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Abstract

The Gram-negative bacterium Gallibacterium anatis is a major cause of salpingitis and peritonitis in commercial
egg-layers, leading to reduced egg production and increased mortality. Unfortunately, widespread multidrug
resistance and antigenic diversity makes it difficult to control infections and novel prevention strategies are urgently
needed. In this study, a pan-genomic reverse vaccinology (RV) approach was used to identify potential vaccine
candidates. Firstly, the genomes of 10 selected Gallibacterium strains were analyzed and proteins selected on the
following criteria; predicted surface-exposure or secretion, none or one transmembrane helix (TMH), and presence
in six or more of the 10 genomes. In total, 42 proteins were selected. The genes encoding 27 of these proteins
were successfully cloned in Escherichia coli and the proteins expressed and purified. To reduce the number of
vaccine candidates for in vivo testing, each of the purified recombinant proteins was screened by ELISA for their
ability to elicit a significant serological response with serum from chickens that had been infected with G. anatis.
Additionally, an in silico prediction of the protective potential was carried out based on a protein property
prediction method. Of the 27 proteins, two novel putative immunogens were identified; Gab_1309 and Gab_2312.
Moreover, three previously characterized virulence factors; GtxA, FlfA and Gab_2156, were identified. Thus, by
combining the pan-genomic RV approach with subsequent in vitro and in silico screening, we have narrowed
down the pan-proteome of G. anatis to five vaccine candidates. Importantly, preliminary immunization trials
indicated an in vivo protective potential of GtxA-N, FlfA and Gab_1309.
Introduction
Poultry meat and eggs are considered very important
and sustainable sources of animal protein worldwide [1],
making efficient strategies to prevent and control the
spread of poultry diseases highly important [2]. Gallibac-
terium anatis is a Gram-negative, non-motile, encapsu-
lated coccobacillus of the Pasteurellaceae family [3,4]
and commonly associated with poultry [5]. Besides con-
stituting a part of the normal microflora of the upper re-
spiratory tract and lower genital tract in chickens [6], it
is also considered a major cause of salpingitis and peri-
tonitis in egg-laying chickens [7-9]. Thus, G. anatis in-
fections lead to a drop in egg production and increased
mortality in commercial layers [10]. Unfortunately, wide-
spread multiple-drug resistance [11] hinders treatment
with traditional antimicrobial agents, while substantial
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antigenic diversity [12] among disease-causing field iso-
lates hampers disease prevention by classical vaccination
with inactivated whole cell bacterins. Hence, novel pre-
vention strategies are urgently needed.
The sequencing of the first bacterial genome in 1995

[13] initiated the genomic era and catalyzed a shift from
conventional culture-based approaches to genome-based
vaccinology [14]. This gave rise to the Reverse Vaccinol-
ogy (RV) approach [15], in which bioinformatics tools
are used to analyze genome sequences to identify genes
encoding likely protective antigens. The concept of RV
was initially applied to Neisseria meningitidis serogroup
B (MenB) [16], for which conventional vaccine develop-
ment approaches had failed in producing an efficacious
vaccine. Based on the genomic sequence of MenB strain
MC58 [17], five universal vaccine candidates were iden-
tified [18], and the resulting 4CMenB vaccine (Bexsero®)
is now approved in the EU for active immunization of
individuals aged over two months against disease caused
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by MenB [19]. Since this pioneering MenB project, the
RV approach has been applied to a variety of other import-
ant pathogens [20]. However, the increased availability of
multiple genomes for the same bacterial species has shown
that genomic variability in bacteria is much more extensive
than initially anticipated. Thus, analysis of the genome of a
single strain often fails to address intra-species genetic vari-
ability and limits the effectiveness of genome-wide screens
for vaccine candidates. To overcome this, a pan-genomic
RV model utilizing the global gene repertoire for a species
was proposed by Tettelin et al. [21]. Pan-genomic RV was
first applied to vaccine development in Group B Strepto-
coccus [22], and this study demonstrated the importance of
sequencing multiple strains of a single pathogen for the
identification of vaccine antigens [23]. The application of
in silico and in vitro predictions has not only enabled a
much more rational selection of vaccine candidates, but
has also shown promise at reducing the number of experi-
mental animals needed to verify the effectiveness of vac-
cine candidates.
We report here the use of a pan-genomic RV approach

for identification of novel and conserved immunogens of
G. anatis. By implementing different in silico approaches
and in vitro assays, we screened the Gallibacterium pan-
proteome, resulting in a final selection of five proteins
with a high predicted potential as vaccine candidates.
Importantly, preliminary in vitro immunization results
indicate protective potential of at least three of these
candidates including FlfA, which has previously been
tested and confirmed highly protective against homolo-
gous challenge in chickens [24]. Together, these results
Table 1 Gallibacterium strains for included in this study

Strain Biovar Host/tissue

G. anatis bv. anatis

Biovar anatis

F149T NA Duck/intestine

Biovar haemolytica

12656-12 4 Chicken/liver

10672-6 1 Chicken/oviduct

4895 4 Chicken/NA

7990 3 Chicken/NA

Avicor 4 Chicken/heart

CCM5995 20 Chicken/NA

IPDH 697-78 15 Chicken/NA

G. genomospecies 1

CCM5974 8 Hen/Liver

G. genomospecies 2

CCM5976 9 Hen/oviduct
aCz: Czech Republic, DK: Denmark, G: Germany, MX: Mexico.
T = type strain.
NA = Not available.
provide an important step in the development of a new
and broadly protective vaccine against G. anatis.

Materials and methods
Animal ethics statement
All work on experimental animals was carried out with the
approval of the Danish National Animal Ethics Committee
(Approval no. 2012-15-2934-00339 and 2012-15-2934-
00923).

Gallibacterium strains and growth conditions
The 10 Gallibacterium strains included in the study are
listed in Table 1. The strains were selected based on
their pathogenic potential, prevalence in the field and
genetic diversity, in order to provide as much diversity
as possible within the species. Bacteria were incubated at
37 °C on brain heart infusion (BHI) agar supplemented
with 5% citrated bovine blood in a closed plastic bag or
in BHI broth with aeration.

RV in silico analysis
Sequencing and assembly of G. anatis strains 12656–12
and F149T was performed as described previously [27].
The remaining genomes were sequenced using the Illu-
mina Genome Analyzer IIx (CD genomics, New York,
USA). Reads were assembled using VelvetOptimiser 2.0
[28]. All 10 genomes were annotated using Prokka v.1.0
[29]. The subcellular localization of the 31 564 anno-
tated proteins from the 10 genomes was predicted using
standalone PSORTb v.3.0 [30]. The presence of N-
terminal signal peptides was predicted using SignalP
Lesions Countrya Reference

- DK [3]

+ DK [25]

+ DK [3]

+ MX [26]

+ MX [26]

+ MX [26]

NA Cz [3]

+ G [3]

+ Cz [3]

+ Cz [3]
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v.3.0 [31] and the number of transmembrane helices
(TMHs) was predicted by TMHMM v.2.0 [32]. The pro-
tein conservation among the strains was analyzed using
BLASTp v.2.2.22 [33] with default parameters. The the-
oretical molecular masses and isoelectric points were
calculated using the pepstats tool in EMBOSS [34]. In
total, 42 proteins were selected (Table 2).

Cloning and small-scale protein expression
Each of the selected genes was amplified from the G.
anatis 12656–12 genome by PCR and cloned into the
Gateway entry vector pENTR™/SD/D-TOPO (Invitrogen).
Primers were designed using Oligo Explorer 1.2 (Gene
Link™, Hawthorne, NY, USA) as described previously [37].
Areas with high predicted hydrophobicity in the N and/or
C terminus were removed, as were predicted signal pep-
tides. In addition, GtxA was cloned as two parts (N- and
C-terminal) due to its size. The E. coli strains and plas-
mids used in this study are listed in Additional file 1.
Genes were cloned and small-scale expressed as described
in Additional file 2 using Gateway cloning and ligation-
independent cloning (LIC) systems. Altogether, 37 expres-
sion clones were constructed for 36 of the 42 selected pro-
teins (two clones were made for GtxA). The primer
sequences used for gene amplification, and the final ex-
pression vector chosen for protein expression from each
gene, are listed in Additional file 3.

Large-scale protein expression and purification
All proteins were expressed and purified in large-scale
from E. coli Rosetta 2 (DE3) cells (Novagen, Madison, WI,
USA). Large-scale expression was performed in a custom-
made large-scale expression system (LEX) (Harbinger Bio-
tech, Toronto, Canada) as described previously [38] and in
Additional file 2. Of the 37 expression clones, 27 recom-
binant proteins were successfully purified; the majority
(17) of these proteins had a purity > 90%.

Production of antiserum against G. anatis 12656–12 in
chickens
Two Lohmann brown chickens (21 weeks old) were pur-
chased from a commercial breeder with high biosecurity
standards. The chickens were kept under free indoor
housing conditions and were provided with fresh water
and feed ad libitum. The chickens were swabbed for the
presence of G. anatis by a cloacal swab. After two weeks
of acclimatization the chickens were challenged with 105

colony forming units (CFU) of G. anatis 12656–12 by
injection into the peritoneal cavity as previously de-
scribed [39] and re-infected 2 weeks after the first infec-
tion. Blood for serum purification was collected from
the brachial vein prior to the first infection (pre-immune
antiserum) and one week after the second infection
(hyper-immune antiserum).
Enzyme-Linked Immunosorbent Assay (ELISA)
The putative immunogenicity of each of the purified re-
combinant proteins was assessed by indirect ELISA as
described previously [40], using pooled anti-G. anatis
pre-immune and hyper-immune antiserum. Briefly, Nunc-
Immuno™ MicroWell™ 96-Well Plates (Thermo Scientific,
Waltham, MA, USA) were coated overnight at 4 °C with
0.5 μg recombinant protein (48 wells per protein) diluted
in carbonate-bicarbonate buffer (pH 9.6) (Sigma-Aldrich,
St. Louis, MO, USA). Each well was then washed; this and
all subsequent washing steps consisted of three washes in
350 μL wash buffer (PBS + 0.05% Tween 20). The wells
were blocked for 2 h at room temperature in 200 μL
blocking solution (PBS containing 0.05% Tween 20 and
2% bovine serum albumin (BSA)) and washed. The anti-
body titers were assayed by serial 3-fold dilutions of
chicken serum ranging from 1:200 to 1:48600. All dilu-
tions were prepared in triplicate in dilution buffer (PBS
containing 0.05% Tween 20 and 0.1% BSA), 100 μL were
added to each well and plates were incubated for 1 h at
37 °C. For each assay, 12 control wells were included,
which contained pure dilution buffer; secondary antibody
was added to 6 of these wells as a measure of background,
and the other 6 wells remained blank as a negative control
for the ELISA. Following incubation, the wells were
washed and 100 μL polyclonal goat anti-chicken IgG (Fc):
HRP (AbD Serotec, Puchheim, Germany), diluted 1:4000
in diluting buffer, were added to each well and the plates
incubated for a further 1 h at 37 °C and then washed. To
detect the binding, 100 μL of 3,3′,5,5′-Tetramethylbenzi-
dine (TMB) liquid substrate (Sigma) were added to each
well. The plates were incubated for 2 min and then the
reaction was stopped by addition of 100 μL 1 M HCl.
The absorbance was read immediately at 450 nm in a
PowerWave XS spectrophotometry (BioTek Instruments,
Winooski, VT, USA).
The antibody titers were calculated for the measured

absorbances at 450 nm [41], using the “Antibody Titers”
online data analysis tool [42]. To compare and rank the
ELISA results, a P/N ratio (P = hyper-immune serum, N =
pre-immune serum) of mean antibody titers was calcu-
lated [43]. All statistical analysis was performed using SAS
version 9.3 (SAS Institute, Cary, NC, USA), and differ-
ences between groups assessed using a one-way t-test.
The recognition of recombinant protein by hyper-immune
serum was deemed significant at P < 0.05, indicating that
the protein was expressed in vivo during G. anatis infec-
tion and elicited a specific immune response.

VacFinder® in silico protein analysis
To further predict the protective potential of each of the
expressed proteins, each of the proteins was analyzed
using the proprietary VacFinder® in silico technology
platform (Evaxion Biotech, LLC, USA). VacFinder® is a



Table 2 The 42 proteins from G. anatis 12656–12 selected for cloning and expression

Protein ID Description Mw (kDa) PSORTb prediction TMHMM
prediction

SignalP
prediction

Acc. no.

Gab_0001 Hypothetical protein 195.9 Outer membrane 0 No ERF78007.1

Gab_0047 Metal-dependent proteases with possible
chaperone activity

36.5 Extracellular 0 No ERF77629.1

Gab_0087 Hypothetical protein 140.9 Extracellular 0 No ERF78219.1

Gab_0091 Outer membrane lipoprotein 15.3 Unknown 0 Yes ERF79624.1

Gab_0151a RTX toxins and related
Ca2 + −binding proteins

216.4 Extracellular 0 No FJ917356

Gab_0178 Predicted secreted acid phosphatase 30.5 Unknown 0 Yes ERF78374.1

Gab_0186 Membrane-bound lytic
murein transglycosylase

39.9 Unknown 0 Yes ERF78366.1

Gab_0337 Autotransporter adhesin 142.3 Extracellular 0 No ERF78595.1

Gab_0523 Outer membrane protein and related
peptidoglycan-associated (lipo)proteins

16.4 Outer membrane 0 Yes ERF78926.1

Gab_0572b F17-like fimbrial subunit 19.1 Extracellular 0 Yes ERF79277.1

Gab_0574 P pilus assembly protein, porin PapC 94.2 Outer membrane 0 Yes ERF79276.1

Gab_0602 Outer membrane protein 47.8 Outer membrane 0 Yes ERF78505.1

Gab_0652 Organic solvent tolerance protein OstA 90.1 Outer membrane 0 Yes ERF78644.1

Gab_0661 Small protein A (tmRNA-binding) 16 Unknown 0 Yes ERF78651.1

Gab_0925 Hypothetical protein 85.2 Outer membrane
and/or extracellular

0 Yes ERF77284.1

Gab_0999 Rare lipoprotein B 18.2 Unknown 1 Yes ERF79357.1

Gab_1008 Type II secretory pathway, component HofQ 42.1 Outer membrane 0 No ERF79423.1

Gab_1162 P pilus assembly protein, porin PapC 93.8 Outer membrane 0 Yes ERF78846.1

Gab_1164b F17-like fimbrial subunit 20.5 Extracellular 0 Yes JX855927

Gab_1192 Surface lipoprotein 28 Cytoplasmic membrane 0 Yes ERF78832.1

Gab_1245 Hemolysin activation/secretion protein 67.8 Outer membrane 1 Yes ERF78979.1

Gab_1283 Long-chain fatty acid transport protein 48.8 Outer membrane 0 Yes ERF77302.1

Gab_1309 Membrane proteins related to metalloendopeptidases 42.7 Unknown 0 Yes ERF77527.1

Gab_1396 Uncharacterized protein conserved in bacteria 146.6 Outer membrane 1 No ERF79175.1

Gab_1397 Outer membrane protein 65.9 Outer membrane 0 Yes ERF79124.1

Gab_1399 Membrane-bound metallopeptidase 47.2 Outer membrane
and/or extracellular

0 Yes ERF79126.1

Gab_1450 Opacity protein and related surface antigens 23.1 Outer membrane 1 Yes ERF79004.1

Gab_1576 Outer membrane receptor for ferrienterochelin
and colicins

23.4 Outer membrane 0 No ERF78509.1

Gab_1631 Cell envelope opacity-associated protein A 43.9 Extracellular 1 No ERF79417.1

Gab_1654 Outer membrane phospholipase A 32.4 Outer membrane 1 Yes ERF79322.1

Gab_1755 Outer membrane protein and related
peptidoglycan-associated (lipo)proteins

27.9 Outer membrane 0 Yes ERF79542.1

Gab_2087 Outer membrane protein 51 Outer membrane 0 Yes ERF78059.1

Gab_2124c Outer membrane protein (porin) 41.1 Outer membrane 0 Yes KF160335

Gab_2156b F17-like fimbrial subunit 20.7 Extracellular 0 Yes ERF79559.1

Gab_2158 P pilus assembly protein, porin PapC 90.6 Outer membrane 0 Yes ERF79560.1

Gab_2192 Outer membrane protein W 25.7 Outer membrane 0 Yes ERF78317.1

Gab_2224 Outer membrane receptor proteins,
mostly Fe transport

81 Outer membrane 0 Yes ERF78217.1
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Table 2 The 42 proteins from G. anatis 12656–12 selected for cloning and expression (Continued)

Gab_2274 Outer membrane receptor proteins,
mostly Fe transport

74 Outer membrane 0 Yes ERF77464.1

Gab_2304 Glycerophosphoryl diester phosphodiesterase 41.6 Unknown 0 Yes ERF77421.1

Gab_2312 Autotransporter adhesin 325.7 Outer membrane
and/or extracellular

0 No ERF77433.1

Gab_2347 Outer membrane protein/protective
antigen OMA87

89.3 Outer membrane 0 Yes ERF79042.1

Gab_2348 Outer membrane protein 19.8 Outer membrane 0 Yes ERF79081.1
aPreviously described as GtxA in [35].
bPreviously described in [24]. Gab_1164 = FlfA.
cPreviously described as OmpC in [36].
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data-driven machine learning method trained by protein
property pattern recognition on known and protective
B-cell protein antigens (except for exotoxins), aiming at
identifying novel and protective B-cell protein antigens
with a neutralizing opsonizing profile. The machine-
learned prediction is based on specific protein property
features of protein sequences rather than sequence simi-
larity, allowing antigen classification based solely on pro-
tein properties [44]. The output is a list of proteins from
the proteome ranked by their ability to elicit a highly
protective antibody response.

Immunization of layer chickens with recombinant proteins
24 Isa Brown layer chickens (16 weeks old) were pur-
chased from a commercial breeder with high biosecurity
standards. The chickens were swabbed for the presence
of G. anatis by a cloacal swab. The chickens were ran-
domly divided in eight groups of four each and allowed
to acclimatize for one week after arrival. The chickens
were kept under free indoor housing conditions and pro-
vided with fresh water and feed ad libitum. Each group
was immunized subcutaneously with 100 μg of one of
the five selected recombinant proteins (GtxA-N, FlfA,
Gab_1309, Gab_2156 or Gab_2312) mixed in 0.5 mL of
SEC buffer (50 mM NaP, 150 mM NaCl, 0.5 mM TCEP,
10% glycerol; pH 7.5) and 0.5 mL of Freund’s incomplete
adjuvant (Sigma-Aldrich). As a control (non-immunized),
a group of four chickens was immunized with a placebo
(SEC buffer and Freund’s incomplete adjuvant). Two
weeks after the immunization all chickens were infected
intraperitoneally with 1.5 × 106 CFU of G. anatis 12656–
12 as described previously [39]. Forty-eight hours after in-
fection the chickens were euthanized and a post mortem
examination was conducted. To assess the protective ef-
fect of the immunization, the lesions found in peritoneum
of each bird were scored according to three parameters:
(i) inflammatory reaction, (ii) amount of exudate, and (iii)
clarity of the peritoneal surfaces. All parameters were
scored on a scale from 0–3, thus giving a maximum score
of 9. Furthermore, the presence of Gallibacterium was de-
tected by swabbing the peritoneum with a sterile cotton
swab and streaking it onto BHI blood agar. The scorings
of the lesions in the peritoneum were analyzed by a Mann
Whitney U test and P < 0.05 were deemed significant.

Multiple sequence alignments
Multiple amino acid sequence alignments of the Gab_1309
and Gab_2312 proteins and their orthologs were prepared
using MAFFT v7.130b [45] and formatted using Jalview
2.8.0b1 [46].

Genbank accession numbers
The genome sequence of G. anatis 12656–12 has re-
cently been made available [47] and was submitted to
Genbank (BioProject ID: 213810, accession number
AVOX00000000). The nucleotide sequence accession
numbers for the genes included in this study are listed
in Table 2. Genome sequence reads from the nine Galli-
bacterium strains used for Gab 1309 and Gab_2312 mul-
tiple sequence alignment were submitted to the NCBI
Sequence Read Archive (SRA) [48] and can be retrieved
using the study accession number SRP029613.

Results
RV in silico prediction of candidate vaccine antigens
For the identification and selection of putative immunogens,
the genomes of 10Gallibacterium strains were analyzed
(Table 1). Based on the central premise that protective
antigens should be accessible to the host immune sys-
tem, proteins predicted to be surface-exposed or se-
creted were selected from the G. anatis pan-proteome.
Moreover, proteins with more than one TMH were dis-
carded, based on the premise that they are unlikely to
be transported beyond the inner membrane. In addition,
these proteins have the highest rate of expression failure
during subsequent procedures [16] or are less likely to
be over-expressed in E. coli [49]. Finally, proteins
present in six or more of the 10G. anatis genomes were
identified. A protein was considered present if a signifi-
cant full length match (E-value < 10−8) was obtained.
From a total of 31564 proteins, 162 proteins were pre-
dicted as extracellular proteins and 482 proteins as
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outer membrane proteins. Of these, 42 proteins were
present in six or more of the 10 genomes and these pro-
teins were selected for further studies (Table 2).

Cloning, expression and purification
Each of the 42 selected genes was amplified from the G.
anatis strain 12656–12 genome by PCR. This strain was
chosen for gene cloning as it is a well-characterized and
highly pathogenic strain originally isolated from the liver
of a chicken with septicaemia [25,39]. Using different
high-throughput cloning strategies, 37 proteins were
successfully purified at a small-scale from E. coli and of
these, 27 were successfully purified in the large-scale tri-
als (Table 3). The 10 remaining proteins were lost during
the large-scale purification process due to low yield,
Table 3 The 27 large-scale purified proteins

Protein ID Description

GtxA-Nc RTX toxin (first half part)

Gab_0523 Outer membrane protein and related peptidoglycan-assoc

Gab_2156d F17-like fimbrial subunit

Gab_0091 Outer membrane lipoprotein

Gab_2348 Outer membrane protein

FlfAd F17-like fimbrial subunit

Gab_1755 Outer membrane protein and related peptidoglycan-assoc

Gab_1309 Membrane proteins related to metalloendopeptidases

Gab_2312 Autotransporter adhesion

GtxA-Cc RTX toxin (last half part)

Gab_1576 Outer membrane receptor for ferrienterochelin and colicin

Gab_1654 Outer membrane phospholipase A

Gab_2224 Outer membrane receptor proteins, mostly Fe transport

Gab_2192 Outer membrane protein W

Gab_1450 Opacity protein and related surface antigens

Gab_0652 Organic solvent tolerance protein OstA

Gab_1283 Long-chain fatty acid transport protein

Gab_0047 Metal-dependent proteases with possible chaperone activ

Gab_1162 P pilus assembly protein, porin PapC

Gab_1192 Surface lipoprotein

Gab_1397 Outer membrane protein

Gab_0925 Hypothetical protein

Gab_0186 Membrane-bound lytic murein transglycosylase

Gab_2304 Glycerophosphoryl diester phosphodiesterase

OmpCe Outer membrane protein (porin)

Gab_0572d F17-like fimbrial subunit

Gab_1245 Hemolysin activation/secretion protein
aRatio between the mean antibody titer values (P = hyper-immune serum; N = pre-im
two groups (* = P < 0.05, *** P < 0.001).
bProteins ranked within the Top20 of the G. anatis 12656–12 proteome by VacFinde
cPreviously described in [35]. Due to the size of the protein it was cloned, expressed
dPreviously described in [24].
ePreviously described in [36].
impurities or lack of expression in E. coli in large-scale
cultures.

Screening of immunogenic potential by ELISA
In order to reduce the number of antigens to be tested
in vaccine trials, the immunogenic potential of the 27
purified proteins was assessed in vitro by an indirect
ELISA approach using pools of anti-G. anatis 12656–12
pre-immune and hyper-immune antiserum from two
chickens. The chickens were, as expected, found to be
positive for G. anatis on the cloacal mucosa prior to the
immunizations. The mean antibody titers were calcu-
lated for each protein using both pre-immune and
hyper-immune antiserum. To rank the proteins, P/N
values between the two antibody titers were calculated
Form P/N ratioa Acc. no.

Soluble 20.1*** FJ917356

iated (lipo)proteins Soluble 7.9*** ERF78926.1

Soluble 6.6*** ERF79559.1

Insoluble 5.9*** ERF79624.1

Insoluble 4.1*** ERF79081.1

Soluble 2.5*** JX855927

iated (lipo)proteins Insoluble 1.8*** ERF79542.1

Soluble 1.7***b ERF77527.1

Soluble 1.7***b ERF77433.1

Insoluble 1.4*** FJ917356

s Insoluble 1.6* ERF78509.1

Insoluble 1.3* ERF79322.1

Insoluble 1.3 ERF78217.1

Insoluble 1.2 ERF78317.1

Insoluble 1.2 ERF79004.1

Insoluble 1.2 ERF78644.1

Insoluble 1.2 ERF77302.1

ity Soluble 1.0 ERF77629.1

Insoluble 1.0 ERF79423.1

Insoluble 1.0 ERF78832.1

Insoluble 1.0 ERF79124.1

Insoluble 1.0 ERF77284.1

Insoluble 1.0 ERF78366.1

Soluble 0.9 ERF77421.1

Insoluble 0.9 KF160335

Insoluble 0.9 ERF79277.1

Insoluble 0.9 ERF78979.1

mune serum). Asterisks indicate statistically significant difference between the

r®.
and purified as two halves.
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for each protein (Table 3). A significant and specific re-
action with hyper-immune antiserum was identified for
12 of the 27 recombinant proteins tested (Figure 1),
namely GtxA (both halves of the protein), FlfA,
Gab_0091, Gab_0523, Gab_1309, Gab_1575, Gab_1654,
Gab_1755, Gab_2156, Gab_2312 and Gab_2348. These
results indicate (i) that these 12 proteins are expressed
in vivo by G. anatis 12656–12, (ii) that the proteins are
recognized by the chicken immune system, and (iii) that
the proteins elicit a specific antibody response. The
remaining proteins were not significantly recognized by
the hyper-immune antiserum.

Screening of protective potential by VacFinder®
To provide an additional prediction of the protective po-
tential of the 27 proteins available in recombinant form,
the protein sequences were analyzed in silico with the
VacFinder® algorithm. The entire G. anatis strain 12656–
12 proteome (approximately 2500 proteins) was analyzed
and ranked for protective potential. Proteins ranked in the
Top20 are those predicted to have the highest protective
potential (Table 3). Of the 27 proteins cloned and
expressed in E. coli, only Gab_1309 and Gab_2312 were
ranked within the Top20 VacFinder® hits.

Conservation of Gab_1309 and Gab_2312
Two of the 27 proteins, Gab_1309 and Gab_2312, elic-
ited a significant ELISA response and were ranked in the
Top20 proteins with protective potential in the G. anatis
12656–12 proteome as determined by VacFinder®, sug-
gesting that these proteins should be prioritized in further
analyses. Both proteins were expressed in E. coli with an
N-terminus His6-tag and purified in soluble form. Due to
Figure 1 Antibody titers of immune serum against recombinant prote
protein based on the ELISA performed on sera collected before (pre-immu
The titers were calculated using the measured absorbances at 450 nm as d
pre-immune and immune ELISA responses were analyzed using one-way A
***P < 0.001).
the high degree of predicted hydrophobicity within the C-
terminal region of Gab_2312, as well as the size of the
whole protein (325.7 kDa), only a small part (338 residues)
was included in the final recombinant protein. Homologs
of Gab_1309 and Gab_2312 were identified within the ge-
nomes of all the 10 strains included in this study, as well
as in the recently sequenced G. anatis strain UMN179
(UMN_1211 and UMN_1565) [27], further supporting
their potential as broadly protective immunogens. To de-
termine the level of protein sequence conservation of
Gab_1309 and Gab_2312, multiple alignments were con-
ducted against the protein homologs from other G. anatis
strains. The Gab_1309 protein sequences were almost
identical across all strains (Additional file 4). On the other
hand, the Gab_2312 protein sequences varied considerably
in length from 2157 residues in G. anatis strain F149 to
5202 residues in G. genomospecies 2 strain CCM5976.
Despite this difference, several well-conserved sections
could be identified within the sequences, indicating a de-
gree of conservation within the structure and the presence
of common epitopes. Additional file 5 shows the align-
ment between the 338 residues included in the recombin-
ant protein and the corresponding parts in the protein
homologs.

Potential protective capacity
To evaluate the protective potential in vivo of the five most
promising vaccine candidates (GtxA-N, FlfA, Gab_1309,
Gab_2156, or Gab_2312), groups of four chickens were
each immunized with one of the recombinant proteins,
followed by intraperitoneal challenge with G. anatis
12656–12. G. anatis was recovered in pure culture from
chickens within all the immunized groups, as well as
ins. Mean calculated antibody titers ± SEM are shown for each
ne) and after (hyper-immune) infection with G. anatis strain 126565–12.
escribed in the text. Differences in mean antibody titers between
NOVA with a t test. Asterisks indicate statistical significance (*P < 0.05,
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from the non-immunized group. However, two chickens
from the group immunized with GtxA-N and one chicken
from the group immunized with FlfA were culture-
negative. A significant lower lesion score was found in the
group immunized with GtxA-N (P = 0.02), FlfA (P = 0.04)
and Gab_1309 (P = 0.02) when compared to the non-
immunized group (Figure 2), indicating a protective
potential of these three proteins. The two groups immu-
nized with Gab_2156 or Gab_2312 did not show a
significant difference when compared with the non-
immunized group.

Discussion
Novel prevention and treatment strategies are urgently
needed to prevent G. anatis infections in the reproduct-
ive tract of chickens. In this study, a pan-genomic RV
approach [15,23] was applied to identify novel and po-
tentially broadly protective immunogens from G. anatis.
The screening procedures and the main results are sum-
marized in Figure 3. Of the 42 in silico predicted immuno-
gens (Table 2), 27 proteins were successfully expressed in
E. coli (Table 1), and of these, two novel proteins,
Gab_1309 and Gab_2312, elicited a significant ELISA
response and were also ranked in the Top20 of the G.
anatis 12656–12 proteome by VacFinder®. Furthermore,
these two proteins were present in all 10 strains
Figure 2 Immunization of chickens with recombinant proteins.
Chickens were immunized once with 100 μg recombinant protein
(GtxA-N, FlfA, Gab_1309, Gab_2156, or Gab_2312) or a placebo
(non-immunized), followed by intraperitoneal challenge with G. anatis
12656–12. The scoring of the lesions found in the peritoneum was
done according to three parameters: (i) inflammatory reaction, (ii)
amount of exudate, and (iii) clarity of the peritoneal surfaces. All
parameters were scored on a scale from 0–3, thus giving a maximum
score of 9. The horizontal lines shows the group median, and
the difference between the lesions scores of immunized and
non-immunized groups was analyzed using Mann Whitney U test.
Asterisks indicate statistical significance (*P < 0.05).
included in this study as well as in the recently se-
quenced genome from G. anatis strain UMN179 [27].
Gab_1309 is a predicted lipoprotein, and this annota-

tion is supported by the DOLOP database [50]. The pro-
tein sequence of Gab_1309 shows sequence similarity to
the NlpD lipoprotein from Yersinia pestis [51]. By use of
the Conserved Domain Database (CDD) feature in
BLASTp [52], an N-terminal LysM domain and a C-
terminal M23 peptidase domain can be identified in
Gab_1309. The LysM domain is widespread among sev-
eral bacterial species and is involved in peptidoglycan-
binding and bacterial cell wall degradation [53,54], while
the M23 family of endopeptidases is thought to be in-
volved in bacterial cell wall separation [55]. Further
studies are warranted to determine the specific function
and role of Gab_1309 in G. anatis pathogenesis.
The C-terminal section of the second promising novel

vaccine candidate identified in this study, Gab_2312,
demonstrated 34% sequence similarity (conserved or
identical residues) to the 200 kDa extracellular matrix
protein adhesin A (EmaA) from Aggregatibacter actino-
mycetemcomitans. EmaA is widespread among A. actino-
mycetemcomitans strains [56] and belongs to the family
of trimeric autotransporter adhesins (TAAs) [57]. TAAs
are a group of homotrimeric virulence-related proteins
in Gram-negative bacteria that primarily act as adhesins
[58]. Interestingly, the Neisseria adhesin A (NadA) protein
from MenB, which is one of the proteins in the recently
approved 4CMenB vaccine (Bexsero®), also belongs to
this family of TAAs [59], further suggesting a protective
potential of Gab_2312. The prediction of Gab_2312 as a
TAA protein was further confirmed using the recently
developed domain annotation workflow of TAAs
(daTAAs) [60].
Although Gab_1309 and Gab_2312 were the only pro-

teins identified by both the ELISA screening and the in
silico VacFinder® analysis, a number of proteins elicited a
significant response as measured by ELISA, indicating
that these proteins are expressed and immunogenic dur-
ing G. anatis infection. It is currently unclear whether
proteins that do not stimulate a natural immune re-
sponse should be included as vaccine candidates. As our
intraperitoneal immunization procedure bypassed the
mucosal surface of e.g. the salpinx, this may not have in-
duced a broad based natural immunological response,
which in turn could explain why some proteins failed to
induce a significant antibody response. However, studies
have shown that high antigenicity of a protein does not
necessarily lead to protection [61], questioning the valid-
ity of the antigen-specific titer as a marker of the overall
ability to stimulate a protective immune response in vivo
[62]. On the other hand, serological titers have been
demonstrated to provide useful information about the
reactivity of certain antigens to antibodies and thereby



Figure 3 Identification and selection of immunogens from Gallibacterium. Summary of the three screening procedures used to identify and
select putative immunogens from the Gallibacterium proteome. The 27 proteins successfully cloned, expressed and purified are listed and placed
based on the screening results. Future investigations should focus on the proteins marked in white.
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give indications about their potential as vaccine candidates
[62]. In support of the ELISA antigen screening approach,
three of the 10 proteins identified by the ELISA screening;
GtxA, FlfA and Gab_2156, have recently been demon-
strated as important, well-conserved G. anatis virulence-
factors. GtxA is a large, cytolytic RTX toxin responsible
for both the haemolytic and leukotoxic activity of G. ana-
tis [26,35], while FlfA and Gab_2156 are both subunits of
F17-like fimbriae [24]. To this, FlfA has been suggested to
play a role in the tissue tropism of G. anatis by promoting
adhesion to the epithelial lining in the reproductive tract
and beyond during the typical course of disease [24]. The
identification of GtxA, FlfA and Gab_2156 by ELISA fur-
ther supports the predictive potential and importance of
this screening approach, where particularly the N-
terminal part of the GtxA-N elicited an extremely high
antibody response in comparison to the remaining 26
proteins investigated (Figure 1 and Table 3), thereby
suggesting that this part of the protein is particularly
promising as a vaccine candidate. This suggestion is
supported by a previous study by [63], demonstrating
the protective potential of the N-terminal portion of the
RTX protein, ApxI, against infections caused by Actino-
bacillus pleuropneumoniae.
The use of hyper-immune antiserum to screen for
antigenic potential has previously been used successfully
to identify putative immunogens from Bacillus anthra-
cis, and in that study, the control sera (pre-immune anti-
serum) consisted of a mixture of naïve animal sera [64].
In our study, the pre-immune antiserum and hyper-
immune serum was obtained from the same chickens
before and after G. anatis 12656–12 infection. However,
the chickens were found to be positive for G. anatis in
the trachea and cloaca prior to infection. Since G. anatis
is a typical part of the microflora in these organ systems
[6], we find that this reflects the natural in vivo condition,
which allows us to identify those proteins significantly
expressed and exposed to the chicken immune system
during infection. Thus, the ELISA screening applied in
this study can be considered a semi-in vivo-evaluation and
an important screening assay to evaluate antigenic poten-
tials of recombinant proteins.
Of the 27 proteins tested by ELISA, 15 were not recog-

nized by hyper-immune antiserum. However, these pro-
teins might still possess immunogenic potential, as it is
well-established that in vitro assessments may miss some
proteins [14]. Moreover, a recent study focused interest
on non-immunodominant protein regions for vaccine
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development and suggested the importance of analyzing
major surface-exposed proteins for the presence of sub-
regions that elicit protective immunity as a complement
to the RV approach [65]. Additionally, the insolubility of
many of the proteins tested by ELISA might also lead to
false-negative titer-values, as it has been shown that lin-
ear epitopes are less likely to be immunodominant and
elicit a good B-cell response if the protein possesses a
higher-order structure [66]. On the other hand, the fold-
ing of a recombinant protein is not necessarily equivalent
to the native structure of the protein, and moreover,
folded recombinant proteins might expose epitopes nor-
mally hidden [14], and thereby lead to a false-positive
ELISA response.
To provide an additional prediction of the protective

potential, the sequences of 27 proteins were ranked
within the G. anatis 12656–12 proteome by use of the
in silico VacFinder® platform, in order to add an extra
selective criterion. The ranking by VacFinder® is based
on the predicted ability of a protein to elicit a high pro-
tective antibody response. Thus, the identified proteins
are not affected by possible solubility problems or com-
peting immunodominant epitopes. Moreover, VacFinder®
does not consider general practicalities of cloning, ex-
pression and purification. The combination of VacFin-
der® prediction and ELISA screening identified two
proteins, namely the above-mentioned Gab_1309 and
Gab_2312. However, the previously identified and well-
conserved virulence factors, GtxA, FlfA and Gab_2156,
were not predicted as highly protective by VacFinder®.
Leaving out GtxA, which is an exotoxin and not possible
for VacFinder® to predict, FlfA and Gab_2156 were re-
spectively ranked #58 and #41 out of the whole proteome.
Hence, the Top20 of the proteome by VacFinder® is pre-
dicted to elicit the highest protective antibody response,
yet this study demonstrates that proteins with a lower pre-
dicted protectiveness can be highly immunogenic.
Finally, the protective potential of the five most pro-

mising vaccine candidates; GtxA-N, FlfA, Gab_1309,
Gab_2156 and Gab_2312, was evaluated in vivo. The re-
sults from these preliminary in vivo immunization trials
indicated that at least GtxA-N, FlfA and Gab_1309 are
promising vaccine candidates with a good protective po-
tential. These results correspond well with previous re-
sults demonstrating the in vivo protective potential of
FlfA [24]. Further studies, including larger group sizes,
different doses and repeated immunization, are needed
to confirm the protective potential of the recombinant
proteins. Moreover, the ability of the recombinant proteins
to elicit a broadly cross-protective immune response
against heterologous strains should also be investigated.
Still, the results presented in this paper provide an im-
portant step towards the development of a new and
broadly protective G. anatis vaccine.
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Additional file 1: E. coli strains and plasmids. E. coli strains and
plasmid used in this study to clone and express recombinant proteins [67].

Additional file 2: Cloning and protein expression. Detailed
description of the methods used for the cloning as well as the small
scale and large-scale protein expression and purification [37,38,68-70].

Additional file 3: Primer sequences, PCR products and expression
vectors. A table summarizing the primer sequences used for gene
amplification, the size of the resulting PCR product and the final
expression vector chosen for protein expression from each of the G.
anatis 12656–12 genes that were successfully small-scaled cloned and
expressed [24,35,36].

Additional file 4: Multiple sequence alignment of Gab_1309. A
multiple alignment between Gab_1309 and homologs was conducted
using MAFFT (v7.130b) [45] and formatted using Jalview 2.8.0b1 [46].
Amino acids were colored in blue based on their conservation
(dark blue = fully conserved).

Additional file 5: Multiple sequence alignment of recombinant
Gab_2312. A multiple alignment between the 338-residue recombinant
Gab_2312 protein sequence and Gab_2312 protein homologs was conducted
using MAFFT (v7.130b) [45] and formatted using Jalview 2.8.0b1 [46].
Amino acids were colored in blue based on their conservation (dark
blue = fully conserved). The two head domains included in the recombinant
protein, which were predicted by the domain annotation workflow of TAAs
(daTAAs) [60], are marked with red and green boxes, respectively.
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