
Fan et al. Vet Res  (2015) 46:136 
DOI 10.1186/s13567-015-0279-8

RESEARCH ARTICLE

Transcriptomic analysis of the host 
response to an iridovirus infection in Chinese 
giant salamander, Andrias davidianus
Yuding Fan1,4†  , Ming Xian Chang2†, Jie Ma1, Scott E. LaPatra3, Yi Wei Hu2, Lili Huang1, Pin Nie2* 
and Lingbing Zeng1*

Abstract 

The emergence of an infectious viral disease caused by the Chinese giant salamander iridovirus (GSIV) has led to sub-
stantial economic losses. However, no more molecular information is available for the understanding of the mecha-
nisms associated with virus–host interaction. In this study, de novo sequencing was used to obtain abundant high-
quality ESTs and investigate differentially-expressed genes in the spleen of Chinese giant salamanders that were either 
infected or mock infected with GSIV. Comparative expression analysis indicated that 293 genes were down-regulated 
and 220 genes were up-regulated. Further enrichment analysis showed that the most enriched pathway is “comple-
ment and coagulation cascades”, and significantly enriched diseases include “inherited thrombophilia”, “immune 
system diseases”, “primary immunodeficiency”, “complement regulatory protein defects”, and “disorders of nucleotide 
excision repair”. Additionally, 30 678 simple sequence repeats (SSRs) from all spleen samples, 26 355 single nucleotide 
polymorphisms (SNPs) from the spleens of uninfected animals and 36 070 SNPs from the spleens of infected animals 
were detected. The large amount of variation was specific for the Chinese giant salamanders that were infected with 
GSIV. The results reported herein provided significant and new EST information that could contribute greatly in inves-
tigations into the molecular functions of immune genes in the Chinese giant salamander.

© 2015 Fan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Amphibians are an important evolutionary bridge 
between aquatic and terrestrial vertebrates [1]. The Chi-
nese giant salamander, Andrias davidianus, is the largest 
extant amphibian species and is considered a living fossil 
because it has existed for more than 350 million years [2]. 
The phylogenetic position of the Chinese giant salaman-
der makes it an invaluable model for evolutionary and 
comparative studies. The Chinese giant salamander also 
has significant economic value as an edible delicacy and 
for medicinal purposes. However, in the past 50  years 

the Chinese giant salamander population has declined 
sharply due to deterioration of habitat, environmental 
pollution, climate change, infectious diseases and com-
mercial trade [3, 4]. Currently, artificial breeding and 
culture is being used to protect the Chinese giant sala-
mander. Approximately two million Chinese giant sala-
manders are bred annually in China.

With the rapid expansion of Chinese giant salamander 
farming, emerging infectious diseases have been increas-
ing. Viral diseases, including the iridovirus, have caused 
major impacts to the Chinese giant salamander indus-
try [5, 6]. The economic losses caused by the Chinese 
giant salamander iridovirus (GSIV) reached 300 million 
RMB (48 million USD) in 2010. There is an urgent need 
to understand the immune system of the Chinese giant 
salamander and the pathogenic mechanism(s) associated 
with a GSIV infection. In previous studies, the morpho-
genesis, pathological changes, rapid detection methods 
and virion-associated viral proteins of GSIV have been 
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reported [7–12]. Although a ranavirus-induced thy-
mus cDNA library and two immune organs (skin and 
spleen) from the healthy Chinese giant salamanders 
were sequenced [13, 14], and several immune genes were 
reported [15–17], the molecular information available is 
still limited for the Chinese giant salamander and that 
has hindered the understanding of the molecular mech-
anisms associated with viral infection and virus–host 
interactions.

Next-generation sequencing technology, such as de 
novo transcriptome sequencing, can be used for large-
scale efficient and economical production of ESTs, and 
has become an important method for studying non-
model species [18, 19]. Transcriptome sequencing 
facilitates functional genomic studies, including global 
gene expression, novel gene discovery, assembly of full-
length genes, simple sequence repeats (SSRs) and sin-
gle nucleotide polymorphism (SNP) discovery [20]. 
This technology has also been used widely in compara-
tive transcriptomics to identify differences in transcript 
abundance among different developmental stages and 
under different treatment conditions [21, 22]. In the pre-
sent study, the spleen transcriptome of the Chinese giant 
salamander was sequenced by de novo sequencing tech-
nology, and a comparative analysis of transcriptome data 
was performed between a control and a group infected 
with GSIV. The results provided a significant amount 
of information on the genes in the Chinese giant sala-
mander, and suggested the conservation and divergence 
of several important immune signaling pathways. The 
different genes expressed and enrichment analysis of 
pathways could contribute significant new information 
regarding the pathogenic mechanism(s) of the virus and 
the interaction(s) of the virus and the host.

Materials and methods
Chinese giant salamanders, viral challenge and sample 
collection
Chinese giant salamanders (average weight, ~180  g) 
were obtained from the research farm of the Yangtze 
River Fisheries Research Institute in Wuhan, China. 
Prior screening indicated that these animals were free of 
GSIV. All the salamanders were kept in aerated, tap water 
supplied tanks at 20 °C and fed with diced bighead carp 
(Hypophthalmichthys nobilis) for 2  weeks prior to the 
experiment. The virus suspension used to infect a portion 
of the salamanders was obtained from GSIV-infected 
EPC cells. The fish in infected group (GS_TS) were 
injected intramuscularly with 0.2  mL of the GSIV sus-
pension (5 × 107 TCID50/mL), and fish in control group 
(GS_CS) were injected intramuscularly with equal vol-
ume of DPBS (Sigma). The spleens from three individual 

salamanders from each group were collected at 48  h 
post-injection.

RNA isolation and cDNA synthesis
Total RNA was extracted from the spleens using TRI-
zol® Reagent (Invitrogen, USA). Samples of the three 
individuals from each treatment group were pooled in 
equal amounts to generate one RNA sample per group. 
These two RNA samples were sent to Shanghai Majorbio 
Bio-pharm Biotechnology Co., Ltd. (Shanghai, China) 
for the cDNA library construction and Illumina deep 
sequencing.

cDNA library construction and Illumina deep sequencing
Two cDNA libraries were prepared using the TruseqTM 
RNA sample prep Kit (Illumina, San Diego, CA, USA) 
following the manufacturer’s instructions. Briefly, poly 
(A)+ RNA was purified from 5 μg of pooled total RNA 
using oligo (dT) magnetic beads, sheared into short frag-
ments, and primed for cDNA library synthesis using 
the TruSeq RNA sample preparation kit according to 
the manufacturer’s instructions (Illumina). After quan-
titation using a TBS-380 minifluorometer (PicoGreen), 
the samples were clustered (TruSeq paired-end cluster 
kit v3-cBot-HS; Illumina) and sequenced on the HiSeq 
2000 platform (100 bp, TruSeq SBS kit v3-HS 200 cycles; 
Illumina).

Data analysis
The raw reads from the images were generated using 
Solexa GA pipeline 1.6. After the removal of low-qual-
ity reads, processed reads with an identity value of 95% 
and a coverage length of 100  bp were assembled using 
the Trinity de novo assembler [23]. The isogenes gener-
ated were compared with the NCBI non-redundant (nr) 
database using the BLASTx algorithm, with a cut-off E 
value of ≤10−5. GO terms were extracted from the best 
hits obtained from the BLASTx against the nr database 
using Blast2GO [24]. These results were then sorted by 
GO categories using in-house Perl scripts. BLASTx was 
also used to align unique sequences to the Swiss-Prot 
database, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Clusters of Orthologous Groups (COG) 
(with the e value of 10−6) to predict possible functional 
classifications and molecular pathways [25].

Differential expression analysis
To identify differentially expressed genes/isogenes 
between infected and uninfected groups, genes/isogenes 
expression levels were measured by using numbers of 
fragments per kilobase of transcript per million frag-
ments sequenced (FPKM) [26], similar to RPKM (reads 
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per kilobase of gene model exon per million mapped 
reads) measure used earlier [27]. The differential expres-
sion analysis was carried out using RSEM [28] and edgeR 
[29] softwares. For each gene/isogene, the p value was 
computed, and then Benjamini–Hochberg false discov-
ery rate (FDR) was applied to correct the results for p 
value. The transcripts that were increased or decreased 
at an estimated absolute log2-fold change of >1 and FDR 
adjusted p value ≤ 0.05 were considered to be differen-
tially expressed.

Identification of EST‑SSR motifs and EST‑SNPs
MSATCOMMANDER V. 0.8.2 [30] was used to ana-
lyze the microsatellite (SSR) distribution. The minimum 
number of repeats for SSR detection was six for di-SSRs 
and four repeats for tri-, tetra-, penta-, and hexa-SSRs. 
The open reading frame (ORF) and untranslated region 
(UTR) within the isotig were identified using Trinity [23]. 
The location of SSRs was estimated based on ORFs and 
UTRs. SSR-containing isotigs were annotated based on 
BLAST similarity searches. SNPs were detected based 
on alignment using BWA V. 0.5.9 [31] and SAMtools V. 
0.1.18 [32]. From the “pileup” output of SAMtools, Var-
Scan V.2.2.7 filtered SNPs based on the following crite-
ria including (1) the total coverage and the number of 
reads to cover a candidate SNP (>8 reads); (2) the base 
quality where base calls with low Phred quality (<25) 
were removed from the coverage; and (3) frequency of 
mutated bases higher than 30% among all reads covering 
the position.

Quantitative real‑time PCR
Quantitative real time PCR was performed using iQ™ 
SYBR Green Supermix (Bio-Rad, Singapore) on a BIO-
RAD CFX96 Real-Time System under the following 
conditions: 3 min at 95 °C, followed by 45 cycles of 15 s 
at 94 °C, 15 s at 55 °C and 30 s at 72 °C. Different genes 
including complement component C1R, C1S, C1S-like, 
C2, C3, C4, C5, C7, C8A and C9 were used for validation. 
An additional file shows the primer sequences used in 
this study (Additional file 1). The relative expression lev-
els of the selected genes were normalized to β-Actin and 
calculated using 2−ΔΔCt method.

Results
De novo sequencing and assembly
Two sequencing libraries were prepared from spleen 
samples obtained from control (GS_CS) and GSIV-
infected (GS_TS) Chinese giant salamanders that were 
sequenced using an Illumina Hiseq 2000. In total, 122.48 
million raw reads were generated from GS_CS and 
154.75 million for GS_TS. The data was refined by dis-
carding low-quality reads that contained unknown bases 

or whose length was lower than 20 nt after removal of the 
adaptors and low-quality bases. The resulting high-qual-
ity reads numbered 113.45 million and 143.78 million for 
the GS_CS and GS_TS samples, respectively. The total 
length of these reads was 9.6 × 109 and 11.97 × 109 bp 
for GS_CS and GS_TS samples, respectively and the Q20 
percentage (the percentage of sequences with a sequenc-
ing error rate lower than 1%) was over 98% for both 
samples (Table 1). All high-quality reads were deposited 
in the National Central for Biotechnology Information 
(NCBI) and can be accessed under the accession number 
SRP047398.

De novo assembly was performed using Trinity that 
resulted in 80 367 genes and 123 440 isogenes. The total 
length was 182  916  518  bp, with an average length of 
1481 bp (Table 2). Each isogene was longer than 351 bp, 
and 71 295 (57.76%) of the isogenes were 350–1000 bp. 
Additionally, 27 826 (22.5%) of the isogenes were longer 
than 2000 bp. The size distribution of isogenes is shown 
in Figure 1A.

Functional annotation and classification
All assembled high-quality isogenes had their ORFs pre-
dicted using Trinity. A total of 58  979 (47.8%) isogenes 
contained an ORF. The predicted protein sequences were 
blasted against NR (non-redundant protein sequences in 
NCBI), String and Gene databases using BLASTP with 
a cut-off E value of 10−5. There were 38 106 (64.6%) iso-
genes with homologous sequences in at least one of the 
databases. Among them, 38  106 (64.6%), 15  579 (26.4), 
and 20  352 (34.5%) isogenes were found in NR, String 
and Gene databases, respectively. A total of 9629 (16.3%) 

Table 1  Summary of sequencing results.

GSIV-infected Control

Total raw reads 154 748 118 122 483 450

Total clean reads 143 776 686 113 450 692

Total clean nucleotides (bp) 11 967 607 097 9 600 577 224

Q20 percentage 98.44% 98.43%

Table 2  Summary of assembly results.

Type Number

Total gene 80 367

Total isogenes 123 440

Total residues 182 916 518

Average length 1481.83

Largest isogene 18 965

Smallest isogene 351
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isogenes were found in all three databases, while 20 873 
(35.4%) isogenes were not identified (Figure 1B).

The ORFs of 64  461 (52.2%) isogenes could not be 
predicted, and the DNA sequences of 64  461 isogenes 
were blasted against the NR, String and Gene databases 
using BLASTX with a cut-off E value of 10−5. There were 
10  138 (15.7%) isogenes with homologous sequences in 
at least one of above databases. Among them, 10  138 
(15.7%), 959 (1.5%), and 3351 (5.2%) isogenes were found 
in the NR, String and Gene databases, respectively. A 
total of 516 (0.8%) isogenes were found in all three data-
bases, while 54 323 (84.3%) isogenes were not identified 
(Figure 1C).

Based on NR annotations, the Gene Ontology (GO) 
classification system was used to classify the possible 

functions of the isogenes. A total of 31  356 (25.4%) iso-
genes were successfully assigned to at least one GO term 
annotation and were classified into three main catego-
ries including biological process, cellular component and 
molecular function (Figure  2A). For biological process, 
the top six largest categories were cellular component 
and molecular function (Figure  2A). For biological pro-
cess, the top six largest categories were cellular process  
(23 645), single-organism process (19 125), metabolic 
process (17  849), biological regulation (15  665), regula-
tion of biological process (14 954) and response to stimu-
lus (11  342). For the cellular component category, the 
top three largest categories were cell (22 548), cell part  
(22 544) and organelle (16 663). Only a few iso-
genes belonged to the virion (29), and virion part (24) 

Figure 1  Sequence length distribution and number of isogenes blasted to NR, String and Gene databases. A The length distribution of 
the isogenes. B Number of protein sequences blasted to NR, String and Gene databases. C Number of DNA sequences without ORFs blasted to NR, 
String and Gene databases.
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Figure 2  GO functional annotation and COG function classification. A Go functional annotation. Isogenes with the best BLAST hits were 
aligned to GO database. All 31 356 isogenes were assigned to at least one GO term and were grouped into three main GO categories and 61 sub-
categories. Right y axis represents number of isogenes in a category. Left y axis indicates percentage of a specific category of isogenes in each main 
category. B COG classification of putative proteins. All 16 538 putative proteins showing significant homology to those in the COG database were 
functionally classified into 25 families. The y axis indicates number of isogenes in a specific functional cluster.
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sub-categories. Interestingly, for the molecular function cat-
egory, 20 914 and 10 902 isogenes were classified into the 
sub-categories “binding” and “catalytic activity”, respectively.

Isogenes sequences in our transcriptome library were 
also analyzed by the Clusters of Orthologous Groups of 
proteins (COG). Out of 38 106 NR hits, 7719 (20.3%) of the 
sequences showed a COG classification (Figure  2B). The 
largest category was “general function prediction only” 
(2875 of 7719 isogenes or 37.2%), followed by “signal trans-
duction mechanisms” (1224 isogenes, 15.9%), “transcrip-
tion” (1126 isogenes, 14.6%), “replication, recombination 
and repair” (1105 isogenes, 14.3%) and “post-translational 
modification, protein turnover, chaperones” (706 isogenes, 
9.1%). The sub-categories “extracellular structures” (0, 0), 
“nuclear structure” (4, 0.05%) and “cell motility” (8, 0.1%) 
had the fewest related genes. Additionally, 310 (4.02%) iso-
genes were annotated as “function unknown”.

The 38  106 annotated sequences were mapped to the 
reference canonical pathways in the Kyoto Encyclopedia 
of Genes and Genomes (KEGG). Among those, 23  712 

isogenes were assigned to 317 KEGG pathways (Addi-
tional file 2). Of the 23 712 isogenes, 2195 (9.26%) were 
related to metabolic pathways, 784 (3.31%) to pathways 
in cancer, 750 (3.16%) to PI3K-Akt signaling pathway, 643 
(2.71%) to MAPK signaling pathway, 614 (2.59%) to neu-
roactive ligand-receptor interaction, and 604 (2.55%) to 
HTLV-I infection.

Differential expression analysis
To identify differential expression changes between 
GS_CS and GS_TS samples, FPKM method was used 
to calculate the expression levels of genes and isogenes. 
The results showed that 293 genes were down-regulated 
and 220 genes were up-regulated with an FDR < 0.05 and 
ratios larger than 2 (Figures 3A and B). Among them, 102 
down-regulated genes were detected only in the GS_CS 
samples (Additional file  3A), and 67 up-regulated genes 
specific for the GS_TS samples (Additional file  3B). For 
the isogenes, 2888 down-regulated and 3588 up-regu-
lated isogenes were identified (Figures 3C and D).

Figure 3  Identification of differentially expressed genes/isogenes between infected and uninfected groups. A The expression levels of 
differentially expressed genes. B The distribution of differentially expressed genes. C The expression levels of differentially expressed isogenes. D 
The distribution of differentially expressed isogenes. Differentially expressed genes or isogenes were determined using a threshold of FDR ≤ 0.001 
and |log2Rario| > 1. Redspots represent differentially expressed genes or isogenes. Black spots represent genes or isogenes that didn’t show obvious 
changes in the GSIV-infected Chinese giant salamander.
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Enrichment analysis was conducted to help clarify the 
biological functions of all differentially expressed isogenes 
(DEGs) that were identified. All DEGs were mapped to each 
term of the GO database, and the GO terms with a cor-
rected P value ≤0.05 were defined as significantly enriched 
in DEGs. The results indicated that 2493 DEGs were 
enriched in 433 GO terms (Additional file 4). Among these 
GO terms, “immune system process” (172 DEGs), “regula-
tion of immune system process” (123 DEGs), “response to 
stimulus” (962 DEGs), “response to DNA damage stimu-
lus” (78 DEGs), “lymphocyte activation” (45 DEGs), “T cell 
activation” (32 DEGs), “leukocyte migration” (30 DEGs) and 
“chemotaxis” (81 DEGs) were significantly enriched among 
DEGs compared with the whole transcriptome background.

We also performed an enrichment analysis of the 
KEGG pathways and diseases. These DEGs were signifi-
cantly enriched in 7 pathways including “complement 
and coagulation cascades”, “hematopoietic cell lineage”, 
“Staphylococcus aureus infection”, “tight junction”, “viral 
myocarditis”, “transcriptional misregulation in cancer” 
and “allograft rejection” (Additional file  5). The most 
enriched pathway was “complement and coagulation 
cascades” (66 DEGs), with 7 DEGs up-regulated and 
59 DEGs down-regulated (Figure  4). The significantly 
enriched disease terms included inherited thrombophilia 
(11 DEGs), immune system diseases (94 DEGs), primary 
immunodeficiency (71 DEGs), complement regulatory 
protein defects (9 DEGs), afibrinogenemia (5 DEGs), con-
genital disorders of the DNA repair systems (15 DEGs), 
agammaglobulinemias (9 DEGs), disorders of nucleo-
tide excision repair (13 DEGs), congenital disorders of 
metabolism (112 DEGs), cockayne syndrome (7 DEGs), 
H00821 (15 DEGs), familial combined hyperlipidemia 
(5 DEGs), H00978 (8 DEGs) and epidermolysisbullosa, 
simplex (7 DEGs) (Additional file 5). Among those DEGs 
involved in immune system diseases, 41 DEGs were up-
regulated and 53 DEGs were down-regulated (Figure 5A). 
Those DEGs associated with inherited thrombophilia, 
complement regulatory protein defects, afibrinogenemia, 
H00821, epidermolysisbullosa, and simplex diseases were 
strongly suppressed in the spleen of GSIV-infected Chi-
nese giant salamanders (Figure 5).

SSR and SNP discovery
Simple sequence repeats (SSRs) have been shown to be 
an efficient tool for performing quantitative trait loci 
(QTL) analysis and constructing genetic linkage(s) due 
to their high diversity and abundance. In the present 
study, 30  678 SSRs were obtained from the transcrip-
tomic information from the Chinese giant salamander. 
Among them, the most frequent repeat motifs were 
mononucleotide SSR motifs (76.2%), followed by trinu-
cleotide (11.95%), dinucleotide (10.06%), tetranucleotide 

(1.6%), pentanucleotide (0.14%) and hexanucleotide 
(0.02%) (Figure  6A). Based on the distribution of SSR 
motifs, (A)^n, (G)^n and (T)^n (n ≥ 10) were the three 
predominant types among mononucleotide SSR motifs, 
with frequencies of 30.93, 30.14 and 27.77%, respectively 
(Figure 6B). In the six types of dinucleotide repeat motifs, 
GT (27.93%) was the most common motif, followed 
by AT (26.34%) and AC (22.2%) (Figure  6C). Among 
20 types of trinucleotide repeats, AGC (13.91%), GCT 
(13.64%) and AGG (11.86%) were the three predominant 
types (Figure  6D). Tetranucleotide and pentanucleotide 
SSR motifs contained 35 and 23 types of repeats, respec-
tively (Figures 6E and F).

SNPs were identified from alignments of multiple 
sequences used for contig assembly. A total of 26 355 and 
36 070 SNPs were obtained from the GS_CS and GS_TS 
samples, respectively. In the GS_CS samples, 16 524 were 
putative transitions and 9831 were putative transversions 
(Figure 7A). In the GS_TS samples, the numbers of vari-
ous SNP types were higher than that in GS_CS samples 
(Figures 7A and B), with 23 030 SNPs for transitions and 
13 040 SNPs for transversions (Figure 7B). No insertion–
deletion polymorphisms (indels) were found in either the 
GS_CS or GS_ TS samples.

DEGs, SSRs and SNPs analysis related to disorders 
of nucleotide excision repair
Among the sequencing libraries, we identified 75 
sequences related to nucleotide excision repair. The 
members of the DNA repair gene family includ-
ing ERCC1-6, ERCC8, XPA, POLH, BLM, TFIIH1-4, 
RBX1, Cul4, DDB1, DDB2, XPC, HR23, CETN2, CDK7, 
MNAT1, CCNH, TTDA, RPA, PCNA, RFC and LIG1 
were all expressed in the spleen of the Chinese giant 
salamander. However, 10 genes including BLM, DDB2, 
ERCC4, ERCC5, ERCC6, ERCC8, POLH, RPA1, TFIIH3 
and XPA were DEGs, with 11 isogenes up-regulated and 
6 isogenes down-regulated (Table 3).

Further analysis of SSRs and SNPs involved in disorders 
of nucleotide excision repair indicated a total of 12 genes 
that were related to disorders of nucleotide excision 
repair that contained 21 SSRs motifs (Table  4). Among 
them, DEGs including BLM, ERCC6 and ERCC8 con-
tained 1 mononucleotide SRR and 4 trinucleotide SRR 
motifs. Thirteen genes including ERCC1, ERCC2, CCNH, 
Cul4, DDB1, LIG1, PCNA, RBX1, RPA, RFC, TFIIH2, 
TTDA and XPA contained 76 SNP sites (Table 5). Up to 
15 SNPs existed in the isogene of PCNA (comp90786_
c1_seq5). Among 76 SNPs, 33 (43.42%) and 29 (38.16%) 
of the SNPs were specific for the uninfected and infected 
Chinese giant salamanders, respectively. There were 14 
SNPs, that were identical for the GS_CS and GS_TS sam-
ples but different from the reference sequences.



Page 8 of 20Fan et al. Vet Res  (2015) 46:136 

Figure 4  The gene cluster for “complement and coagulation cascades” pathway. 66 differentially expressed genes (DEGs) were enriched in 
the pathway, with 7 DEGs up-regulated and 59 DEGs down-regulated.
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Figure 5  Number and gene clusters of differentially expressed isogenes in KEGG diseases. A KEGG enrichment analysis showed signifi-
cantly enriched disease. The y axis indicates numbers of DEGs enriched in KEGG diseases. The x axis represents disease terms. The black bar indicates 
down-regulated DEGs and the white bar represents up-regulated DEGs. B The gene cluster for inherited thrombophilia. C The gene cluster for 
complement regulatory protein defects. D The gene cluster for Epidermolysisbullosa, simplex. Those DEGs associated with inherited thrombophilia, 
complement regulatory protein defects and Epidermolysisbullosa, simplex diseases appeared strongly suppressed in the spleen of GSIV-infected 
Chinese giant salamanders.
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Figure 6  Distribution of simple sequence repeats (SSR) among different nucleotide types in the spleen transcriptome. A Distribu-
tion of repeated nucleotide types. B Distribution of repeated mononucleotide. C Distribution of repeated dinucleotide. D Distribution of repeated 
trinucleotide. E Distribution of repeated tetranucleotide. F Distribution of repeated pentanucleotide.
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Figure 7  Distribution of putative single nucleotide polymorphisms (SNP) in the spleen transcriptome. A Distribution of putative SNP in 
uninfected (CS type) Chinese giant salamanders. B Distribution of putative SNP in GSIV-infected (TS type) Chinese giant salamanders.

Table 3  DEGs related to disorders of nucleotide excision repair.

DEGs was filtered using threshold of false discovery rate (FDR) ≤0.05 and absolute value of log2Ratio ≥1.

Transcript_id KEGG GENE NAME CS fpkm TS fpkm log2FC1 (TS/CS) Significant

comp90201_c0_seq1 BLM 1.18 0 −8.73 Yes

comp90201_c0_seq2 BLM 0 0.99 8.29 Yes

comp90773_c0_seq2 DDB2 0 1.18 6.51 Yes

comp93741_c0_seq2 ERCC4, XPF 0 0.25 6.27 Yes

comp92742_c0_seq18 ERCC5, XPG 0.54 0 −7.86 Yes

comp91446_c0_seq12 ERCC6, CSB 0 0.35 6.94 Yes

comp91446_c0_seq15 ERCC6, CSB 0.45 0 −7.57 Yes

comp91446_c0_seq3 ERCC6, CSB 0.57 0 −7.89 Yes

comp91446_c0_seq4 ERCC6, CSB 0 0.61 7.82 Yes

comp91446_c0_seq8 ERCC6, CSB 0 0.63 7.85 Yes

comp81303_c0_seq1 ERCC8, CSA 0 0.59 6.14 Yes

comp81303_c0_seq2 ERCC8, CSA 0.82 0 −6.78 Yes

comp92141_c0_seq1 POLH 0 0.18 5.53 Yes

comp92141_c0_seq3 POLH 0 0.19 5.53 Yes

comp88203_c0_seq1 RPA1, POLR1A 0 3.78 7.76 Yes

comp86879_c0_seq2 TFIIH3, TFB4 1.61 0 −7.53 Yes

comp91081_c0_seq4 XPA 0 1.46 7.99 Yes
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DEGs, SSRs and SNPs analysis related to antiviral activity
RIG-I-like receptor and Toll-like receptor signaling 
pathways are two pivotal pathways involved in antiviral 
immune responses. In the Chinese giant salamander, 143 
isogenes involved in the RIG-I-like receptor signaling 
pathway and 201 isogenes involved in the Toll-like recep-
tor signaling pathway were identified. However, only 20 
and 18 isogenes were DEGs for the RIG-I-like receptor 
and Toll-like receptor signaling pathways, respectively 
(Additional file 6). Interestingly, the expression of antivi-
ral pattern recognition receptors such as RIG-I, MDA5, 
LGP2, TLR3, TLR8, TLR7 and TLR9 did not change in 
response to the GSIV infection. The expression of NLRX1 
was significantly increased, whereas TRIM25 decreased 
(Additional file 6).

For the RIG-I-like receptor signaling pathway, 21 
genes contained 38 SSR motifs. Of these, IL8 contained 
the most SSRs (6 motifs), followed by IRF7 (5 motifs) 
and RIG-I (4 motifs). For the Toll-like receptor signal-
ing pathway, 21 genes that included AKT, CCL3,ERK1, 
FADD, IKBKE,IKBKG, IL8, IRF7, JUN, MAP2K7, MAP-
3K7IP2, MYD88, NFKB1, NFKBIA, P38, PIK3C, PIK3R, 
TBK1, TBK1, TLR1 and TLR5 contained 59 SSR motifs. 
Among them, AKT contained the most mononucleotide 
SSRs, and PIK3C had the most trinucleotide SSRs (Addi-
tional file 7).

For SNPs analysis, 25 genes involved in the RIG-I-like 
receptor signaling pathway contained 272 motifs. Up 
to 75 and 52 SNPs existed in the genes of IKBKG and 
OTUD5, respectively. Among 272 SNPs, 207 (76.1%) 
SNPs were specific for the GSIV-infected Chinese giant 
salamanders. The antiviral PRRs MDA5, LGP2 and RIG-I 
also contained SNP motifs. For the Toll-like receptor 
signaling pathway, 41 genes contained 445 SNPs that 
consisted of 141 SNPs (31.69%) specific for the GS_CS 
samples and 228 SNPs (51.24%) specific for the GS_TS 
samples, and 73 common SNPs (16.4%) for both the 
GS_CS and GS_TS samples (Additional file 8). The genes 
involved in both the RIG-I-like receptor and Toll-like 
receptor signaling pathways, which included IRF3, IRF7, 
NFKBIA, FADD, JNK, RELA, IL12B, IL8, CASP8, P38, 
IKBKA, IKBKE and IKBKG contained a total of 141 SNPs 
(Additional files 8 and 9).

Experimental validation
Since the most enriched pathway was the “comple-
ment and coagulation cascades”, 10 genes belonging to 
the complement components were selected and used 
for qPCR validation. PCR amplification showed that all 
qPCR primers produced single fragments of the expected 
lengths (141–354  bp). Except for complement compo-
nents C1R (comp81391_c0_seq2), C1S (comp72777_
c0_seq1) and C7 (comp93878_c1_seq8), the expression 

Table 4  SSRs related to disorders of nucleotide excision repair.

Transcript_id KEGG GENE NAME Start BP Repeat End BP Type

comp90201_c0_seq1 BLM 5420 (GCT)^4 5432 Trinucleotide

comp90201_c0_seq1 BLM 3386 (ATC)^4 3398 Trinucleotide

comp57681_c0_seq1 CDK7 43 (AT)^6 55 Dinucleotide

comp71102_c0_seq1 CUL4 944 (A)^10 954 Mononucleotide

comp107286_c0_seq1 ERCC3, XPB 2478 (G)^10 2488 Mononucleotide

comp107286_c0_seq1 ERCC3, XPB 2204 (AGC)^4 2216 Trinucleotide

comp93741_c0_seq1 ERCC4, XPF 3807 (T)^10 3817 Mononucleotide

comp91446_c0_seq12 ERCC6, CSB 3738 (AGG)^6 3756 Trinucleotide

comp91446_c0_seq15 ERCC6, CSB 3727 (AGG)^6 3745 Trinucleotide

comp81303_c0_seq1 ERCC8, CSA 66 (T)^14 80 Mononucleotide

comp33205_c0_seq1 RAD23, HR23 1046 (AGC)^4 1058 Trinucleotide

comp33042_c0_seq1 RBX1, ROC1 1 (T)^11 12 Mononucleotide

comp89984_c0_seq1 rpa 577 (G)^10 587 Mononucleotide

comp33075_c0_seq1 RPA2 191 (GGT)^4 203 Trinucleotide

comp57325_c0_seq1 RPA12 1 (G)^21 22 Mononucleotide

comp72565_c0_seq1 RPA3 59 (A)^12 71 Mononucleotide

comp56791_c0_seq1 RFC 1 (T)^13 14 Mononucleotide

comp36422_c0_seq1 RFC 1 (T)^11 12 Mononucleotide

comp37382_c0_seq1 RFC 192 (GGT)^4 204 Trinucleotide

comp53798_c0_seq1 TFIIH1, TFB1 2301 (AC)^7 2315 Dinucleotide

comp82958_c1_seq1 TFIIH2, SSL1 3 (A)^19 22 Mononucleotide
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Table 5  List of SNPs ralated to disorders of nucleotide excision repair.
Transcript_id KEGG GENE NAME Site Ref CS_type TS_type

comp74141_c0_seq1 ERCC1 2223 G – A

comp74141_c0_seq2 2070 G – A

comp74141_c0_seq2 847 G T T

comp88233_c0_seq1 ERCC2 128 G A –

comp88233_c0_seq1 2140 T – C

comp88233_c0_seq1 2450 G – T

comp108677_c0_seq1 CCNH 190 C T –

comp61358_c0_seq1 Cul4A 1710 A C –

comp61358_c0_seq1 871 C – A

comp71102_c0_seq1 Cul4B 1738 A – G

comp71102_c0_seq1 811 A – G

comp32714_c0_seq1 DDB1 129 G – A

comp32717_c0_seq1 1429 G – A

comp32717_c0_seq1 433 T C –

comp32741_c0_seq1 1157 G C C

comp80349_c0_seq1 LIG1 3623 C – T

comp90786_c1_seq5 PCNA 105 T C C

comp90786_c1_seq5 13 G – A

comp90786_c1_seq5 1314 G – A

comp90786_c1_seq5 1683 A G –

comp90786_c1_seq5 1934 G A A

comp90786_c1_seq5 2038 A G –

comp90786_c1_seq5 2068 A G G

comp90786_c1_seq5 22 A G –

comp90786_c1_seq5 2395 A G –

comp90786_c1_seq5 2465 G – A

comp90786_c1_seq5 2487 G A A

comp90786_c1_seq5 2501 A G –

comp90786_c1_seq5 2543 G – A

comp90786_c1_seq5 2562 A G –

comp90786_c1_seq5 93 G C –

comp90786_c1_seq7 PCNA 105 T C C

comp90786_c1_seq7 1240 T C C

comp90786_c1_seq7 1244 C A A

comp90786_c1_seq7 13 G – A

comp90786_c1_seq7 1818 G A A

comp90786_c1_seq7 2077 A C C

comp90786_c1_seq7 22 A G –

comp90786_c1_seq7 2401 A – G

comp90786_c1_seq7 2615 C – G

comp90786_c1_seq7 93 G C –

comp33042_c0_seq1 RBX1 89 G T –

comp89984_c0_seq1 RPA 1679 C – T

comp89984_c0_seq1 1829 G A –

comp89984_c0_seq1 2071 G – A

comp89984_c0_seq1 2600 C G –

comp89984_c0_seq1 2645 G T –

comp89984_c0_seq1 3312 A G –

comp89984_c0_seq1 799 C T –

comp89984_c0_seq1 815 G T –
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of other 7 complement components including C1S-like, 
C2, C3, C4, C5, C8A and C9 was in agreement with their 
transcript abundance changes determined by RNA-seq 
(Figure 8).

Discussion
Transcriptome sequencing of spleen samples 
from uninfected and infected Chinese giant salamanders
The complete genome of GSIV has been sequenced [12]. 
However, the available molecular information is limited 
for the Chinese giant salamander, and not sufficient for 
the investigation of the mechanisms of immune reactiv-
ity against pathogen infection. In recent years, a num-
ber of reports reveal that the transcriptome sequencing 
of cDNA is an efficient method for generating large 
sequences that represent expressed genes [33]. Given that 
the spleen is one of the most important immune organs 
and is also the main target organ for the iridovirus GSIV 
[10, 22, 34, 35], the transcriptome sequencing of spleen 
samples from uninfected and infected Chinese giant 
salamanders was expected to provide abundant ESTs for 

amphibian immune genes and contribute to the under-
standing of GSIV-host interactions. In the study reported 
herein, using the recently developed Solexa sequencing 
technology and Trinity RNA-Seq assembly, the results of 
transcriptome sequencing are reported for the Chinese 
giant salamanders.

TLR, NLR and the RLR systems that are involved in immune 
responses
To begin this line of research, we first checked a set of 
sequences that encode components of TLR, NLR and the 
RLR systems that are involved in immune responses. In the 
spleen transcriptome of the Chinese giant salamanders, 
a total of 201, 206 and 143 isogenes were identified to be 
involved in the TLR, NLR and RLR pathways, respectively. 
We used MEGA software to compare the encoded proteins 
for these three pathways from the Chinese giant salaman-
ders with their mammalian and teleost counterparts. For 
some proteins, the annotated sequences were not complete, 
therefore the phylogenetic trees constructed show relation-
ships, but do not show precise evolutionary distances. The 

The identical bases with reference sequences were indicated with “–”.

Table 5  continued

Transcript_id KEGG GENE NAME Site Ref CS_type TS_type

comp33075_c0_seq1 RPA2 100 T C C

comp57325_c0_seq1 RPA12 385 G – C

comp59041_c0_seq1 RPA49 757 G A –

comp59041_c0_seq1 864 A – G

comp59044_c0_seq1 380 G – C

comp72565_c0_seq1 RPA3 475 A – G

comp72565_c0_seq1 802 G A –

comp88203_c0_seq2 RPA 4663 G C –

comp81979_c0_seq1 RPA43 1011 C – T

comp81979_c0_seq1 1032 C T –

comp81979_c0_seq1 1098 G – A

comp56791_c0_seq1 RFC1 3527 T C C

comp56791_c0_seq1 3757 A – G

comp36422_c0_seq1 RFC2 1188 C – T

comp85228_c0_seq1 RFC2 1319 T G –

comp85228_c0_seq1 1744 A C –

comp85228_c0_seq1 1844 C T –

comp36017_c0_seq1 RFC3 335 A C C

comp37382_c0_seq1 RFC3 49 C T –

comp82958_c1_seq1 TFIIH2 122 G – A

comp57951_c0_seq1 TTDA 513 G T –

comp91081_c0_seq1 XPA 1705 T C –

comp91081_c0_seq3 1633 T G –

comp91081_c0_seq3 2827 A T –

comp91081_c0_seq4 2669 A T –

comp91081_c0_seq4 2893 C A A
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conservation and divergence of the TLR, NLR and RLR 
families are summarized below and in the figure legends.

The TLR system
The Toll-like Receptors (TLRs) are present throughout 
virtually the entire animal kingdom and have impor-
tant functions in initiating inflammatory responses 
and shaping adaptive immunity [36]. A typical TLR is a 
type I transmembrane protein with many extracellular 
leucine-rich repeat (LRR) motifs for ligand recognition, 
and a cytoplasmic TIR domain for signal transduction. 
In invertebrates, only one or two TLR genes exist in sea 
squirt Cionaintestinalis and the nematode Caenorhab-
ditiselegans [37, 38], however the sea urchin Strongy-
locentrotus purpuratus and amphioxus Branchiostoma 
lanceolatum possess a large number of TLRs [39, 40]. 
In mammals, the human genome contains 10 functional 
TLRs whereas the mouse genome contains 12 TLRs, 
with TLR10 being a pseudogene, and TLR11, TLR12 and 
TLR13 being mouse-specific genes [41]. Most fish spe-
cies possess a higher number of TLR genes than mamma-
lian species due to the presence of duplicated TLRs and 
fish-specific TLRs [42, 43].

Six major TLR families were identified in all vertebrate 
taxa designated as TLR1, TLR3, TLR4, TLR5, TLR7 and 
TLR11 [44]. In the Chinese giant salamanders, the mem-
bers of TLR3, TLR5 and TLR7 have clear orthologs with 
fish and mammals that was supported by the phylogenetic 
analysis (Figure  9A). For TLR1 family, clear orthologous 
relationships were found among fish, amphibians and 

mammals for TLR2 gene, and two sequences were found 
to group with mammalian TLR10, TLR1 and TLR6. Inter-
estingly, the ortholog of the mouse-specific TLR13 and 
fish-specific TLR21 and 22 appear to exist in the Chi-
nese giant salamander. Similar to fish, the Chinese giant 
salamander has duplicated copies of some TLRs, such 
as TLR2, TLR5 and TLR21. These results suggest that 
amphibians may have a greater TLR repertoire than fish or 
mammals as a result of living in both aquatic and terres-
trial environments.

The NLR system
A large family of cytoplasmic NACHT-LRR receptors 
(NLRs), characterized by the presence of a nucleotide-
binding protein (NACHT domain), have important func-
tions in apoptosis, inflammation and innate immune 
signaling [45–48]. There are 20–30 NLR genes in verte-
brates, which are divided into three distinct subfamilies 
with regard to their phylogenetic relationships including 
the NODs (NOD1-2, NOD3/NLRC3, NOD4/NLRC5, 
NOD5/NLRX1, CIITA), the NLRPs (NLRP1–14, also 
called NALPs) and the IPAF subfamily, consisting of IPAF 
(NLRC4) and NAIP [49]. In the Chinese giant salaman-
der, the canonical NOD proteins (NOD1, NOD2, NOD3, 
NOD5, CIITA), IPAF, NAIP, as well as APAF1 (apop-
totic protease activating factor 1) exhibit clear ortholo-
gous relationships (Figure 9B). However, no homologous 
sequences were found for NOD4 in the spleen transcrip-
tome of the Chinese giant salamander.

Figure 8  Expression pattern validation of selected genes by qPCR. White bar indicates transcript abundance changes calculated by the 
RPKM method. Black bar with associated standard error bar represents relative expression level determined by qPCR using 2−ΔΔCT method. Results 
represent mean standard deviations (±SD) of three experimental replicates.
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Figure 9  Phylogenetic tree of Toll-like receptors (A) and NACHT-domain family (B). Phylogenetic relationships were based on amino acid 
alignments. Bootstrap values based on 10 000 replicates are indicated on each branch. The evolutionary history was inferred using the neighbor-
joining method. All positions containing gaps and missing data were eliminated from the dataset (pairwise deletion). Accession numbers of 
sequences used to build the tree are presented in Additional file 11.
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The expansion of NLR-encoding genes has been 
described in the sea urchin, amphioxus and zebrafish [39, 
40, 50, 51]. In their genome, at least 92 (amphioxus) and 
200 (sea urchin and zebrafish) NLR genes were predicted. 
The large majority of the sea urchin NLR proteins con-
sist of a central NACHT domain, an N-terminal DEATH 
domain and C-terminal LRRs [39]. However, the large 
groups of fish-specific NLR proteins do not contain any the 
amino-terminal effector domains [51]. Additionally, NLRP 
proteins with a PYD domain in the N-terminal region were 
not found in the sea urchin, amphioxus and zebrafish [39, 
40, 51]. Unlike NLRs in the species mentioned above, the 
expansion of NLR proteins were not found in the spleen 
transcriptome of the Chinese giant salamander, however 
many annotated sequences grouped with the mammalian 
NLRPs in the phylogenetic tree (Figure 9B).

In the Chinese giant salamander, many NLRs such 
as APAF1, IPAF, NOD2, NOD3, CIITA and NALP3/
NALP12 existed as multiple isoforms. Our previous 
studies have shown that the isoforms of immune genes 
regulated positively or negatively antibacterial and anti-
viral immunity [52–54]. The multiple isoforms of NLR 
genes in the present study suggested that the complexity 
and diversity of the innate immunity may be achieved in 
Chinese giant salamander through the use of alternative 
splicing or gene duplication.

The RLR system
Besides NLRs, the RIG-I-like receptors (RLRs) represent 
another crucial family of intracellular pattern recogni-
tion receptors, which use C-terminal RNA helicases to 
recognize viral RNA and N-terminal CARD domains for 
signaling [55]. The RLR family members include retinoic 
acid inducible gene-I (RIG-I), melanoma differentiation 
gene-5 (MDA5) and laboratory of genetics and physiol-
ogy-2 (LGP2), which have been identified in teleost spe-
cies [52, 56–59]. These three RLRs were present in the 
Chinese giant salamander. As for adapters, the CARD-
containing IPS-1 gene wasn’t identified in the spleen 
transcriptome of the Chinese giant salamander (Addi-
tional file 10A).

Comparative transcriptome analysis revealed the immune 
anergy of TLR, NLR and the RLR systems in the spleen
Iridoviruses are large double-stranded DNA (dsDNA) 
viruses that can infect invertebrates and poikilother-
mic vertebrates, including insects, fish, amphibians and 
reptiles. A real-time polymerase chain reaction (PCR) 
assay for a marine fish iridovirus showed that the spleen 
and kidney contained the largest number of viral parti-
cles while no viral DNA was detected in the muscle tis-
sue [34]. A comparison of the genes expressed during a 
red seabream iridovirus (RSIV) infection in the spleen 

and kidney suggested that RSIV preferentially targets the 
spleen [36]. In the Chinese giant salamander, our previ-
ous study showed tissue necrosis and the existence of 
GSIV viral particles in the spleen, liver and kidney [10]. 
Many studies have shown that the spleen and kidney are 
the target organs of iridovirus infections.

Using 454 pyrosequencing, 755 up-regulated genes and 
695 down-regulated genes were identified in the two spleen-
complementary DNA libraries, that were constructed from 
Singapore grouper iridovirus (SGIV) infected and control 
orange-spotted grouper [22]. Although 80 367 genes were 
identified in the spleen transcriptome of the Chinese giant 
salamander using Solexa sequencing technology, compara-
tive transcriptome analysis indicated that only 293 genes 
were down-regulated and 220 genes were up-regulated in 
response to the GSIV infection. In addition, a large number of 
genes were involved in TLR (72 hits), NLR (63 hits) and RLR 
(44 hits) pathways, however only 11 (TLR), 12 (NLR) and 10 
(RLR) genes in these pathways showed significant changes 
in their transcripts after GSIV infection. The non-significant 
changes for the majority of the genes including PRRs and 
the non-significant enrich for these pathways suggested that 
TLR, NLR and RLR systems in the spleen of Chinese giant 
salamanders were immune anergic during GSIV infection.

Comparative transcriptome analysis revealed the primary 
immunodeficiency of the complement system in the 
spleen
The vertebrate complement system is a humoral and 
proteolytic system that is composed of approximately 40 
soluble and membrane-bound proteins. It is an integral 
part of the innate immune system protecting the host 
against invasion and proliferation of various pathogens. 
The mammalian complement system has three differ-
ent activation pathways which include classical, alter-
native and lectin. Activation of the classical pathway 
is triggered by the binding of C1q proteins to immune 
complexes or aggregates containing IgG or IgM [60]. 
The lectin pathway parallels the classical pathway, the 
difference being at the initial step of target recognition 
and subsequent activation [61]. Activation of the lectin 
pathway occurs through the binding of the mannose-
binding lectins (MBL) to their target, which results in 
the activation of the MBL-associated serine proteases 
(MASPs) [62]. Different from the classical and lectin 
pathways, the alternative pathway of complement activa-
tion is triggered spontaneously, and primarily makes use 
of the recognition of host-associated molecular patterns 
(HAMPs), not pathogen-associated molecular patterns 
(PAMPs) [63].

In the study reported herein, the majority of genes 
involved in the complement and coagulation cascades 
(53 of 59 total genes or 90%) were identified, and the 
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alternative, lectin and classical pathways appeared con-
served in the Chinese giant salamander (Additional 
file  10B). The KEGG enrichment analysis indicated that 
the most enriched pathway is the “complement and 
coagulation cascades” and significantly enriched dis-
eases include “primary immunodeficiency” and “comple-
ment regulatory protein defects”. In mammals, primary 
immunodeficiencies (PIDs) are severe defects in the 
capacity of the host to mount a proper immune response 
and are characterized by an increased susceptibility to 
infections. Common PIDs include disorders of humoral 
immunity, T-cell defects, combined B- and T-cell defects, 
phagocytic disorders, and complement deficiencies [64]. 
In this study, the different genes that were expressed in 
the “primary immunodeficiency” were mainly the com-
ponents of complement system, with down-regulated 
expression of C1s-like, C2, C3, C4, c8g.1, C9, comple-
ment component (3b/4b) receptor 1-like, complement 
receptor type 2-like, complement factor H and hemolytic 
complement. The data from the qRT-PCR analysis also 
validated the down-regulated expression of the comple-
ment components C1s-like, C2, C3, C4, C5, C8A and 
C9 in response to the GSIV infection, however the weak 
up-regulated expression of C1r, C1s and C7 in the tran-
scriptome analysis could not be validated by qRT-PCR. 
The results supported that GSIV infection can trigger 
primary immunodeficiency of the complement system in 
the spleen of the Chinese giant salamander.
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