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Abstract

Porcine circovirus type 2 (PCV2) is a ssDNA virus causing PCV2-systemic disease (PCV2-SD), one of the most important
diseases in swine. MicroRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression
post-transcriptionally. Viral miRNAs have recently been described and the number of viral miRNAs has been increasing
in the past few years. In this study, small RNA libraries were constructed from two tissues of subclinically PCV2 infected
pigs to explore if PCV2 can encode viral miRNAs. The deep sequencing data revealed that PCV2 does not express
miRNAs in an in vivo subclinical infection.
Introduction, methods, and results
Porcine circovirus type 2-systemic disease (PCV2-SD) is
a devastating disease that causes important economic
losses [1]. The disease is essentially caused by PCV2, a
single stranded DNA, non enveloped virus belonging to
the Circoviridae family [2]. The PCV2 genome encodes
four ORFs. ORF1 encodes for two proteins (Rep and
Rep’) which are involved in replication. ORF2 encodes
for the Cap protein, which constitutes the unique struc-
tural protein. The two proteins coded by ORF3 and
ORF4 have been related with cellular apoptosis while the
function of both still needs further research [3].
MicroRNAs (miRNAs) comprise a class of small non-

coding RNAs that post-transcriptionally regulate the ex-
pression of many genes by mRNA degradation or
translation inhibition [4]. miRNAs are involved in the
modulation of gene expression and replication of many
viruses and play a pivotal role in host-virus interactions.
In addition, many viruses encode miRNAs that can play
a role in the infection process. To date, 308 hairpin pre-
cursors and 502 mature miRNAs have been discovered
in several viruses as shown in the miRBase [5], most of
them encoded by herpesviruses, which is the virus
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family with the highest miRNAs encoding capacity
[6,7]. Other viruses belonging to the families Polyoma-
viridae, Adenoviridae, Papillomaviridae, Baculoviridae
and Ascoviridae encode miRNAs in low numbers
[8-12]. Recently, a Human Torque Teno virus, a small,
ssDNA virus from the Anelloviridae family, that en-
codes a miRNA involved in interferon modulation has
been described [13]. All of them share in common to be
DNA viruses, with an essential nuclear phase in their
replication cycle, necessary for initial miRNA biogen-
esis. miRNAs encoded by RNA viruses is a matter of
controversy [14-16].
In the present study, the expression of miRNAs in

subclinically PCV2 infected pigs was analysed using high
throughput sequencing. Firstly, in silico prediction was
carried out in order to check if the PCV2 genome en-
codes possible miRNA precursors. The Vmir prediction
algorithm [17] was used to predict the possible presence
of hairpin structures in the PCV2 genome compatible
with the existence of miRNAs. Computational prediction
of viral miRNAs indicated that 41 miRNA candidates
could be identified, 16 of them with a score among 100-
150 and two with a score >150 (Figure 1). In order to ex-
plore whether these candidates were present in the virus,
next-generation sequencing (NGS) of small RNAs was
carried out from tonsil and mediastinal lymph node of
animals subclinically infected with PCV2.
ed Central. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/4.0), which permits unrestricted use,
, provided the original work is properly credited. The Creative Commons Public
mons.org/publicdomain/zero/1.0/) applies to the data made available in this

mailto:ignacio.nunez@cresa.uab.es
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Figure 1 Hairpin structures predicted for PCV2 genome of Sp-10-7-54-13 isolate (accession number GU049342) by using Vmir with
default parameters. Green diamonds and blue triangles indicate stem-loop structures in direct or reverse orientation, respectively.
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We have reported previously modification of the expres-
sion pattern of host miRNAs due to the PCV2 infection
[18]. For both purposes, four animals were inoculated with
7 × 104.8TCID50 of PCV2 isolate Sp-10-7-54-13 [19] and
two animals were inoculated with PBS. Animal experi-
ments were carried out at the CReSA facilities, all proce-
dures were performed under the supervision of the Ethical
and Animal Welfare Committee of the UAB in compli-
ance with national guidelines and EU regulations. At
21 days post-inoculation samples were taken and total
RNA extractions were carried out in order to construct
small RNA libraries as described in [20] with some modifi-
cations. A total of 12 small RNA libraries were con-
structed in a two-step ligation procedure with the 3′ and
5′ adaptors from IDT technologies. Amplification by RT-
PCR was carried out with fusion primers containing
sequences complementary to the 3′ and 5′ adaptors
used for miRNA library construction and sequences com-
plementary to the A and B adaptors used for high-
throughput (HT) sequencing with the GS FLX 454 device
(Roche) at CRAG (Centre de Recerca Agrogenòmica,
Universitat Autònoma de Barcelona, Spain). From the
total reads obtained (1 106 437), primer sequences were
trimmed and only those insert sequences between 15 and
29 nucleotides and with total number of sequences ≥3
were kept for further analysis. This procedure resulted in a
total of 796 710 reads.
The analysis of the reads that aligned to the Sus scrofa

genome are reported elsewhere because these sequences
constitute porcine miRNAs [18]. For viral miRNA discov-
ery, sequences were blasted to the PCV2 isolate Sp-10-7-
54-13 genome (NCBI Reference Sequence: GU049342)
considering only sequences with 100% of alignment and
identity (perfect match). In order to search potential viral
miRNAs, a blast against the viral genome was done with
an increased number of mismatches in the extremes due
to miRNA variability (isomiRs) [21,22]. The presence of
isomiRs entails differences in length and point mutations
in both extremes, with the 3′-terminus having a higher
proportion of such mutations. In some cases, a blast was
done allowing internal variations with a <100% of align-
ment in order to consider the variability of the viral gen-
ome [23]. Also, sequences were blasted to the output of
Vmir hairpin PCV2 structures.
No hits were found in the viral PCV2 genome sequence

(GU049342) with a 100% homology. One candidate of
18 nt with 58 copies was identified when allowing <100%
of alignment and identity in the ORF2, positions 1189 to
1206. In accordance with the Vmir prediction, these posi-
tions were included in the pre-miRNA candidate MD18,
(the hairpin with the highest score), presenting one in-
ternal mismatch, and 94.4% sequence identity. The
secondary structure and the minimum free energy of the
pre-miRNA candidate was analysed with MFold software
[24] (Figure 2). As this candidate presented a point muta-
tion, and due to the described variability of the virus, the
corresponding viral DNA fragment from the mediastinal
lymph node of an infected animal was amplified and
Sanger sequenced. Because the exact candidate sequence
was not found in the viral sequence (94.4% sequence iden-
tity), it was not considered a miRNA encoded by the virus.
The miRNA candidate sequence was compared to the
porcine genome Sscrofa10.2 (GCA_000003025.4) using
blast and showed 100% sequence identity with the ssc-
miR-29a hairpin precursor located in chromosome 18.
Also, the 18 nt miRNA candidate sequence was compared
to the miRBase (v.21) showing 100% sequence identity
with miR-29a-5p. The alignment of this region was carried
out including all PCV2 sequences available in the data-
bases (Figure 3). miR-29a-5p has been described in many
species like human, bovine, mouse, but it has not been de-
scribed in pigs, where the precursor miR-29 has been in-
cluded in miRBase along with the mature ssc-miR-29a-3p.
From the total reads obtained in this study, 1276 se-
quences of 22 nt, comprising the 18 nt of the candidate,
blasted to the miR-29a-5p. From all of the above data,



Figure 2 Folding structure using MFold of pre-miRNA candidate
predicted by Vmir. The minimum free energy (ΔG) calculated
was -26.60 Kcal/mol. Position of the miRNA candidate sequence
detected by next-generation sequencing is indicated into the
pre-miRNA structure with a green line.
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miR-29a-5p can be considered as a miRNA encoded by
the porcine genome and the 18 nt candidate as one of the
miR-29a-5p isomiRs.

Discussion
This is the first study that tries to identify if PCV2 can
encode miRNAs. PCV2 is a ssDNA virus with a nuclear
phase in its replicating cycle [25]. This step is considered
essential for the production of viral miRNAs, consider-
ing that the first steps in miRNA maturation take place
in the cellular nucleus [26]. Nevertheless, high through-
put sequencing has failed to identify any miRNA
encoded by the viral genome in the natural host after an
experimental infection. Thus, PCV2 may increase the list
of DNA viruses not encoding miRNAs, as Cowpox virus
[7]. Notwithstanding, the capacity of PCV2 to encode
miRNAs has to be evaluated in cell culture, in a different
clinical form or at a different time points.
Only one miRNA candidate was initially identified, but

the posterior analysis indicated that it was a host
miRNA, miR-29a-5p. The homology of the viral se-
quence with miR-29a-5p, with only one internal mis-
match, led us to analyze with more detail if miR-29a-5p
can regulate the expression of the Cap protein. A miR-
29a-5p target prediction was evaluated using Miranda
software [27] in order to explore if the Cap gen consti-
tutes a target. As expected, a predicted target was identi-
fied in ORF2, with a low free energy of -21.65 Kcal/mol
and a high complementarity score of 187. The alignment
of the region with all PCV2 isolates available in the data-
base indicated that A, C and T, but not G, has been
found at position 1202 respecting Sp-10-7-54-13. All
substitutions lead to a non synonymous change. The
lack of the presence of G at position 1202 could be due
to restriction in the protein conformation or due to the
pressure exerted by miR-29a-5p in order to avoid regula-
tion by this miRNA. If this is a consequence of viral evo-
lution as [28] proposed, it needs further investigation.
How viruses can evolve to avoid the inhibition by host
miRNAs is a critical question. Some authors indicate
that this evolution allows viruses to replicate without be-
ing targeted by host miRNAs by encoded viral miRNAs
or modifying the expression of host miRNAs [29]. On
the other hand, the secondary structure of MD18 could
avoid the regulation by miR-29a-5p due to the inaccess-
ibility of the target sequence as has been proposed for
HIV [16].
In a previous study [18], in subclinically infected pigs,

we demostrated that PCV2 can alter the miRNA expres-
sion pattern of the host. If PCV2 can express miRNAs
in vitro has to be determined, but in its natural host, in a
subclinical infection, NGS failed to indentify viral miR-
NAs. The exploration of the possible capacity of PCV2 to
encode miRNAs could contribute to the understanding of



Figure 3 Alignment of miR-29a-5p with positions 1188-1209 of the Sp-10-7-54-13 sequence and all PCV2 available sequences in the
EMBL database. A representative of each sequence is included in the alignment. The number of isolates with the same sequence is shown.
The derived amino acid (aa position 173) from nucleotide change at position 1202 is indicated. aU has been replaced by T to facilitate the
understanding of the figure. bNo viral sequence was found in the database with this sequence.
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the pathogenesis of PCV2, especially for the candidate
with highest score identified by the in silico prediction. In
addition, further studies on the similarity of this candidate
with miR-29a-5p, and its significance, could shed light on
how miRNAs affect viral evolution [30].
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