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Abstract

Feline infectious peritonitis (FIP) is an immune-mediated, highly lethal disease caused by feline coronavirus (FCoV)
infection. Currently, no protective vaccine or effective treatment for the disease is available. Studies have found
that some cats survive the challenge of virulent FCoV isolates. Since cellular immunity is thought to be critical in
preventing FIP and because diseased cats often show a significant decrease in interferon-y (IFN-y) production, we
investigated whether single nucleotide polymorphisms (SNP) in the feline IFN-y gene (fIFNG) are associated with
the outcome of infection. A total of 82 asymptomatic and 63 FIP cats were analyzed, and 16 SNP were identified in
intron 1 of fIFNG. Among these SNP, the fFING + 428 T allele was shown to be a FIP-resistant allele (p =0.03), and
the heterozygous genotypes 01C/T and +408C/T were found to be FIP-susceptible factors (p =0.004). Furthermore,
an fIFNG + 428 resistant allele also showed a clear correlation with the plasma level of IFN-y in FIP cats. For the
identification of these three FIP-related SNP, genotyping methods were established using amplification refractory
mutation system PCR (ARMS-PCR) and restriction fragment length polymorphisms (RFLP), and the different genotypes
could easily be identified without sequencing. The identification of additional FIP-related SNP will allow the selection of
resistant cats and decrease the morbidity of the cat population to FIP.

Introduction

Feline infectious peritonitis (FIP) is an immune-mediated
disease caused by feline coronavirus (FCoV) infection.
Despite the vast number of studies conducted since the
recognition of FIP [1], neither effective vaccines nor
therapeutic agents are available for the prevention or treat-
ment of this often fatal disease. Therefore, it remains one of
the most important feline infectious diseases.

Despite the ubiquitous existence of FCoV in cat popu-
lations around the world, the development of FIP was
only observed in fewer than 5% of the FCoV-infected
cats [2]. In addition, during the past few decades, several
studies were conducted using various FCoV isolates, and
regardless of the dose of virulent FCoV, some cats sur-
vived from the experimental infection [2-11]. Genetic
polymorphisms in the host were suggested to be import-
ant in the resistance to FIP [2]; however, no specific gene
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with a clear correlation to resistance to this disease has
ever been identified.

The protective immunity to FIP is thought to result
mainly from cell-mediated immunity (CMI), and changes
in the expression of several cytokines have been observed
in cats with either experimentally induced or naturally oc-
curring FIP [2]. The expression of one of the cytokines
studied, interferon-y (IFN-y), was consistently decreased in
diseased animals, and this gene is thought to play a protect-
ive role in the pathogenesis of FIP, since it is a key cytokine
in CMI [6,8,12-14].

In recent decades, single nucleotide polymorphisms
(SNP) in the IFN-y gene (IFNG) have been found to be
associated with various pathological conditions in
humans [15] as well as in ruminants and fowl [16-23].
Nevertheless, this gene has not been investigated in
cats. To identify a possible association between feline
IFNG (fIFNG) SNP and the outcome of FCoV infec-
tion, some regions of the fIFNG gene were sequenced
and analyzed. Three SNP with statistical relevance
were found to be associated with the occurrence of FIP,
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and polymerase chain reaction (PCR) assays based on
these differences were designed as a potential screen-
ing test for the selection of FIP-resistant populations.

Materials and methods

Specimens

Whole blood and buccal swabs were collected from 82
FCoV-infected asymptomatic cats and 64 FIP cats from
2005 to 2012 at the National Taiwan University Animal
Hospital for the association analysis. All asymptomatic
healthy cats were three years old or younger and had
positive reverse transcription-nested PCR test results for
FCoV infection [24] in any of the following samples
upon first arriving at the hospital: whole blood or nasal,
oral, conjunctival, or rectal swabs. In addition, these cats
showed no FIP-related symptoms when recruited into
the study, and except for 12 cats, they stayed healthy for
at least two years. All the FIP cases enrolled in this study
were cats showing typical clinical signs of FIP and further
confirmed by necropsy, histopathological examinations and
FCoV detection [24] in disease-associated tissues, i.e. body
effusions, kidney, liver, spleen, mesenteric lymph node,
lung, and/or brain.

To elucidate the role of host genetic background in
the development of FIP, two viral pathogens, i.e. feline
immunodeficiency virus (FIV) and feline leukemia virus
(FeLV), that cause immunosuppression in cats were
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checked in FIP cats using nested PCR [25,26], and
the positive cats were omitted from the association
analysis.

Identification of SNP in the partial fIFNG sequences

The genomic DNA from each cat was extracted using a
genomic DNA mini kit (Geneaid Biotech, New Taipei
City, Taiwan), and partial fIFNG sequences were ampli-
fied by PCR. Briefly, the genomic DNA was amplified
with primers aligning to either the 5" proximal regula-
tory region and intron 1 or the 5’ untranslated region
and exon 2 of fIFNG (Table 1), and the PCR products
were then sequenced from both ends using an auto se-
quencer ABI 3730XL (Applied Biosystems, San Mateo,
USA). The sequences were aligned by Geneious 3.8.5
(Biomatters, Auckland, New Zealand), and the polymor-
phisms were identified.

Linkage disequilibrium (LD) test and association analysis
An LD test and the creation of an LD plot were performed
using LD,SNPing v 2.0 (Department of Electronics
Engineering, National Kaohsiung University of Applied
Science, Kaohsiung, Taiwan) [27]. The associations be-
tween SNP and the outcome of FCoV infection were
analyzed. A Fisher’s exact test value of P<0.05 was
considered to represent a significant association.

Table 1 Primers used for the identification of SNP, ARMS-PCR and RFLP

Primer Orientation? Position® Sequence (5' - 3')¢ TAd Amplicon size
Identification of SNP
5'-PRR® - intron 1 F —677 ~-654 CAGGGCAATGCAAAGCTGTGGTAG 65°C 1306 bp
R +629 ~ +607 GCGGCAGTAGAACTTTGAAACCA
5'-UTR' - exon 2 F —44 ~-25 CGGAGCTACTGATTTCAACT 63°C 1434 bp
R +1390 ~ +1371 GGAAAGAGGTAAGCTGGGTA
Genotyping?
+401 F (universal) +320 ~ +341 GGGGCATTCATCAGTCTTCCAG 56°C 200 bp
R (universal) +519 ~+500 AAGGTCAGGGTTAGCATGAA
F (T allele) +382 ~ +402 TAATTTTGTGGTGAGAATCTA 138 bp
R (C allele) +418 ~ +400 CAACATCACAGTCTAATGG 99 bp
+408 F +320 ~ +341 GGGGCATTCATCAGTCTTCCAG 56°C 200 bp
R +519 ~ +500 AAGGTCAGGGTTAGCATGAA
+428 F (universal) +288 ~ +307 TACCCTCTGCTCAACTTGCT 67°C 232 bp
R (universal) +519 ~ +500 AAGGTCAGGGTTAGCATGAA
F (T allele) +408 ~ +429 CTGTGATGTTGGGTAGTGTGTC 112 bp
R (C allele) +449 ~ +427 GGCTAGTCATTGTTTCAATAGGC 162 bp

°F: forward; R: reverse.

®The nucleotide positions start from the first translation start point (+1).
“The italicizing indicates the target SNP.

dAnnealing temperature.

€5'-proximal regulatory region.

f5.untranslated region.

9PCR was done with a heating and cooling rate of 3 and 2 °C, respectively.
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Quantification of IFN-y levels in the plasma samples of digested with HpyCH4IIl (New England Biolabs, Ips-
FIP cats wich, USA) following the manufacturer’s instructions.
The plasma samples of FIP cats collected at the day of pres-  The digested DNA was resolved in 2% agarose gels and
entation were stored at —20 °C before use. The concentra-  photographed using an imaging system.

tion of IFN-y in the plasma samples was determined using

an antigen capture ELISA (R & D system, McKinley Place

NE, USA) following the procedure advised by the manufac-  Results

turer’s instructions. Polymorphisms in fIFNG

Due to a lack of information on polymorphisms in fIFNG,
Genotyping of SNP by tetra-primer amplification refrac- DNA from 40 cats, including 20 asymptomatic and 20 FIP
tory mutation system PCR (ARMS-PCR) and restriction cats, was sequenced throughout the proximal regulatory re-
fragment length polymorphisms (RFLP) gion, the 5'-UTR, exon 1, intron 1 and a partial exon 2 re-

For the genotyping of SNP using ARMS-PCR, the PCR  gion of fIFNG. In the 2067 bp analyzed, 3 repeat regions
reactions contained 1 pL of template DNA, each primer and 16 SNP were identified (Figure 1A). Among these 19
at 500 nM, 200 uM dNTP, 1.5 mM MgCl,, and 0.4 U  polymorphisms, only one was located in the proximal
Phusion DNA polymerase (Thermo Scientific, Waltham, regulatory region, and the others were in intron 1. No
USA) in a total volume of 20 pyL with 1x Phusion HF  polymorphisms were identified in the 5'-UTR, exon 1
buffer. The primers and PCR conditions are listed in  or exon 2. Intron 1 was more polymorphic than the up-
Table 1. The PCR products were resolved in 2% agarose stream region of fIFNG. The allele frequencies of all
gels and photographed using an imaging system. The the SNP surveyed were identified and are listed in
PCR for the genotyping of SNP with RFLP was carried  Figure 1. The mean allele frequencies of the minor al-
out with the same protocol, and the PCR products were leles ranged from 4.8% to 47.6%.
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Figure 1 A schematic of the partial fIFNG sequences analyzed in this study. (A) A partial fIFNG sequence of 2067 bp was sequenced in this
study, including the 5' proximal regulatory region, 5" UTR, exon 1, intron 1 and a partial exon 2 region. Black box: repeat region. White box: 5'
UTR. Gray boxes: exons 1 and 2. 2:a ~115 bp region between 2 repeat regions of unknown sequence. (B) LD plot of the 16 SNP tested in this
study. The r values between different SNP are indicated by different colors.
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The SNP were then subjected to LD analysis. An LD
plot of all the SNP for the whole population, including
asymptomatic and FIP cats, was generated (Figure 1B).
Three pairs of SNP were found to be significantly associ-
ated (r*>0.8): fIFNG+230 T/C and fIFNG + 308A/C,
JFNG + 401 T/C and fIFNG + 408 T/C, and fIFNG + 524G/
A and fIFNG + 1133G/C. fIFNG + 230 and fIFNG + 308 and
MAENG + 401 and fIFNG + 408 had a high degree of LD and
were inherited together 100% of the time.

Association study

To elucidate the association between the identified SNP
and the outcome of FCoV infection, the frequency of
each genotype (Additional file 1) and allele (Additional
file 2) was analyzed in 82 asymptomatic and 63 FIV and
FeLV-free FIP cats. From all the SNP tested, only fIFNG
+428C/T was found to be significantly associated with
the outcome of the infection. At position +428, there
was a higher frequency of the CT genotype in asymp-
tomatic control cats (19.5%) than in FIP cats (6.3%), and
the data showed a significant correlation with disease
resistance (p =0.03) (Table 2). Similarly, the analysis of
allele frequency and disease outcome also revealed that
the T allele at position +428 was significantly associated
with resistance to FIP (p = 0.03) (Table 2).

Although both types I and II FCoV can cause FIP, type
II FCoV has been found to be more related to acute in-
fection [28] and can cause horizontal transmission [29]
whereas infection with type I viruses often results in per-
sistent infection [30], therefore the host genotype in-
volved in type I FCoV infection likely influences the
resistance to a greater extent. To gain a better insight
into the effect of host genetic variation in fIFNG and
FIP, 29 type I FCoV-infected FIP cats were selected for
further analysis (Additional files 3 and 4). After analyz-
ing the target population, despite no allele of any SNP
showing an association with the infection outcome
(Table 3), the heterozygous genotype (CT genotype) at
positions +401 and +408 were found to be significantly
associated with susceptibility to FIP (p = 0.004) (Table 3).

Table 2 FIP-associated SNP in fIFNG identified in the
whole cat population in this study

SNP Control FIP
number (%) number (%)

OR(95%Cl) P

fIFNG + 428
cc 66 (80.5) 60 (93.8) 36 (1.2-11.5) 0.03
cr 16 (19.5) 4(6.3) Reference
T 0 (0.0) 0 (0.0) L
Allele C 148 (90.2) 124 (96.9) 34 (1.1-103) 0.03
Allele T 16 (9.8) 4 (3.1) Reference

?no OR can be calculated.
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Table 3 FIP-associated SNP in fIFNG identified in the type
| FCoV-infected cats

SNP Control FIP
number (%)  number (%)

OR(95%Cl) P

fIFNG + 401
TT 43 (524) 11 (37.9) 04 (0.2-0.9) 0.004
cT 26 (31.7) 18 (62.1) Reference
q 13 (15.9) 0(0.0) n/a’
Allele C 112 (683) 40 (69.0) b 1.00
Allele T 52 (31.7) 18 (31.0)

fIFNG + 408
TT 43 (524) 11 (37.9) 04 (0.2-0.9) 0.004
cT 26 (31.7) 18 (62.1) Reference
cc 13 (15.9) 0 (0.0) n/a®
Allele C 112 (68.3) 40 (69.0) 1.00
Allele T 52 (31.7) 18 (31.0)

“not available.
®no OR can be calculated.

Production of IFN-y in FIP cats carrying different
genotypes

To further validate the correlation between FIP-associated
SNP and the production of IFN-y, the concentration of
IFN-y in the plasma samples from 15 FIP cats was mea-
sured. For most of the FIP cats (12/15; 80%), the concentra-
tion was below the detection limit (<3.125 pg/mL) except
for three cats. The concentrations of IFN-y for cat 14,
17, and 69 were 52, 138 and > 8000 pg/mL, respectively
(Figure 2, Additional file 5). These three animals were the
only cats carrying the resistant allele (T allele) at pos-
ition +428 whereas others were fIFNG + 428CC geno-
type (Figure 2B, Additional file 5). For the fIFNG +
401/+408, however, no clear correlation between the
IFN-y responses and genotypes was observed (Figure 2A,
Additional file 5).

Genotyping for disease-related SNP

Through the association analysis and the quantification of
plasma IFN-y level, IENG + 428C/T was found to be asso-
ciated with FIP and the plasma concentration of IFN-y. In
addition to this SNP, fIFNG +401C/T and fIFNG +
408C/T were also shown to be associated with the type
I FCoV-infected FIP population. To develop screening
that can easily distinguish the resistant cats from the
at-risk ones, ARMS-PCR specific for fIFNG + 428C/T
and fIFNG + 401C/T was attempted. Using the tetra pri-
mer ARMS-PCR, the different alleles at position +401
could be successfully distinguished: universal control prod-
uct: 200 bp; T allele: 138 bp; C allele: 99 bp (Figure 3A).
Similarly, the C and T alleles could be determined at pos-
ition +428: universal control product: 232 bp; C allele:
162 bp; T allele: 112 bp (Figure 3C). For fIFNG + 408,
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Figure 2 Plasma concentration of IFN-y in FIP cats carrying different genotypes at positions +401/+408 (A) and +428 (B). The
concentration of IFN-y was measured using antigen capture ELISA. A dotted line indicates the detection limit of the assay.

RFLP was used for genotyping, and the digested PCR
products for the T allele could be found at 151 bp and
54 bp; the digested PCR products for the C allele could be
found at 113 bp, 54 bp, and 43 bp (Figure 3B).

Discussion

The occurrence of FIP is thought to be largely affected by
viral virulence factors, and their roles in FIP have been
intensely studied. Several viral genes, including spike
[31-33], accessory gene 3c¢ [34-36] and 7b [37-39], and
membrane [40], have been proposed to play important
roles in the development of the disease in FCoV-infected
cats. As a disease with immunopathogenesis entity, the
knowledge of the host genetic factors that affect FIP is still
very limited, and only two studies have reported such
factors [41,42], in contrast to the considerable quantity of
information on the virulence factors.

Addie et al. who conducted the first study, attempted to
reveal the genetic background of the cats and their associ-
ations with the occurrence of FIP (Table 4) [42]. Consider-
ing its important role in the defense against viral infection,
feline leucocyte antigen (FLA)-DRB polymorphisms were
analyzed in four different domestic shorthaired (DSH) or
other purebred populations: FIP, FCoV carrier, transient
infection and resistant. However, no association was found
between any of the FLA-DRB polymorphisms and the

occurrence of FIP, which might be due to the small sample
size (FIP: 8 cats; asymptomatic: 17 cats) used. To gain bet-
ter insight, a larger number of cats in each population was
used (FIP: 63 cats; asymptomatic: 82 cats), and the associ-
ation was clearly observed in the present study (Table 4).

Recently, several FIP-associated SNP were identified by
a massive screen of Birman cats using a commercialized
SNP gene chip, and the candidate genes were located from
69 kb to more than 1 Mb away from the identified SNP
(Table 4) [41]. In contrast to that report, the SNP were lo-
cated within the candidate gene, fIFNG, in our study,
which demonstrates a stronger linkage of the analyzed
SNP to the candidate gene. In addition, the cat popula-
tions enrolled in this study, including approximately 50%
DSH and another 50% pure breed or mixed breed cats,
were more variable, and the SNP associated with the dis-
ease may have been better represented on the entire cat
population.

IEN-y is a crucial regulatory cytokine in CMI and is im-
portant for the control of intracellular pathogens. In FCoV
infection, decreased IFN-y production in FIP cats was
consistently observed in multiple studies [6,8,12-14]. In
addition, in FCoV-infected non-FIP cats, the peripheral
blood mononuclear cells showed a significant increase in
the IFN-y response upon stimulation with the FCoV anti-
gen when compared to the FIP cats [3]. The expression of

A

CC CC CT CT TT TT N

Universal (200 bp}
T allele (138 bp)
C allele (99 bp)

and photographed.

CCCCCT CTTT TT N

Figure 3 The ARMS-PCR and RFLP established in this study for the genotyping at positions +401 (A), +408 (B) and +428 (C). The
primers and PCR conditions are listed in Table 1. The PCR products (A and C) and the RFLP products (B) were resolved in 2% agarose gel
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T (112 bp)
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Table 4 Studies conducted on host genetic polymorphisms and their associations with FIP

Target Method Breed

Grouping (number of cats) Polymorphism associated with FIP Reference

FLA-DRB 1. Clonal sequence analysis DSH® and Pure breed

2. RSCA®

1. FIP (8) Non [42]
2. Carrier (4)

3. Transient (10)

4. Resistant (3)

Identified SNP SNP gene chip Birman cats

1. FIP (34) 1. A2.191286425 - ELMO1 [41]

2. Healthy (151) 2. A1.196617776 - ERAPI, 2
3. A1.206840008 - ERAPI, 2
4. Un.59861682 - ERAPI, 2
5. 26550999 - Ul ©
fIFNG PCR and sequencing DSH and Pure breed 1. FIP (63) 1. fIFNG + 4017 This study
2. Healthy (82) 2. fIFNG + 408

3. fIFNG + 428

“Reference strand mediated conformational analysis.
PDomestic shorthaired.
“Unidentified.

IFN-y was thought to protect against FCoV infection. In
several studies on human viral infections, ie., human im-
munodeficiency virus [43], hepatitis B and hepatitis C
[44,45], a similar correlation between the magnitude of the
IFN-y response and disease manifestation was identified.
The polymorphisms in IFNG were associated with the dis-
eases caused by these viruses [46-48].

The SNP associated with FIP are located in the intron
1 region. Therefore, it is unlikely that they mediate the
outcome of the infection directly by altering the function
of IEN-y. In humans, IFNG polymorphisms have been
found that correlate with the expression of IEN-y. In the
promoter region, SNP at positions —183 and —155 were
found to influence the binding of activating transcription
factor-1 and the nuclear factor-associated T-cell site
[49,50]. In addition, the number of CA microsatellite re-
peats was found to be tightly associated with the SNP at
position +874 and to influence the production of IFN-y
by altering the binding activity of nuclear factor kappa-
light-chain-enhancer of activated B cells [15]. In ewes,
despite the polymorphisms in INFG at position -641, the
microsatellite showed a significant effect on IFNG expres-
sion in the spleen, although the mechanism that mediates
this effect remains unknown. In the present study, a clear
correlation between the IFN-y responses and the genotype
at position +428 was observed (Figure 2B). The resistant T’
allele at position +428 may serve as a major factor to
enhance the IFN-y production upon infections of intracel-
lular pathogens. Despite lacking correlation with the IFN-y
level, the SNP at positions +401 and +408 might still play a
minor role in the alteration of the production of IFN-y.
Since the three FIP-related SNP identified in this study are
located in a small cluster, it is possible that these polymor-
phisms alter the binding of one or more transcription

factors and work together to influence the immune re-
sponse to FCoV infection. However, the actual mechanism
for the altered expression of IFN-y remains to be
investigated.

In this study, three SNP in fIFNG were found to be as-
sociated with the outcome of FCoV infection. Using the
ARMS-PCR and RELP tests established, the three SNP
could be distinguished in the ordinary diagnostic labora-
tory without sequencing, and cats bearing either the sus-
ceptible or resistant genotypes could be identified. Since
the disease outcome is usually influenced by multiple
host genes, other candidate genes, ie., tumor necrosis
factor-a [51,52], interleukin-12 [6] and CD209 [53], are
currently being surveyed. A combination of all the FIP-
related SNP into a single genotyping microarray will
allow the selection of resistant cats before breeding and
eventually decrease the morbidity of the cat population
to FIP.

Additional files

Additional file 1: Frequencies of the various genotypes and their
associations with the outcome of FCoV infection. The CT genotype at
position +428 was significantly associated with the resistance of FIP.

Additional file 2: Frequencies of various alleles and their
associations with the outcome of FCoV infection. The T allele at
position +428 was significantly associated with the resistance of FIP.

Additional file 3: Frequencies of various genotypes and their
associations with the outcomes of type | FCoV infection. The
heterologous genotypes of fIFNG +401 and fIFNG + 408 were associated
with the susceptibility to FIP in type | FCoV-infected cats.

Additional file 4: Frequencies of various alleles and their
associations with the outcomes of type | FCoV infection. No allele of
the analyzed SNP was associated with the occurrence of FIP in type |

FCoV-infected cats.
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Additional file 5: Concentration of IFN-y in the plasma samples
of FIP cats carrying different genotypes at positions + 401, +408,
and +428 on fIFNG. All the FIP cats carrying the CT genotype at
position +428 were positive for the detection of plasma IFN-y.
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