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Abstract

Reconstructing the evolutionary history, demographic signal and dispersal processes from viral genome sequences
contributes to our understanding of the epidemiological dynamics underlying epizootic events. In this study, a
Bayesian phylogenetic framework was used to explore the phylodynamics and spatio-temporal dispersion of the

O CATHAY topotype of foot-and-mouth disease virus (FMDV) that caused epidemics in the Philippines between
1994 and 2005. Sequences of the FMDV genome encoding the VP1 showed that the O CATHAY FMD epizootic
in the Philippines resulted from a single introduction and was characterised by three main transmission hubs
in Rizal, Bulacan and Manila Provinces. From a wider regional perspective, phylogenetic reconstruction of

all available O CATHAY VP1 nucleotide sequences identified three distinct sub-lineages associated with
country-based clusters originating in Hong Kong Special Administrative Region (SAR), the Philippines and Taiwan.

The root of this phylogenetic tree was located in Hong Kong SAR, representing the most likely source for
the introduction of this lineage into the Philippines and Taiwan. The reconstructed O CATHAY phylodynamics
revealed three chronologically distinct evolutionary phases, culminating in a reduction in viral diversity over
the final 10 years. The analysis suggests that viruses from the O CATHAY topotype have been continually
maintained within swine industries close to Hong Kong SAR, following the extinction of virus lineages from
the Philippines and the reduced number of FMD cases in Taiwan.

Introduction

Foot-and-mouth disease (FMD) is an economically
devastating transboundary disease of cloven-hoofed do-
mestic and wild ruminants, causing an acute and
highly contagious vesicular disease which can develop
into a persistent infection. The aetiological agent is
EMD virus (FMDV), a single-stranded RNA virus be-
longing to the Aphthovirus genus, family Picornaviri-
dae. FMDV is characterised by high genetic variability
and exists as seven different serotypes named as O, A,
C, Asia 1, Southern African Territories (SAT) 1, SAT
2, and SAT 3 [1]. As a consequence of their high mu-
tation rate, FMDV lineages quickly diverge as they
replicate and spread into new areas. Therefore, trans-
mission of the virus through space and time directly
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defines the evolutionary patterns observed between re-
lated FMDV strains [2]. In addition to the accumula-
tion of nucleotide substitutions through errors, large
block of sequence changes can be mediated via recom-
bination between different FMDV genomes, further
expanding its evolutionary repertoire. In this context,
FMDV populations often exhibit extensive genetic and
antigenic heterogeneity at both the molecular and geo-
graphical level, driven by co-circulation of multiple
lineages, heterogenic mixed host populations, extensive
animal movements and trade patterns [3]. FMDV sero-
types have evolved independently in different geo-
graphical regions to give rise to distinct genetic
lineages, designated topotypes. Eleven topotypes have
been defined for serotype O, based on phylogenetic re-
lationships between available sequence data and a
value of ~15% of nucleotide (nt) sequence difference
in the VP1 coding region [4,5].
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The O CATHAY FMDV topotype

The first FMDV strain belonging to the O CATHAY
topotype was isolated from Hong Kong SAR from pig
samples collected during 1970 (HKN/21/70, GenBank
accession no. AJ294911) and was characterised by a 93-
102 nt deletion within the 3A coding region that is asso-
ciated with the atypical porcinophilic phenotype of this
FMDV lineage [6]. Subsequently, O CATHAY isolates
have been confirmed in several Southeast and East Asian
countries (including Malaysia, the Philippines, Taiwan,
Thailand and Vietnam), although since 1970, the major-
ity of field cases due to this topotype have been reported
in Hong Kong SAR and China [7-9]. The O CATHAY
FMD outbreak in Taiwan which began during 1997 re-
sulted in the stamping-out of more than 4 million pigs
and generated economic losses of over 6 billion US dollars
[10]. Outside of Asia, viruses belonging to the O CA-
THAY topotype have been responsible for isolated FMD
outbreaks that occurred in Europe in 1981 (Thalheim,
Austria), 1982 (Wuppertal, Germany) and 1995 (Moscow,
Russia). In the last ten years, O CATHAY FMDV strains
causing epizootics have been collected in Hong Kong SAR
on a yearly basis, where the last reported outbreak oc-
curred during March 2014. However, FMD viruses be-
longing to the type O CATHAY topotype are sampled on
a more sporadic basis from countries in Southeast Asia,
and it is currently unclear where this topotype is main-
tained and/or how it is dispersed.

FMDV in the Philippines

The introduction of FMD into the Philippines can be
dated back to 1902 as a result of the importation of in-
fected cattle from Hong Kong SAR to Manila. Following
large epidemics reported in Sorsogon and Bukidnon Prov-
inces in 1920, FMD became widespread in the entire
Philippines. FMDV lineages belonging to serotypes A, O
and C were identified in samples collected from outbreaks
occurring in the Philippines during the period between
1954 and 2005. Major epidemics were caused by type O
(from 1972 to 1991), type A (from 1975 to 1983) and type
C (from 1976 to 1995) strains [11]. The O CATHAY topo-
type was first detected in August 1994 in a backyard pig-
gery located in Rizal Province. More recently, this FMDV
topotype has been the sole lineage responsible for epi-
demics in the Philippines until December 2005, when the
last detected case was confirmed in Quezon Province. The
majority of the cases due to O CATHAY were located on
Luzon Island, from where FMD spread to 27 provinces. It
has been estimated that wholesale market prices of both
pork and even chicken in Central Luzon dropped signifi-
cantly following the start of the epidemic in 1995,
highlighting the economic impact of FMD across the en-
tire supply chain [12]. Since June 2011, the Philippines
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have been officially declared as FMD-free (without
vaccination).

This study explored the phylodynamics of these O
CATHAY outbreaks reconstructed through molecular
epidemiological analyses of VP1 coding sequences (n =
112) collected between 1994 and 2005. In addition, a
wider picture of the O CATHAY topotype phylogenetics
was determined from a larger database of currently avail-
able VP1 coding sequences (n = 322) to enable the charac-
terisation of geographical movements of this FMDV
lineage across historically affected countries of Southeast
and East Asia.

Materials and methods

Sample database

This study accessed archived vesicular fluid and/or epithe-
lium samples (1n=112) from the FAO World Reference
Laboratory for FMD (WRLEMD) at The Pirbright Insti-
tute, United Kingdom, which had been stored at -20 °C in
0.04 M phosphate buffer (M25; disodium hydrogen phos-
phate, potassium dihydrogen phosphate, pH 7.5) and 50%
(vol/vol) glycerol. This dataset represented clinical sam-
ples collected in the Philippines from 22 provinces in
the period between 1994 and 2005 (Additional file 1).
In addition, a further 210 VP1 coding region sequences
and representing isolates collected from Austria, China,
Germany, Hong Kong SAR, Malaysia, Russia, Taiwan,
Thailand and Vietnam [8,13-18] were retrieved from
both GenBank at NCBI [19] and the WRLFMD sequence
archive and, then, integrated with the Philippines collec-
tion to comprise a total dataset of 322 VP1 coding se-
quences (Additional file 2) These VP1 coding region
sequences have been submitted to GenBank as have been
assigned the following accession numbers: KM243030-
KM243172.

Viral RNA detection and sequencing

Clinical samples were processed in order to obtain the
EMDV VP1 coding sequences (639 nt length, ~8% of the
full genome length). Viral RNA for each sample was ex-
tracted from virus suspensions using the RNeasy® Mini
Kit (QIAGEN’ Ltd., UK), according to the manufac-
turer’s protocol. One-step RT-PCR to amplify the VP1
region of FMDV was carried out as previously described
[20]. Primers used for the RT-PCR step were O-1C244F
and O-1C272F for the forward, and EUR-2B52R for the
reverse orientations (Table 1). PCR products were
cleaned up using the Illustra GFX™ PCR DNA and Gel
Band Purification Kit (GE Healthcare Ltd., UK), and
were then cycle-sequenced using the BigDye® Termin-
ator v3.1 Cycle Sequencing Kit (Applied Biosystems,
UK). A set of reverse and forward primers was employed
to ensure the complete coverage of the VP1 coding re-
gion (Table 1). Sequencing reactions were analysed using
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Table 1 Oligonucleotide primers used for either RT-PCR
or cycle sequencing of the VP1 region from the FMDV
isolates

Primer designation Primer sequence (5" to 3’) Start - end
Reverse primers

NK72 GAAGGGCCCAGGGTTGGACTC 3558 - 3578
EUR-2B52R GACATGTCCTCCTGCATCTGGTTGAT 3624 - 3649
0-1D487gR TAATGGCACCRAAGTTGAA 3372 - 3390
0O-1D628R GTTGGGTTGGTGGTGTTGT 3181 - 3199

Forward primers

O-1C244F GCAGCAAAACACATGTCAAACACCTT 2469 — 2494
0-1C272F TBGCRGGNCTYGCCCAGTACTAC 2497 - 2519
O-1C283F GCCCAGTACTACACACAGTACAG 2508 - 2530
0O-1D296F ACAACACCACCAACCCAAC 3181 -3199
O-1C499F TACGCGTACACCGCGTC 2724 - 2740
O-1C605hF TGGCCAGTGCCGGTAAGGACTTTGAC 2830 - 2855
0-1C605nF TGGCTAGTGCTGGCAAAGACTTTGAC 2830 - 2855

Start and end locations have been mapped against the Kaufbeuren/FRG/66
type O FMDV isolate (GenBank accession no. X00871) [22].

the ABI 3730 DNA Analyzer (Applied Biosystems, USA).
Raw data files were assembled into a contig and edited
using SeqMan Pro™ 11.2 (DNASTAR, Inc.), then aligned
using Clustal Omega 1.2.0 [21].

Phylogenetic analysis

Before performing the phylogenetic reconstruction, jMo-
delTest 2.1.4 analysis [23,24] was undertaken to determine
the best fitting nucleotide substitution model using the
Bayesian Information Criterion (BIC) [25]. Statistical par-
simony [26] was used for reconstructing the genealogical
networks as implemented in the TCS 1.21 program [27].
The network generated was then edited and plotted in
yEd Graph Editor 3.12.

A Bayesian analysis framework was employed for phylo-
genetic and demographic inferences using a Markov chain
Monte Carlo (MCMC) method implemented in the BEAST
1.8.0 package [28]. The analysis was performed using
the Hasegawa-Kishino-Yano substitution model plus
gamma-distributed rates (HKY85 + I'4), and the relaxed
uncorrelated lognormal molecular clock model [29,30].
Demographic reconstruction was employed using the
Bayesian skyline model [31]. Spatial patterns of FMDV
dispersal were estimated through a probabilistic discrete
asymmetric diffusion model using a continuous-time
Markov chain process, adopting a Bayesian stochastic
search variable selection (BSSVS) procedure to select
among all possible migration pathways [32]. Nonzero
rates of virus movement between countries were judged
to be supported when the associated Bayes factor (BF)
exceeded 3. The MCMCs were run for 150 million iter-
ations, sub-sampling every 15 000 states. Convergence
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of the chain was assessed using Tracer 1.5 removing the
initial 10% of the chain as burn-in. The maximum clade
credibility (MCC) tree was summarised using TreeAnno-
tator 1.8.0 and constructed using FigTree 1.4.0. Phylogeo-
graphic maps were constructed using ArcGIS 10.2.1
(Environmental Systems Research Institute, Inc.).

Statistical analysis

The epidemic curve was constructed using the Handistatus
IT data for the Philippines retrieved from the OIE website
[33]. Statistical computations were performed in R 3.0.3
[34] and graphs were plotted using the ggplot2 package for
R [35], whereas complex vector images were rendered
using Inkscape 0.48.4. To determine the potential extent of
recombination in the genetic structuring of the virus popu-
lation, ratios of per-site recombination rate to the per-site
mutation rate (r) were estimated using LAMARC 2.1.9 [36].

Results

O CATHAY FMDV country based phylodynamics: the
Philippines

A FASTA search [37] of all publically available VP1 coding
sequences was completed to identify a candidate for the
most likely common ancestor for the Philippines lineage:
the closest match was identified as a sequence from Hong
Kong SAR with 99.2% nt identity (HKN/12/91, GenBank
accession no. AJ294921).

The observed evolutionary distances and total nt changes
calculated from the root (HKN/12/91) increased linearly
with time (R*=0.932; F; 111 =1528, p<0.001) (Figure 1).
The number of nt substitutions in the VP1 coding se-
quences between the first O CATHAY isolate collected in
the Philippines in 1994 and the last reported outbreak in
2005 was estimated to be 58, although the maximum num-
ber of nt substitutions was reported for the PHI/17/2003
isolate as 69 (maximum genetic distance 0.12 base substi-
tution per site). No indels were found within the entire
alignment. In addition, variability in the number of nt
changes in samples collected within the same time window
(year) was observed. Average genetic divergences among
year groups were estimated to be higher for 2000, 2001
and 2003, which deviate from the average value of 0.023 +
0.008 base substitutions per site per year (Table 2). Geo-
graphic distance was found to be significantly correlated
with genetic distance (F; g4 =15.92, p <0.001). A recom-
bination rate () of 8.76 x 1078 per site per generation (site/
generation) was estimated for the Philippines indicative of
an exceedingly low rate of recombination relative to
mutation.

As estimated by the statistical parsimony network
analysis, the most recent common ancestor (MRCA) of
the Philippines O CATHAY taxon was identified as an
unsampled virus 3 nt different from HKN/12/91 and
1-3 nt different from the earliest Philippines isolates
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collected between late 1994 and the start of 1995 (Figure 2).
The diameter of the parsimony network between the
MRCA and the most divergent FMDV isolate collected in
2004 (PHI/5/2004) was estimated to be 86 nt substitutions,
of which 83 (96.51%) were synonymous and 3 (3.49%)
non-synonymous. The average of number of nt substitu-
tions incurred per year (nt/yr) of any isolate from its closest
sampled ancestor was estimated to be 9.9 + 4.8, comprising
an average of 8.8 +4.2 synonymous and 1.0+0.9 non-
synonymous changes, indicative of an average rate of
change for VP1 sequences in the Philippines of approxi-
mately 1.5% per year. The average number of changes for
each isolate was 4.0 £ 2.3 nt/yr, of which 3.4+ 2.1 and
0.6 + 0.5 were synonymous and non-synonymous sub-
stitutions, respectively. Most sequences clustered accord-
ing to time across the network, although FMDYV isolates
collected in 2000 were assigned within three separate gen-
etic lineages, resulting in three evolutionary pathways one
of which was a dead-end. In addition, for some links more
recently collected viruses were assigned earlier in time on
the network. The case of PHI/12/94 which was found to
be a descendant of PHI/1/95 can in part be explained by
the short time distance which separates these two isolates
(32 days) and it might be that both strains (or their ances-
tors) were co-circulating at time of sampling. The recon-
structed phylogeny further defined these two viruses as
being closely related (genetic distance of 0.002 base

substitutions per site). Conversely, samples collected in
March (PHI/9/2000) and June 2000 (PHI/26/2000) were
determined to be the source of a virus collected in 1999
(PHI/10/99), although the 2000 isolates were direct de-
scendants of a virus detected in January 1999 (PHI/1/99).
Looking in detail at this case, the phylogeny found descent
of PHI/10/99, PHI/9/2000 and PHI/26/2000 from the same
common ancestor. These samples were collected from the
same region (Central Luzon) within an area of ~40 km of
radius, potentially explaining the inconsistent result
provided by the TCS analysis to have arisen from sampling
bias. The discrete states analysis resolved the relationship
of the PHI/10/99, PHI/9/2000 and PHI/26/2000 isolates
rooting those from a common ancestor that descends in
turn from an unsampled virus source both seeded from
Bulacan Province, which includes the PHI/1/99 sample
(Figure 3).

The molecular clock for the O CATHAY Philippines
lineage was estimated to be 1.25x 107 nt/site/yr (95%
HPD 9.47 x 102 to 1.57 x 107%) with a standard devi-
ation of 0.70 (95%HPD 0.49 to 0.91). No evidence of
autocorrelation of rates in the reconstructed phylogeny
was provided by the covariance value of 2.65 x 107>, The
introduction date, the time of the MRCA (TMRCA), of
the type O CATHAY topotype FMDV lineage into the
Philippines was calculated to be the 30™ of March 1994
(95%HPD 07/08/1993 to 08/08/1994, a time interval
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Table 2 Genetic, time and geographical pairwise distances (with corresponding standard deviation values) calculated for
the within-year Philippines O CATHAY FMDYV isolates groups and for each of the country based data from the earliest

samples collected within the specific group

Data No of samples

Genetic distance

Time distance Geo distance

Philippines

1994 7 0.010+0.002 023 +£0.05 -

1995 8 0.013 £ 0.006 063+0.77 124.72 +95.81
1996 9 0.020 + 0.004 0.10£0.03 235.66 +252.21
1997 14 0.016£0.013 038+0.38 11965+ 117.12
1998 23 0.011 £0.009 - 51.62+42.08
1999 5 0.011+0.002 - 146.83 +222.79
2000 16 0.054 £0.021 0.16+0.13 296.55+130.74
2001 7 0.057 £0.008 - 1422 +4.28
2003 8 0.051+0.013 0.19+0.08 34445 £ 26.98
2004 12 0.010 £ 0.004 041+023 32232+ 3883
2005 3 0.005 +0.005 0.03£0.01 1248 +17.65
Global

China 6 0.148 £ 0.081 3193+19.15 -

Hong Kong 138 0.157 £0.022 3295+7.24 -

Philippines 112 0.047 +0.022 4.59+3.50 -

Taiwan 46 0.015+0.025 1.38+3.01 -

Vietnam 13 0.104 £0.016 7.84£1.65 -

Genetic distances were estimated by the Hasegawa-Kishino-Yano substitution model plus gamma-distributed rates (HKY85 + '4), whereas geographic distance were
calculated using the Haversine formula [38]. Genetic distance is expressed in base substitution per site, time distance is defined in years, whilst geographical distance

is measured in kilometres.

which included the date of the first officially reported
case).

The reconstructed FMDV population dynamics from the
skyline plot (Figure 3) describes a demographic history
characterised by three phases. In the first phase, after an
initial exponential increase from mid-1994 until late 1997
at a rate that decreased from late 1996, a sudden and short
period of decline was observed, resulting in a population
bottleneck. Since genetic bottlenecks correspond to signifi-
cant reductions in population size, these changes in the O
CATHAY population dynamics in the Philippines probably
link to the launch of an extensive control plan in 1996 that
was successful in limiting the further spread of FMD and
thereby reducing the number of outbreaks [11]. However,
during 1999 a new FMD outbreak occurred within an
already declared FMD-free zone, the Panay region. There-
fore in the second phase, the skyline trajectory recorded a
second rapidly increasing viral population size starting in
mid-1998 and lasting up to the first months of 1999, which
resulted in a diversification of viral lineages. In the third
phase, the viral population size reached a plateau until late
2002, when further control policies resulted in a steady
decline in FMD prevalence until eradication.

The epidemic curve drawn from the field epidemio-
logical data from the OIE for the period 1995-2005 [33]
described an oscillatory trend in the number of FMD

outbreaks reported in the Philippines, with times of high
epidemic peaks interleaved by low-level FMD circulation.
The frequency of these oscillations was higher between
1997 and the beginning of 2000 (a monthly average of 37.9
FMD outbreaks), after which the number of FMD out-
breaks started to decline following periods of low reporting
(with a monthly average of 19.8 FMD outbreaks). However,
the reported epidemic trend did not overlap with the sky-
line plot trajectory, although the epidemic window from
mid-2000 to 2005 characterised by a reduced number of
outbreaks could be evinced by the plateauing and subse-
quent decrease in the genetic diversity of the skyline plot.
It should be noted that although more than 300 outbreaks
were officially reported through OIE during 2002, no clin-
ical samples (and thus genetic information) were collected
within that time window.

According to the results obtained by the discrete states
phylogeography analysis, the root of the Philippines
taxon was found to be from Rizal Province, consistent
with the location of the first officially reported cases of
O CATHAY topotype in the Philippines during August
1994 (Figure 3). Three main epidemic hubs could be
identified from the analysis: the first from the beginning
of the epizootic up to mid-1996, where outbreaks were
found to be seeded from Rizal Province; the second last-
ing until 2001, where Bulacan Province was estimated to
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be the main source of FMD spread; and lastly, Manila
Province as the last epidemic hub. The movement transi-
tions between the three main epidemic hubs were sup-
ported by Bayes factor values of > 24 [posterior probability
(pk) = 1.0] for movements from Rizal to Bulacan and from
Bulacan to Manila, respectively.

Global and regional phylodynamics of O CATHAY
topotype FMDV

The molecular clock rate for all the O CATHAY topotype
VP1 data was estimated to be 1.06 x 1072 nt/site/yr (95%
HPD 8.99 x 1072 to 1.23 x 1072), with a standard deviation
of 0.81 (95% HPD 0.67 to 0.94). This value was comparable
with the molecular clock rate reported for the Philippine
isolates only. The MRCA for the O CATHAY topotype
was estimated to have been present between 1955 and
1960. The r recombination parameter returned a value of
8.3 x 107 site/generation indicating a very low influence of
recombination relative to mutation.

Three distinct sub-lineages were identified by the wider
phylogenetic reconstruction that included the full data-
base of O CATHAY VP1 coding sequences, which were
clustered on a country level basis (Figure 4). The FMDV
strains circulating in the Philippines were found to have
descended from a common ancestor that was shared with
the Taiwanese isolates, in line with what was proposed to
be the source of introduction of the O CATHAY virus into
the Philippines in 1994 [8]. In turn, the Taiwanese cluster
descended from an unsampled virus closely related to a
FMDV isolate collected from China in 2000. The Hong
Kong SAR isolates were defined in a separate phylogenetic
cluster along with FMDV samples collected from coun-
tries in mainland Southeast Asia (Malaysia, Thailand and
Vietnam). This finding is in contrast to that previously re-
ported [18], which designated the Taiwanese lineages de-
scending from a common ancestor with the Hong Kong
SAR isolates, and identified the Philippines lineages as a
distinct phylogenetic cluster. Hui and Leung [18] inferred
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the phylogenetic relationship employing a Neighbor-joining
method; nevertheless, estimating the phylogeny using a
maximum-likelihood method [39] did not alter the shape
of the reconstructed phylogeny (data not shown). The three
phylogenetic clusters shared a common ancestor related to
a FMDV strain collected in Hong Kong SAR in 1991
(HKN/12/91), which was in turn a descendent from other
Hong Kong SAR isolates related to more recent samples
obtained from Russia (1995), Hong Kong SAR (1996) and
China (2003). FMDV isolates collected from countries of
mainland Southeast Asia were phylogenetically grouped
into two distinct clusters: the first (MRCA dated 1997) in-
cluding the first O CATHAY virus isolate from Vietnam in
1997 from which viruses were collected in 2005-06 and
2008, and the only isolate from Malaysia (2005) was
sourced; the second (MRCA dated 1998) associated with a
later introduction of an O CATHAY strain in Vietnam in
2002, from which viruses isolated in 2004-05, and FMDV
sequences from Thailand (2005) were related. The FMDV
ancestor of the first mainland Southeast Asia sublineage
was dated circa mid-1993, directly descending from the
oldest MRCA of the Hong Kong SAR cluster, whereas the
second sublineage was circulating in late 1998 and closely
related to a virus collected in Hong Kong SAR in 2002.
This phylogenetic picture supports two potential introduc-
tions of the O CATHAY FMDYV lineage into Vietnam from
Hong Kong SAR.

The MRCA shared between the Philippines and
Taiwanese phylogenetic clusters was estimated to have
been circulating in 1993 (95%HPD 1992 to 1994), whereas
the origin of the MRCA for the more recent O CATHAY
FMD epidemics in the Southeast and East Asia regions
was dated 1991 (95%HPD 1990 to 1992). No other virus
introduction or escape was ascribed to the Philippines
O CATHAY FMD epidemic history, suggesting the
Philippines sub-lineage to be monophyletic. In contrast,
Hui and Leung [18] described two different FMDV in-
troductions into the Philippines, assigning the PHI/5/95
isolates within the phylogenetic cluster which includes the
Taiwanese isolates. However, the tree node that governed
this inclusion had a bootstrap value of < 70, suggesting un-
certainty in the assignment of these descendants.

As estimated by the discrete phylogeography model,
the root of the entire phylogenetic tree was reported to
be in Hong Kong SAR and, therefore, representing a
likely source for the introduction of the O CATHAY
lineage into the Philippines and Taiwan. This is con-
firmed by the estimated BSSVS parameters, for which
China and Hong Kong SAR were assessed as the main
hubs of FMDV spread between countries (Figure 4):
China was found to be the source for Hong Kong SAR
(BF =5.6, pk=0.60), Taiwan (BF =5.07, pk=0.58) and
Russia (BF =4.33, pk = 0.54), whilst Hong Kong SAR was
identified as the source of FMD transmission to Vietnam
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Figure 4 Maximum clade credibility tree for all the O CATHAY FMDV isolates sequenced (n =322). Nodes with a posterior probability
value >0.7 are shown. Branches are coloured according to the most probable country of the node from which they descended as estimated
from the discrete state phylogeographic Bayesian model. Geographical links between countries identified by the BSSVS analysis are coloured by
the corresponding BF value. The year codes in virus isolate labels have been abbreviated to the last two digits. The geographical locations are
defined with the country centroid.
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(BF =6.75, pk=0.65) and the Philippines (BF = 3.16, pk =
0.46). The link found between China and Russia reinforces
the hypothesis that Chinese pork shipments were respon-
sible for the introduction of the O CATHAY lineage into
Moscow, Russia during 1995 [6]. Vietnam was estimated as
a recipient of viruses moving from Malaysia (BF =23.25,
pk = 0.86), Thailand (BF = 12.55, pk = 0.77) and Hong Kong
SAR (BF =6.75, pk=0.65). The most likely routes of
introduction of the FMDV O CATHAY lineage into
Europe were identified to be from Russia to Austria
(BF =3.92, pk =0.32), although Russia to Germany (BF =
3.51, pk =0.30) and Hong Kong SAR to Austria (BF = 3.14,
pk =0.27) were also considered as possible movement
routes. The virus movement within Europe has been iden-
tified from Austria to Germany (BF = 5.15, pk = 0.58). Thus
supported by the Bayesian phylogenetic and BSSVS ana-
lyses, the historical movement of the FMDV type O
CATHAY lineage across Asia might be temporally and
spatially reconstructed as represented in Figure 5.

The historical phylodynamics of the FMDV O CATHAY
lineage, as reconstructed by the skyline model using the
full currently available VP1 coding sequences database
(Figure 6), underwent three distinct and chronologically
consequent evolutionary stages. In the initial stage, the
genetic diversity was roughly constant until 1997, after
which there were two increasing phases within a period of
3 years from 1997 to 2000, with the highest peak in 1999.
The last stage is characterised by four sequential declining
phases, with a rapid sharp drop between 2004 and 2006.
This triphasic phylodynamic feature might be associated
with an oscillatory tendency of FMDYV genetic diversity
driven by a first expansion phase due to the introduction
of the virus into Taiwan and Vietnam and the trigger of
the Philippines epidemic, and a later contraction phase
following steps taken to eradicate the disease from the
Philippines and the decrease in the number of outbreaks
reported from Taiwan, characterised by the period between
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2001 and 2009 when few cases were reported. This as-
sumes that the FMDV type O CATHAY topotype has been
maintained constantly within the Hong Kong SAR live-
stock system.

Discussion

The evolutionary dynamics of the O CATHAY topo-
type of FMDV have been analysed allowing the trans-
mission dynamics to be reconstructed across countries
in Southeast Asia that have been impacted by this lineage.
The O CATHAY FMDV strains isolated from outbreaks
reported in Hong Kong, Taiwan and Philippines were
defined as belonging to three different sublineages,
which were related by a shared common ancestry to an
unsampled FMDV strain sourced from Hong Kong SAR.
The O CATHAY FMD epizootic in the Philippines
resulted from a single introduction and was characterised
by three main transmission hubs in Rizal, Bulacan and
Manila. Although the evolutionary dynamics of the O
CATHAY FMDV lineage were described by three phases
from the skyline reconstruction, this was not entirely con-
sistent with the monthly epidemic curve (Figure 3). This
could be either due to a spatio-temporal bias in the gen-
etic information analysed or in the incompleteness of the
outbreak reporting database used, or both.

The phylodynamics of FMDV reconstructed from the
EMDV type O CATHAY VP1 coding sequences indicates
a marked reduction in viral diversity in the last 10 years,
corresponding to the eradication of FMD in the Philippines
and the more limited disease events experienced in Taiwan.
Furthermore, the introduction of the FMDV type O
Southeast Asia (SEA) topotype Mya-98 lineage into
Hong Kong SAR during 2010 could have reduced the
genetic diversity within O CATHAY lineages through
direct competition with available hosts, as well as the
presence of cross-protective antibodies in convalescent
animals. These findings indicate that the O CATHAY

Hong Kong
Philippines

Taiwan

Vietnam

Alysaouy

1960 1965 1970 1975 1980 1965 1990 1995 2000 2005 2010 2013
]

Figure 5 Chronological evolutionary trend and transmission ancestry of the O CATHAY FMDV topotype in Southeast Asia. Spatio-temporal
reconstruction of the historical movements of the FMDV type O CATHAY lineage across Asia.
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Figure 6 Skyline plot of log effective population size (N.T) against time in years estimated from the full O CATHAY FMDV database.
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topotype is maintained in the Hong Kong SAR ecosystem
and sporadically spread from there to other Southeast
Asian countries, as would be the case for the Philippines
in 1994 and Vietnam in 1997. However, few O CATHAY
FMDYV strains have been reported from mainland China,
which has the largest swine production industry in the
world (representing over 51% of the world’s pig popula-
tion). These few isolates were collected in 1986, 2000,
2001 and 2003, therefore sampling bias or underreporting
of epidemic events occurring in China would likely have
an impact on assessing the geographical movements of
the FMDV type O CATHAY topotype. It is, nevertheless,
clear from the analysis that a transmission link exists be-
tween China and Hong Kong SAR, thus indicating a his-
torically southward movement of the O CATHAY FMDV
lineage.

The molecular clock estimated here for the O CATHAY
topotype is at the high end of evolutionary rate estimates
for FMDV. Previously estimates reported an average evo-
lutionary rate across all FMDV serotype of 2.48 x 10> nt/
site/yr [40], while rates of 3.14 x 1073, 1.3 x 1072 and 4.8 x
1072 nt/site/yr were reported for serotype O [40-42]. In
addition, lineage-based FMDV molecular clock rates of
2.8x 1072, 6.65x 1072, 7.81 x 10~ and 2.7 x 10~ nt/site/yr
were previously estimated for the O-PanAsia lineage in
India, O-PanAsia-2 sublineage in Pakistan and Afghanistan,
and type O in East Africa, respectively [43-45]. The higher
rate of FMDV evolution reported for the A-Iran 05 FMDV

lineage in Afghanistan and Pakistan (1.2 x 107> nt/site/yr)
[46] was similar to the molecular clock for the O CATHAY
topotype estimated by this study. Therefore, genotypically
and regionally variable evolutionary rates may in fact reflect
real differences in the epidemiological dynamics and host-
interaction of FMDV.

Although using a large database of FMDV isolates and
generating a comprehensive picture of the O CATHAY
topotype evolutionary history, this study has some limita-
tions largely derived from the nature of the genetic data
used for the analysis. The VP1 coding region, although de-
fining only ~8% (639 nt of length) of the complete FMDV
genome, is the most variable section of the FMDV genome
and is historically used for tracing the movement and
spread of FMD globally [1,4] and, furthermore, provides
the basis for FMDV genotype definition [5]. Analysing a
larger part of the FMDYV genome, such as the whole capsid
region or the full-length genome, would produce results
with a higher resolution [47,48]. However, it should be
noted that recombination events seem to be more
widespread in other part of the genome [16,49,50], thus
representing a limitation in interpreting results based on
full-length genome analysis of large scale FMDV evolu-
tionary studies. The ratio of per-site recombination to mu-
tation rate here estimated from the full currently available
FMDV type O CATHAY topotype VP1 coding sequences
database is very low indicating that these results are not
influenced by the process of recombination.



Di Nardo et al. Veterinary Research 2014, 45:90
http://www.veterinaryresearch.org/content/45/1/90

Additional files

Additional file 1: FMDV type O CATHAY VP1 Philippines sequences
database. Designation and origin of the FMDV clinical samples (n=112)
collected from the Philippines between 1994 and 2005 and processed in
this study. 'Date received by the WRLFMD was used where exact
collection date was missing.

Additional file 2: FMDV type O CATHAY VP1 sequences database.
Designation and origin of the VP1 sequences (n = 210) retrieved from
either GenBank or the WRLFMD databases and belonging to the O
CATHAY topotype. 'Date received by WRLFMD, year of collection or
GenBank submission date were used where exact collection date was
missing [51,52].
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