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Abstract

Turkey adenovirus 3 (TAdV-3) causes high mortality and significant economic losses to the turkey industry. However,
little is known about the molecular determinants required for viral replication and pathogenesis. Moreover, TAdV-3
does not grow well in cell culture, thus detailed structural studies of the infectious particle is particularly challenging.
To develop a better understanding of virus-host interactions, we performed a comprehensive proteomic analysis
of proteinase K treated purified TAdV-3 virions isolated from spleens of infected turkeys, by utilizing one-dimensional
liquid chromatography mass spectrometry. Our analysis resulted in the identification of 13 viral proteins associated with
TAdV-3 virions including a novel uncharacterized TaV3gp04 protein. Further, we detected 18 host proteins in purified
virions, many of which are involved in cell-to cell spread, cytoskeleton dynamics and virus replication. Notably, seven of
these host proteins have not yet been reported to be present in any other purified virus. In addition, five of these
proteins are known antiviral host restriction factors. The availability of reagents allowed us to identify two cellular
proteins (collagen alpha-1 (VI) chain and haemoglobin) in the purified TAdV-3 preparations. These results represent the
first comprehensive proteomic profile of TAdV-3 and may provide information for illustrating TAdV-3 replication and
pathogenesis.
Introduction
Hemorrhagic enteritis (HE) is an economically import-
ant disease of turkeys characterized by depression,
splenic enlargement, intestinal haemorrhages and sud-
den death [1]. The disease is caused by turkey adeno-
virus 3 (TAdV-3), also known as hemorrhagic enteritis
virus (HEV), a member of genus Siadenovirus A [2].
Oral infection of susceptible turkeys with pathogenic
TAdV-3 strains results in well-characterized splenomeg-
aly and intestinal bleeding in 4 to 6 days causing sub-
clinical infections and mortality [3]. Although TAdV-3
remains one of the most important causes of economic
loss to turkey industry, critical molecular determinants
of virulence and factors affecting virus replication are
not well understood. This may be in part because of un-
availability of an efficient “in vitro” tissue culture system
for propagation of TAdV-3 [4-6].
The genome of TAdV-3 is 26,263 bp [7]. Although,
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genus-common genes [8] appears similar to that of other
adenovirus genomes [7], the left (E1) and right (E4) ter-
minal regions appear absent. Interestingly, TAdV-3 en-
codes a genus specific protein, which shows similarity to
bacterial sialidase protein [8]. Although Western blot
analysis of purified TAdV-3 particles isolated from crude
spleen extract revealed presence of eleven structural
polypeptides with apparent molecular weight ranging
from 9.5 to 96 kDa [9], no systematic study has been
performed to identify the precise protein composition of
purified TAdV-3 particles.
In recent years, mass spectrometry (MS) based prote-

omic characterization has revealed important insights
into viral replication, tropism and virulence for a num-
ber of different enveloped viruses [10-14]. In contrast, a
few proteomic studies have been reported for non-
enveloped viruses [15-18]. Additionally, there is now
compelling evidence suggesting that host cellular pro-
teins incorporated in the virions play an important role
in viral replication and pathogenesis [10,13,19,20].
Using MS based approaches, a number of host proteins
have been reported to be incorporated into RNA viruses
(“human immunodeficiency virus-1 [10,13]”; “simian
immunodeficiency virus [21]”; “respiratory syncytial virus
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[22]; hepatitis C virus [23]”; “swine hepatitis E virus [24]”;
“coronavirus [25]” and “influenza [20,26]”) or DNA viruses
(“herpes simplex virus 1 [27]”; “African swine fever virus
[28]”; “KSHV [29]”; “Marek’s disease virus (MDV) [30]”,
and “mimivirus [31]”). However, to the best of our
knowledge, characterization of the host cellular factors in-
tegrated into virions for any member of Adenoviridae
family including TAdV-3 has not been reported so far.
Here, we report the protein composition of the puri-

fied TAdV-3 particles by performing a comprehensive
proteomic analysis utilizing liquid chromatography-mass
spectrometry (LC-MS/ MS). Our analysis resulted in
successful identification of 13 viral structural proteins
and 18 host-incorporated proteins. Moreover, incorpor-
ation of two host proteins in purified virions was verified
by Western blot analysis using available immunological
reagents.

Materials and methods
Turkey and viruses
All turkey procedures were approved by University
Committee of Animal Care and Supply (protocol #
19940211) at the University of Saskatchewan, Saskatoon,
Canada according to guidelines set by the Canadian
Council of Animal Care.
Day-old Hybrid poults obtained from Chinook belt

Hatcheries, Calgary, Canada were housed in isolation
rooms throughout the experiments. The avirulent
TAdV-3 isolate (pheasant origin) was passaged in sero
negative turkeys by oral inoculation and purified from
crude spleen extracts, as described earlier [32].

Virion purification
The TAdV-3 virions were purified as previously de-
scribed [9]. The proteinase K (pK) treatment of purified
TAdV-3 virions was performed as described previously
[33]. Briefly, double CsCl-purified virions were incubated
in 1 mL of MNT buffer (30 mM morpholineethanesulfo-
nic acid [MES], 10 mM NaCl, and 20 mM Tris–HCl
[pH 7.4]) containing proteinase K [0 to 20 μg] (Roche,
Mannheim, Germany) for 45 min at room temperature
and subsequently treated with “2 mM phenylmethyl-
sulfonyl fluoride” (Roche) prior to purification by CsCl
density gradient centrifugation. Purified virions were re-
suspended in 10% glycerol and stored at −80 °C until
further use. The experiments were performed in tripli-
cate employing three independent virus preparations.

Negative staining and transmission electron microscopy
Electron microscopy was performed on CsCl2 gradient
purified TAdV-3 virions (proteinase K treated or un-
treated) at EM facility at Biology department, University
of Victoria, BC, Canada, as described [34]. Briefly, for
negatively stained preparation, CsCl2 gradient purified
virus was first applied onto carbon and formvar coated
grids, washed with H20 and stained with 2% aqueous
phosphotungstic acid. The specimens were photographed
using a charge-coupled device camera (Advanced Micros-
copy Techniques, AMT CCD camera equipped Hitachi
H7000 TEM operating at 75 kv).

Antibodies
Production and characterization of anti-TAdV-3 serum
and monoclonal antibodies (MAbs) recognizing TAdV-3
hexon (15G4) and fiber (87–03) proteins has been de-
scribed earlier [4,9]. Chicken polyclonal anti-human
hemoglobin serum (ab28961) was purchased from
Abcam (Cambridge, MA, USA). Rabbit polyclonal anti-
human collagen type VI alpha-1 serum (COL6A1) was
purchased from antibodies-online Inc. (Atlanta, GA,
USA). Alkaline phosphatase conjugated goat anti-rabbit
(Sigma Aldrich) and peroxidase-conjugated goat “anti-
turkey” IgG (KPL, Maryland, USA) were used as de-
scribed [4,9].

Western blotting
Proteins from purified TAdV-3 were separated by so-
dium dodecyl sulphate (SDS) polyacrylamide gel electro-
phoresis (PAGE) on 10–15% or 4–15% precast gradient
gels (Bio-Rad),transferred to nitrocellulose membrane
and probed with protein specific antibodies as described
previously [9].

In solution trypsin digestion
Proteins from CsCl2 gradient purified virion-enriched
(proteinase K treated or untreated) samples were diluted
with 200 mM ammonium bicarbonate prior to reduction
with 200 mM dithiothreitol and incubated 30 min at
37 °C. Cysteine sulfhydryl groups were alkylated with
20 μL of 100 mM iodoacetamide (30 min at 37 °C in
darkness). Each sample was digested with 5 μg of trypsin
(Promega) at 37 °C for 16 h [33,35]. Finally, the samples
were de-salted on a Waters HLB Oasis column, speed
vac concentrated and stored at −80 °C prior to LC-MS
analysis.

LC-MS/MS analysis
The peptide mixtures were separated by on-line reverse
phase chromatography using a EASY-nLC II system
(Thermo Scientific) with a reversed-phase Magic C-
18AQ pre-column (100 μm I.D., 2 cm length, 5 μm,
100 Å, Michrom Bio Resources Inc, Auburn, CA, USA)
and reversed phase nano-analytical column Magic C-
18AQ (75 μm I.D., 15 cm length, 5 μm, 100 Å, Michrom
Bio Resources Inc, Auburn, CA, USA) at a flow rate of
300 1/min. The resulting peptides were analyzed by the
chromatography system, which was coupled on-line with
a LTQ OrbitrapVelos mass spectrometer (Thermo Fisher
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Scientific, Bremen, Germany) equipped with a Nano-
sprayFlex source (Thermo Fisher Scientific) as described
previously [33,35]. The data was acquired with keratin
and trypsin peptide mass exclusion lists.

MS/MS data analysis
Raw files were analysed with Proteome Discoverer 1.4
software suite (Thermo Scientific). Parameters for the
spectrum selection to generate peak lists of the collision-
induced “dissociation (CID) spectra were activation type:
CID”; (s/n cut-off: 1.5; total intensity threshold: 0; mini-
mum peak count: 1; precursor mass: 350–5000 Da). The
peak lists were submitted to an in-house Mascot 2.3 ser-
ver against “the following databases”: Uniprot_Trembl
20111103 (17 651 715 sequences; 5,747,683, 275 residues)
and Uniprot-Swissprot 20110104 (523 151 sequences; 184
678 199 residues) all species taxonomy.
Database search parameters were as follows: precursor

tolerance 8 ppm; MS/MS tolerance 0.6 Da; Trypsin
enzyme 1 missed cleavages; Fourier Transform Ion
Cyclotron Resonance (FT-ICR) instrument type; fixed
Figure 1 Purification of TAdV-3 virions. A Strategy for enrichment and purif
purification of TAdV-3. The lower band containing mature viruses (left panel)
virions purity. Electron micrograph of CsCl purified TAdV-3 negatively stained w
(C) and (direct magnification 150000X) (D). E Analysis of TAdV-3 polypeptides. P
analyzed by Western blot using turkey anti-TAdV-3 serum [4,9] and peroxidase
polypeptides (lane 1) are depicted. Molecular weight markers (MW) in kDa are
modification: carbamidomethylation (C); variable mod-
ifications: deamidation (N,Q); oxidation (M). The
Decoy database Percolator settings: Max delta Cn 0.05;
Target FDR strict 0.01, Target FDR relaxed 0.05 with
validation based on q-Value. Additional virus only spe-
cies searches were also performed with tolerances pre-
viously mentioned. All data were also searched against
NCBI (Gallus gallus (chicken)) database to detect viral
and host proteins. Only sequences identified with a
mascot score value greater than 30 were considered as
significant. Protein identifications were accepted when
the peptide probability was greater than 95.0% [33,35],
the protein probability greater than 99.0%, and contained
at least 2 identified peptides. Peptide identifications were
systemically evaluated manually.

Results
Purification of TAdV-3 virions
Due to difficulty in propagating turkey adenovirus 3 in cell
culture system, TAdV-3 was propagated in six to 8 week
old turkeys. TAdV-3 virions were purified from spleens of
ication of TAdV-3 virions. Flow diagram depicts the strategy. B CsCl2
subjected to second round of CsCl (right panel). C–E Analysis of TAdV-3
ith 2% aqueous phosphotungstic acid (Direct magnification 100000X)
urified TAdV-3 proteins were separated by 10–15% SDS-PAGE and
-linked goat anti-turkey IgG antibodies (right panel). The identified
shown on the left of the panel.



Table 2 Cellular proteins associated with purified TAdV-3
virions identified by LC-MS/MS

LC-MS/MS

Protein name MW
(kDa)a

No. of
peptides

Mascot
scoreb

Sequence
coverage (%)c

Actin 42.36 56 607 38

TAR DNA binding
protein 43

44.90 22 656 24

Tublin beta5 50.28 25 535 21

Tubulin alpha-1A 50.78 19 444 26

LUC7 like1 47.60 28 482 28

Tublin beta3 50.09 25 338 20

High mobility group
protein B1

23.08 13 349 34

High mobility group
protein B2

23.98 24 227 24

78 kDa glucose- 72.08 21 135 5
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turkeys inoculated orally with an avirulent vaccine strain
of TAdV-3 [4,9] (Figure 1A). Following CsCl2 density gra-
dient purification, two distinct bands were observed, the
upper band (present at lower density) containing capsid
and the lower band (at higher density, between 1.25 and
1.35) containing complete infectious viruses (Figure 1B,
left panel). The lower band was subjected to second round
of CsCl2 density gradient purification resulting in single
band containing purified virions (Figure 1B, right panel).
Virion-enriched preparations were checked for quality
by negative stain transmission electron microscopy
(TEM) (Figures 1C and D). As seen, virions demonstrated
uniform, intact TAdV-3 virus particles of 100 nm diam-
eter. These TEM results were consistent with the quality
and apparent purity reported earlier [33,35]. The purity of
the virion preparation was also determined by Western
blot analysis using turkey anti-TAdV-3 sera. As seen in
Figure 1E, polypeptides of 96 K (hexon), 57 K (IIIa), 52 K
(penton base), 29 K (fiber) and 24 K (pVI) were detected
in CsCl2 purified TAdV-3 virions. These findings suggest
that our enrichment procedure yielded a highly purified
preparation of TAdV-3 virions.

Protein composition of CsCl2 purified TAdV-3 virions
The protein composition of TAdV-3 virions was ana-
lyzed by the method of in-solution trypsin “digestion a
gel-free approach” to MS that subject the entire sample
Table 1 TAdV-3 proteins identified by LC-MS/MS

LC-MS/MS

Protein
name

MW
(kDa)a

No. of
peptides

Mascot
scoreb

Sequence
coverage (%)c

pVI 24.98 146 4378 69

pIIIA 57.52 59 2377 96

pVII 13.20 163 1984 91

IVa2 42.36 39 1046 48

Penton Base 34.17 46 857 54

Hexon 101.65 42 659 23

pVIII 21.75 35 655 81

Fiber 29.13 18 620 29

Hypothetical
Protein
(TaV3gp04)

13.32 17 452 35

DBP 44.21 13 389 12

Sialidase 64.9 9 162 6

pX 6.15 9 137 29

Adenain 25.33 9 113 18

pTP 70.72 7 102 9

22 K 10.51 5 42 29

A novel virion-associated viral protein is shown in bold black.
aTheoritical molecular mass.
bA Mascot score ≥35 is significant (p < 0.05).
cSequence coverage is based on peptides with an unique sequence.
to sequential one-dimensional reversed-phase chroma-
tography coupled on-line to MS/MS analysis (1D-nanos-
pray-LC-MS/MS). This method eliminates the problems
reported with proteins that either enter gel poorly or ex-
tracted inefficiently from the gel slices. Our LC-MS/MS
analysis revealed a total of 15 virus-encoded proteins
packaged in the purified TAdV-3 virions. This included
13 proteins, which have been detected in human adeno-
virus 5 (HAdV-5) virions [16] (Table 1), a novel
regulated protein

Myeloid protein 1 36.41 14 240 23

Desmin 53.30 16 212 11

Cathelicidin-3 16.61 5 146 32

Protein PML 35.99 13 158 18

Vimentin 53.16 16 157 17

Splicing factor U2AF 28.19 7 154 20

Collagen alpha-1 (VI)
chain

110.0 5 146 32

Elongation factor 1-
alpha

49.48 6 143 15

Protein syndesmos 33.44 4 140 3

Ferritin 17.13 8 129 22

Serine/arginine-rich
splicing factor 5a

27.15 2 76 7

Fibronectin 276.017 3 76 2

Gallinacin-2 7.49 2 75 12

Cathespsin B 38.47 3 70 9

Hemoglobinsubunit
beta

16.62 6 64 19

L-amino acid oxidase 59.08 3 56 3

Hemoglobin subunit
alpha-A

15.10 3 42 17

aTheoritical molecular mass.
bA Mascot score ≥35 is significant (p < 0.05).
cSequence coverage is based on peptides with an unique sequence.
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uncharacterized hypothetical viral protein designated as
TaV3gp04 (Table 1, Additional file 1) and a non-structural
viral protein (22 K) to be associated with TAdV-3 virions.
In addition to TAdV-3 encoded viral proteins, interest-
ingly 26 cellular proteins appeared to be associated with
purified TAdV-3 virions (Table 2).

Protein composition of proteinase K treated CsCl purified
TAdV-3 virions
To determine if the host proteins are actually incorpo-
rated into the virions, the purified TAdV-3 virions were
treated with proteinase K (20 μg/mL) and subjected to
another round (third round) of CsCl2 purification. The
proteinase K treated and untreated, purified virions were
then analysed by Western blotting. Proteinase K treat-
ment degrades fiber protein protruding from the capsid
but does not degrade hexon protein not protruding from
µ µ µ µ

µ µ µ µ

Figure 2 Proteinase K digestion of purified TAdV-3 virions. A Proteins
indicated amounts of proteinase K were separated by 10–15% SDS-PAGE, t
TAdV-3 serum. The hexon protein and the fiber protein are depicted by an
panels. B Purified TAdV-3 treated with 20 μg of proteinase K were negative
transmission electron microscopy. (Direct magnification 50000×, left panel) an
the capsid. As seen in Figure 2A, hexon protein could be
detected in proteinase K treated or untreated TAdV-3
virions. In contrast, fiber protein could only be detected
in untreated virions, but not in proteinase K treated vi-
rions. Moreover, TEM analysis suggested that the virions
were intact and maintained virion integrity after protein-
ase K treatment and CsCl2 density gradient purification
(Figure 2B).
The LC-MS/MS analysis of proteinase K treated CsCl2

density gradient purified TAdV-3 virions identified eleven
virus-encoded proteins (hexon, pVI, pVII, penton base,
pVIII, sialidase, IIIA, adenain, pX, IVa2 and DBP) previ-
ously reported to be in other adenoviruses (Table 3 and
Figure 3A) [16]. In addition, a novel viral protein TaV3gp04
remains an integrated part of proteinase K treated TAdV-3
virions (Table 3, Additional file 1). As expected, peptides
representing fiber protein were not detected in proteinase
µ

µ

from purified TAdV-3 untreated (lane 1) or treated (lanes 2–5) with
ransferred to nitrocellulose and probed by Western blot using anti-
arrow. Concentration of proteinase K in μg is indicated on top of the
ly stained with 2% aqueous phosphotungstic acid and analyzed by
d (direct magnification 150000×, right panel).



Table 3 TAdV-3 proteins identified by LC-MS/MS after
proteinase K treatment

LC-MS/MS

Protein
name

MW
(kDa)a

pKb No. of
peptides

Mascot
scorec

Sequence
coverage (%)d

Hexon 101.653 + 71 1327 37

PVI 24.989 + 15 560 32

PVII 13.201 + 24 467 70

Hypothetical
Protein
(TaV3gp04)

13.32 + 10 165 36

Fiber - - - - -

Penton Base 34.179 + 13 153 19

PVIII 21.75 + 8 135 12

Sialidase 64.9 + 2 84 10

IIIA 57.52 + 10 83 10

Adenain 25.33 + 2 55 6

PX 6.15 + 1 39 13

IVa2 42.36 + 2 35 2

DBP 44.21 + 1 24 2

pTP - - - - -

22 K - - - - -

A novel virion-associated viral protein is shown in bold black.
aTheoritical molecular mass.
bpK, proteinase K treatment +.
cA Mascot score ≥35 is significant (p < 0.05).
dSequence coverage is based on peptides with an unique sequence.
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K treated TAdV-3 virions. In addition, pTP and 22 K
virion proteins were not detected in proteinase K
treated TAdV-3 (Table 3). The high mascot scores and
number of peptides observed for hexon, pVI and pVII
presumably reflect the fact that they are perhaps the
most abundant proteins in the TAdV-3 particles.
Interestingly only 18 host proteins were exclusively de-

tected in proteinase K treated TAdV-3 virions (Table 4
and Figure 3B). Notably, thirteen of these host proteins
were the same as detected in the untreated TAdV-3 vi-
rions (Table 4, Figure 3B) indicating that these proteins
are part of the TAdV-3 virions. Among these proteins,
promyelocytic leukemia protein (PML) isoform X6
(Additional file 2), collagen alpha-1(VI) chain (Additional
file 3), haemoglobin subunit alpha (Additional file 4) and
haemoglobin subunit beta (Additional file 5) appeared
abundant. The PML protein appears as abundant as viral
structural protein pVIII or penton base peptide. In
addition, five host proteins namely, vitronectin, collagen
alpha-3 (VI) chain, collagen alpha-2 (VI) chain, tyrosine
protein phosphatase and turkey heterophil peptide 2
(THP-2) were only detected in proteinase K treated
TAdV-3 virions.
Functional classification of the identified proteins

revealed that many of these proteins participate in a
common molecular pathway (Table 4 and Figure 3C)
and are involved in innate immunity, cell adhesion,
cytoskeleton organization and virus replication.

Validation of cellular proteins incorporated into TAdV-3
virions
Non availability of turkey host protein specific antisera
made it difficult to verify the packaging of host proteins in
TAdV-3 virions. However, human collagen alpha-1(VI)
peptides showed 70% identity to turkey collagen alpha-
1(VI) and chicken collagen alpha-1(VI) (Additional file 6).
In addition, human haemoglobin peptides demonstrated
75% identity to turkey haemoglobin alpha and chicken
haemoglobin alpha, 50% identity to turkey haemoglobin
beta and 66% identity to chicken haemoglobin beta pro-
teins (Additional file 7). Therefore, we attempted to de-
termine the incorporation of collagen alpha-1(VI) and
haemoglobin in purified TAdV-3 using Western blot as-
says. As shown in Figure 4, anti-collagen alpha-1 (VI)
serum detected collagen alpha-1 (VI) chain specific
band in proteinase K untreated TAdV-3 (panel A, lane
1). Similar protein could be detected in proteinase K
treated purified TAdV-3 (panel A, lane 2). Anti-
haemoglobin serum detected haemoglobin specific band
in proteinase K untreated TAdV-3 (panel B, lane 1).
Similar protein band could be detected in proteinase K
treated purified TAdV-3 (panel B, lane 2).

Discussion
Viruses exploit multiple host proteins for successful
entry, establishment of infection, replication, and im-
mune evasion. For a better understanding of the TAdV-
3-host interactions, we performed a comprehensive ana-
lysis of the protein content of TAdV-3 virions, using a
LC-MS/MS based proteomic approach. To the best of
our knowledge, incorporation of host proteins in adeno-
virus has not been reported so far.
The proteomic analysis of CsCl2 purified TAdV-3

identified a total of 13 virion proteins and 18 host pro-
teins. Earlier, proteomic analysis has not reported the
detection of host proteins in purified HAdV-5 virions
[15,16]. It is possible that the observed host proteins
identified by proteomic analysis of CsCl2 purified TAdV-
3 virions may not be actually incorporated in the puri-
fied virions but are loosely associated on the outside of
the TAdV-3 virion capsids. Since proteinase K treatment
has been traditionally used to remove any contaminating
protein from the surface of enveloped viruses [33,35], we
used protease treatment of non-enveloped TAdV-3 to
remove the potential contaminating proteins. Several
lines of evidence validate the approach and suggest that
proteinase K treatment of TAdV-3 appears successful in
removing contamination proteins. 1) Intact virions could
be detected by TEM after proteinase K treatment of



Figure 3 Identification of viral and host virion proteins. Venn diagrams of viral (A) and host proteins (B) detected in TAdV-3 untreated and
proteinase K-treated samples by in-solution tryptic digestion followed by analysis using 1D-liquid chromatography combined with a mass
spectrometer (LC-MS/MS). C Eighteen host-incorporated proteins identified in purified proteinase treated TAdV-3 virions in the presence of
proteolytic digestion are classified based on their known functions.

Kumar et al. Veterinary Research  (2015) 46:79 Page 7 of 10
TAdV-3. 2) Western blot analysis of protease K treated
TAdV-3 detected hexon protein but not fiber protein
(protruding from the capsid). 3) The fiber and 22 K (non
structural protein) could not be detected by MS analysis
of proteinase K treated TAdV-3. 4) Only 18 of the 26
host proteins could be identified in proteinase K treated
TAdV-3.
Interestingly, all major viral proteins were identified

in proteinase K treated virions (Table 3) except viral
pTP, possibly due to its low abundance and least
mascot score values observed (Table 1). Overall se-
quence coverage observed for different viral peptides
ranged from 2 to 70%, with the majority between 10
and 35%.
Earlier, sequence analysis of turkey adenovirus-3 iden-

tified a hypothetical protein ORF 4 (named TaVgp04)
[7], which appears to be conserved in raptor adenovirus-
1 [36] and South polar skua adenovirus [37]. In contrast,
a hypothetical hydrophobic protein was identified in frog
adenovirus 1 [8], which shows no similarity to similar
proteins identified in turkey adenovirus 3 [7] and raptor
adenovirus 1 [36]. Our results suggest that an ORF4 of
TAdV-3 encodes a structural protein TaVgp04, which is
incorporated into virion capsid (Additional file 1). In
addition, this is the first report to suggest the existence
of TaVgp04 as a structural protein in siadenoviruses
particularly of avian origin.
The proteomic analysis of proteinase K treated puri-

fied virions identified eleven cellular proteins incorpo-
rated in TAdV-3, which have been identified in other
viruses (Table 4). In addition, proteomic analysis identi-
fied seven host proteins incorporated in TAdV-3 virions
(Table 4), which have not been identified so far in any
other virus. Interestingly, of the 18 detected host pro-
teins, five of the proteins were only detected in protein-
ase K treated TAdV-3. It is possible that high abundance
non-specific proteins might have masked the detection
of these proteins in virions not treated with proteinase
K that are truly virion associated, but present in low
copy numbers.



Table 4 Cellular proteins associated with purified TAdV-3 virions after proteinase K treatment

LC-MS/MS

Protein name Mass (kDa)a No. of
peptides

Mascot scoreb Sequence
coverage (%)c

Protein function Reported in other viruses

Protein PML isoform X6 48.4 8 141 10 Innate immunity -

Collagen alpha-1 (VI) chain 110 17 101 7 Cell adhesion -

Vitronectin 52.2 4 100 5 Cell adhesion SIV21, KSHV29

Hemoglobin subunit alpha –A like 15.5 5 99 24 Innate immunity Corona26, Influenza20

Collagen alpha-3 (VI) chain 340 9 92 10 Cell adhesion -

Collagen alpha-2 (VI) chain 110 5 91 5 Cell adhesion Influenza20

Ferritin 17.1 4 90 20 Virus replication HCV24, sHEV25

Elongation factor 1-alpha 47.6 2 69 3 Virus replication HIV13

Hemoglobin subunit-beta like 16.3 8 66 27 Innate immunity CSFV45

Tyrosine protein phosphatase 68 2 63 2 Cell division -

Antimicrobial peptide THP-2 7.6 7 64 48 Innate immunity -

Splicing factor U2AF 28.7 5 60 9 Splicing factor KSHV29

Serine/arginine splicing factor 5α 30.1 1 43 3 Splicing factor Influenza20

TAR DNA binding protein 43 45.0 3 40 2 Transcription HSV14,RSV23

L-amino acid oxidase 59.08 4 40 7 Flavoprotein -

Gallinacin-2 7.6 4 39 26 Innate immunity -

Tubulin alpha-1A 50.9 4 32 4 Cytoskeleton HIV13, Influenza11, ASFV28

Actin 42.2 3 32 5 Cytoskeleton HIV13, Influenza11, ASFV28

Protein subsets identified by LC-MS/MS with/without protease treatment are shown in bold black.
aTheoritical molecular mass.
bA Mascot score ≥30 is significant (p < 0.05).
cSequence coverage is based on peptides with an unique sequence.
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Though earlier reports have demonstrated the pack-
aging of viral [38] or non viral RNAs [39] into purified
adenovirus, recent reports have not described the detec-
tion of any cellular protein in purified Lizard adenovirus-2
[40], a member of Atadenovirus genus and purified
HAdV-5, a prototype of Mastadenovirus genus [15].
The absence of a cellular protein packaged in purified
adenovirus virions could be due to variety of reasons.
Figure 4 Western blot analysis of host proteins in TAdV-3. Proteins fro
1) and proteinase K (20 μg incubated in 1 mL of MNT buffer) treated purifi
PAGE, transferred to nitrocellulose and analyzed by Western blot using ant
serum (panel B). Molecular weight markers (Lane M).
As stated, the difference could be due to the technique
used for analysis [15]. Alternatively, it is possible that
packaging of the cellular proteins may be dependent
on the type of adenovirus (TAdV-3, a prototype of
Siadenovirus genus) and origin of cells used for virus
cultivation [15].
The host proteins packaged inTAdV-3 are known to

play important roles in enhancing the cell-to-cell spread
m the proteinase K untreated purified TAdV-3 virions (panels A, B, lane
ed TAdV-3 virions (panels A, B, lane 2) were separated by 10–15% SDS-
i-collagen alpha-1(VI) chain serum (panel A) and anti-haemoglobin
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of virus, transcription and virus replication (Table 4,
Figure 3). For example, extracellular matrix (collagen)
has been shown to increase infectious Sindbis virus titers
from BHK cells by enhancing post-infection cell survival
[41]. In another study, rotavirus-induced PI3K activation
resulted in prolonged adherence of infected cells to
collagen and increased virus production [42]. Simi-
larly, extracellular matrix vitronectin has been re-
ported to enhance the growth of human adenovirus19
(HAdV-19) [43].
However, the incorporation of antiviral host defense

factors including, protein PML, haemoglobin and anti-
microbial peptide (THP-2) into TAdV-3 virions is par-
ticularly intriguing. All of these host defence factors
have been implicated in establishing antiviral environ-
ments. Recent studies have implicated PML in main-
taining host antiviral defence and revealed different
strategies developed by viruses to disrupt PML nuclear
bodies [44-46]. In addition, protein PML has been
shown to be important for the inhibition of adenovirus
replication [47]. Similarly, avian antimicrobial peptide
THP-2, a member of beta-defensin family is effector of
the innate defence system and play key functions during
host defence by generating vigorous cytokine response
[48,49]. On the other hand, a novel role of haemoglobin
in innate immunity has been recently reported for classical
swine fever virus (CSFV) [50] as silencing of haemoglobin
expression using siRNA promoted CSFV growth and
replication, whereas overexpression of haemoglobin an-
tagonized CSFV replication and growth by triggering
IFN signalling [50].
Although TAdV-3 grows efficiently in spleen of infected

turkey, virus grows poorly in primary or established cell
lines. It is tempting to speculate that integration of certain
established antiviral host restriction factors into viral par-
ticles may play a role in determining TAdV-3 replication
“in vitro”. Additional studies need to be performed in
order to investigate whether these proteins are function-
ally required for virus entry, replication and pathogenesis.
Future availability of reagents and a reliable cell culture
system to grow TAdV-3 should make it possible to deter-
mine the role of individual host restriction factor in
TAdV-3 replication.
Additional files
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