The percentage of SDOW17 reactivity compared with the SR30 reactivity is indicated 
for each SDOW17 panel (A–D). The mean values from 2 independent experiments performed in triplicate are plotted, with error bars showing the 
standard deviation and with the amino acid at position 90 shown at the bottom of each bar (F). The N proteins of the different strains were grouped 
according to the ratio of SDOW17 to SR30 detection (% of reactivity). Black, light grey and dark grey bars represent the strains with less than 25%, 
between 25 and 75%, and more than 75% N detection by SDOW17 versus SR30, respectively. The differences between groups were assessed statis‑
tically by the Mann–Whitney U test (*p < 0.05; **p < 0.01).
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Figure 7  Prevalence of N(A90) in genotype 1 PRRSV. PRRSV strains carrying an amino acid other than a threonine at position 90 of N are repre‑
sented by colored dots in a phylogenetic tree based on 225 ORF7 sequences, with blue for alanine, red for valine and green for serine. The fraction 
(and percentage) of strains harboring an alanine at position 90 are indicated for each subtype.
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strains that are detected by SDOW17 at different degrees 
despite the presence of N(A90) with the sequences of the 
non-detected strains carrying N(A90), one may predict 
potential compensatory mutations in the region encom-
passing residues 34–50 and 121–124 of the Bor-41, Sid 
and IV3140 strains (see Additional file 2, panel B). These 
two regions were previously identified as part of the 
epitope detected by SDOW17 in genotype II strains [34] 
(Additional file  2, panel B, Additional file  3). Moreover, 
modelisation of the IVI-1173 and IV3140 N proteins with 
the protein homology/analogy recognition engine ver-
sion 2.0 (Phyre2, [60]) showed a helix structure in N of 
IV3140 between residues 123-125, which is not found 
in N of IVI-1173 (Additional file 4). However the confi-
dence values for this latter structure were low. Eventually, 
reverse genetics studies are required to identify the resi-
dues that allow SDOW17 binding to IV3140  N despite 
N(A90). The relatively high prevalence of N(A90) may sug-
gest a functional relevance of this epitope in vivo. Since N 
is not exposed on the virion surface, a selective pressure 
driving amino acid substitutions in N may be related to 
immunological selection to evade T cell responses in par-
ticular porcine genetic backgrounds [5, 61].

Due to the high genetic diversity of PRRSV, only few 
commercial antibodies are available. SDOW17 has been 
widely used as nearly universal anti-PRRSV mAb. In 
addition, new diagnostic approaches relying on the uni-
versal properties of monoclonal antibodies have been 
developed using SDOW17 as a prototype [62]. From a 
general point of view, our study shows that antigen detec-
tion based on a single mAb must be considered with care. 
This was emphasised in a recent review claiming that lack 
of knowledge on the properties and affinities of antibod-
ies are a major cause of non-reproducibility in research 
and diagnostics [63].
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