
VETERINARY RESEARCH
Panzarin et al. Veterinary Research 2014, 45:56
http://www.veterinaryresearch.org/content/45/1/56
RESEARCH Open Access
In vitro study of the replication capacity of the
RGNNV and the SJNNV betanodavirus genotypes
and their natural reassortants in response to
temperature
Valentina Panzarin*, Elisabetta Cappellozza, Marzia Mancin, Adelaide Milani, Anna Toffan, Calogero Terregino
and Giovanni Cattoli
Abstract

Betanodaviruses are the causative agents of viral nervous necrosis and affect a broad range of fish species
worldwide. Their bi-segmented genome is composed of the RNA1 and the RNA2 molecules encoding the viral
polymerase and the coat protein, respectively. In southern Europe the presence of the RGNNV and the SJNNV
genotypes, and the RGNNV/SJNNV and RGNNV/SJNNV reassortants has been documented. Several studies have
reported a correlation between water temperature and disease onset. To explore the replication efficiency of
betanodaviruses with different genomes in relation to temperature and to understand the role of genetic
reassortment on viral phenotype, RGNNV, SJNNV, RGNNV/SJNNV and RGNNV/SJNNV field isolates were fully
sequenced, and growth curves generated in vitro at four different temperatures (15, 20, 25, 30 °C) were developed
for each isolate. The data obtained, corroborated by statistical analysis, demonstrated that viral titres of diverse
betanodavirus genotypes varied significantly in relation to the incubation temperature of the culture. In particular,
at 30 °C betanodaviruses under investigation presented different phenotypes, and viruses containing the RNA1 of
the RGNNV genotype showed the best replication efficiency. Laboratory results demonstrated that viruses clustering
within the same genotype based on the polymerase gene, possess similar growth kinetics in response to
temperature, thus highlighting the key role of RNA1 in controlling viral replication at different environmental
conditions. The results generated might have practical implications for the inference of viral phenotype according
to genetic features and may contribute to a better understanding of betanodavirus ecology.
Introduction
The increasing amount of genetic information obtained
from viral genomes sequencing, aids research into the
exploration of the genotype-phenotype relationships to
determine the genetic traits responsible for different
phenotypic features, which in turn may have practical
implications for disease recognition and control. Never-
theless, the phenotype of a virus is not only dependent
on its “intrinsic” genetic features (e.g. specific mutations,
reassortment, recombination) but it is also governed by
“extrinsic” variables [1-4]. Among these, temperature is
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certainly one of the most important environmental factors
in determining the ecological and physiological status of
viruses hosted by poikilothermic animals such as fish,
whose thermoregulation systems are generally absent or
extremely rudimentary. Fish body temperature varies with
that of their environment, and consequently aquatic vi-
ruses need to adapt to a wide range of temperatures to be
able to replicate at different conditions.
Viruses within the genus Betanodavirus are the causa-

tive agents of a highly infectious fish disease known as viral
nervous necrosis (VNN), also known as viral encephalop-
athy and retinopathy (VER). The genome of betanoda-
viruses is composed of two single stranded positive sense
RNA molecules. The RNA1 segment encodes the RNA-
dependant RNA polymerase (RdRp), or protein A, and
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gives rise to the RNA3 sub-genomic transcript which is
translated into proteins B1 and B2, whilst the RNA2 seg-
ment encodes the coat protein (CP) [5-8]. The phylogen-
etic analysis of the RNA2 genetic segment allowed the
identification of four different genotypes: striped jack ner-
vous necrosis virus (SJNNV), tiger puffer nervous necrosis
virus (TPNNV), barfin flounder nervous necrosis virus
(BFNNV), red-spotted grouper nervous necrosis virus
(RGNNV) [9]. A putative fifth genotype isolated from
Scophthalmus maximus named as turbot nervous necrosis
virus (TNNV) is awaiting for official classification [10].
Iwamoto et al. [11] demonstrated that the degree of viral
replication in SSN-1 monolayers and the severity of the
cytopathic effect (CPE) may vary according to the geno-
type and to the incubation temperature of the cultures. It
has been also observed that optimal culture temperatures
vary among genotypes: 15–20 °C for the BFNNV geno-
type, 20 °C for the TPNNV genotype, 20–25 °C for the
SJNNV genotype and 25–30 °C for the RGNNV genotype
[12]. More recent studies have highlighted that it is the
RGNNV genotype that can replicate in vitro at the widest
range of temperatures, from a minimum of 15 °C to a
maximum of 35 °C [13,14]. Noteworthy, betanodaviruses
are widely distributed worldwide in cold, temperate and
tropical climate zones. Generally speaking, temperature
dependency of betanodaviruses seems to correspond to
their geographic distribution. To date, the TPNNV geno-
type has been described only once in Japan [9]. Cold water
betanodaviruses grouping within the BFNNV genotype
have been reported in Norway, France, the UK, eastern
Canada and in the north-east of the USA [15-21]. The
SJNNV genotype distribution appears confined to Spain
and Japan [9,22-25]. Conversely, as a result of viral adapta-
tion to different temperatures, the RGNNV seems to be
the most widely diffused genotype, extending to Asia,
Africa, Australia and several other Mediterranean areas
and, accordingly, it is able to infect a large variety of warm
water finfish species [23,24,26-33]. Together with the
RGNNV and the SJNNV genotypes, the circulation of
reassortant viruses in the form of the RGNNV/SJNNV,
harbouring the RNA1 of the RGNNV and the RNA2 of
the SJNNV, and the SJNNV/RGNNV, harbouring the
SJNNV-RNA1 and the RGNNV-RNA2, have also been re-
ported in southern Europe [23,29,32]. To date, the bio-
logical and ecological properties of these viruses have
been poorly described, and little is known about the role
of genetic reassortment and its effects on viral phenotype.
In order to identify the genetic regions involved in

temperature dependency of piscine nodaviruses, the in-
fectious RNA transcription system established by Iwamoto
et al. [34] has recently been applied to produce artifi-
cial RGNNV and SJNNV viruses and their reassortants.
The study has demonstrated that both genetic seg-
ments are involved in determining temperature sensitivity
of betanodaviruses; however, the RNA1 molecule is capable
of regulating this process independently from RNA2, con-
firming the observation that viral replication is vulnerable
to temperature variations [35]. Although the reverse genet-
ics technology provides a suitable experimental model for
studying reassortant betanodaviruses, no information is
available for natural field strains. For the first time, we have
investigated the role of genetic reassortment in naïve beta-
nodaviruses, as well as the genotype-phenotype relation as
a function of temperature. For this purpose, natural reas-
sortant RGNNV/SJNNV and SJNNV/RGNNV strains and
RGNNV and SJNNV genotypes were genetically charac-
terized and cultivated in cell monolayers at different incu-
bation temperatures to assess their replication efficiency.
Experimental data were validated through extensive statis-
tical analysis.
Materials and methods
Virus strains and propagation in cell culture
On the basis of previous phylogenetic analysis of partial
RNA1 and RNA2 sequences [23,36], four betanodavirus
isolates representative of the RGNNV (283.2009), SJNNV
(484.2.2009), RGNNV/SJNNV (367.2.2005) and SJNNV/
RGNNV (389/I96) genetic variants were selected for
further genetic and phenotypic characterization (Table 1).
All but one of the selected viruses (283.2009; 367.2.2005;
389/I96) were originally isolated from the same fish
species (sea bass, Dicentrarchus labrax). However, strain
484.2.2009 isolated from a Senegalese sole (Solea senega-
lensis) was also included in the selection, because to date
no SJNNV infection has been reported in sea bass.
Betanodavirus isolates were propagated in E-11 cell

monolayers (ECACC no. 01110916; [12]) incubated
at 25 °C in Leibovitz medium (L-15) (Sigma-Aldrich,
St. Louis, MO, USA), supplemented with 10% FCS, L-
Glutamine (2 mM) and antibiotics (100 IU/mL penicillin,
100 μg/mL streptomycin and 0.25 μg/mL amphotericin
B) [37]. Inoculated cell cultures were checked daily for
cytopathic effect (CPE). Supernatants were collected upon
disruption of cell monolayers, clarified by centrifugation
at 4000 × g for 15 min at 4 °C, and subsequently sub-
jected to further investigations.
RNA isolation and identification of the 3’ and 5’ terminal
sequences
For each virus, total RNA was extracted from 100 μL of
cell culture supernatant using the NucleoSpin® RNA II
(Macherey–Nagel GmbH & Co, Düren, Germany), and
subsequently treated with Tobacco Acid Pyrophospha-
tase (TAP) (Epicentre Biotechnologies, Madison, WI,
USA) for 5’-cap removal. The 3’ and 5’ ends were ligated
with the T4 RNA Ligase 1 (New England BioLabs, Ips-
wich, MA, USA) in a 25 μL reaction mix. Briefly, 15 μL



Table 1 Betanodavirus isolates used in this study for genetic and phenotypic characterization

Isolate Genotype Host Origin Reference GenBank accession no.

RNA1 RNA2

283.2009 RGNNV Dicentrarchus labrax Italy [23] JN189865 JN189992

484.2.2009 SJNNV Solea senegalensis Spain [23] JN189814 JN189919

367.2.2005 RGNNV/SJNNV Dicentrarchus labrax Italy [23] JN189909 JN189936

389/I96 SJNNV/RGNNV Dicentrarchus labrax Italy [46] KF386163 KF386164
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of de-capped RNA were incubated for 5 min at 65 °C
with 20U rRNasin RNase Inhibitor (Promega, Fitchburg,
WI, USA), 1X T4 RNA Ligase Reaction Buffer, 10% di-
methyl sulfoxide (DMSO) and water, and subsequently
cooled on ice for 2 min. The reaction mix was then in-
cubated for 60 min at 37 °C with 20U of rRNasin RNase
Inhibitor (Promega) and 20U of T4 RNA Ligase 1 (New
England BioLabs). Enzymes were inactivated by incubat-
ing the reaction mix for 10 min at 65 °C. Circular RNA
was subjected to reverse transcription (RT) for cDNA
synthesis by using the SuperScript® III Reverse Tran-
scriptase (Life Technologies, Grand Island, NY, USA) ac-
cording to the manufacturer’s instructions and adding
10% DMSO to the reaction mix. PCR was subsequently
carried out in a final volume of 25 μL containing 2 μL of
template cDNA, 1X Cloned Pfu DNA polymerase reac-
tion buffer, 240 μM dNTPs, 1.25U Pfu Turbo DNA poly-
merase (Agilent Technologies, Santa Clara, CA, USA)
and 0.2 μM specific forward and reverse primer hybrid-
izing respectively upstream the 3’ end and downstream
the 5’ end. Primer sequences are available upon request.
The cDNA was denaturated at 95 °C for 2 min, and
40 cycles of the following conditions were applied: de-
naturation at 95 °C for 45 s, annealing at 50 °C for
1 min, elongation at 72 °C for 2 min. The amplification
was completed with 2 min elongation at 72 °C. PCR
products were subjected to electrophoresis in agarose
gel, and were subsequently purified using the QIAquick
Gel Extraction Kit (Qiagen, Hilden, Germany). The se-
quences of the 3’-5’ junctions were generated using the
BigDye Terminator v3.1 cycle sequencing kit (Life Tech-
nologies). The products of sequencing reactions were
cleaned up using the Performa DTR Ultra 96-Well
kit (Edge BioSystems, Gaithersburg, MD, USA) and se-
quenced in a 16-capillary ABI PRISM 3130×l Genetic
Analyzer (Life Technologies). Sequencing data were as-
sembled and edited with the SeqScape® software v2.5
(Life Technologies).

Complete genome sequencing and phylogenetic
characterization
In order to obtain complete genetic data related to the
four selected betanodavirus strains, the nucleotide se-
quences corresponding to the full length RNA1 and
RNA2 were determined for each virus. Previously de-
capped RNA was subjected to RT by using the High Cap-
acity cDNA Reverse Transcription Kit (Life Technologies)
following the manufacturer’s instructions. The identifica-
tion of the 3’ and 5’ terminal sequences allowed to design
of specific primer sets for the whole genome amplification.
PCR and sequencing were carried out as described above.
Primer sequences can be provided on request.
The obtained sequences were aligned and compared to

reference betanodavirus sequences publicly available in
GenBank using the MEGA 4 package [38]. For both the
RNA1 and RNA2 genetic segments, maximum likelihood
(ML) phylogenetic trees were estimated using the best-fit
general time-reversible (GTR) model of nucleotide substi-
tution with gamma-distributed rate variation among sites,
and a heuristic SPR branch swapping search available in
PhyML version 3.0 [39]. Bootstrap resampling (100 repli-
cations) assessed the robustness of individual nodes of the
phylogeny. Pairwise nucleotide identities estimated among
the RNA1 and RNA2 of the four betanodavirus strains
herein described and the two reference strains SGWak97
[GenBank: AY324869; AY324870] and SJNag93 [GenBank:
AB056571; AB056572] were determined.

Experimental design
E-11 cells were grown in 5 mL culture flasks with Leibovitz
medium (L-15) (Sigma-Aldrich), supplemented with 10%
FCS, L-Glutamine (2 mM) and antibiotics (100 IU/mL
penicillin, 100 μg/mL streptomycin and 0,25 μg/mL
Amphotericin B). Cell monolayers were infected in
three replicates with each of the isolates at a multiplicity
of infection (MOI) of 1.0. After 1 h adsorption at 25 °C,
all the inocula were brought to the same volume with
L-15 medium without growth factor (FCS). Inoculated
monolayers were then incubated at 15, 20, 25 and 30 °C
and checked regularly for CPE. A volume of 700 μL was
sampled from each flask at 0 (T0), 20 (T1), 30 (T2), 45
(T3), 55 (T4), 69 (T5), 79 (T6), 93 (T7), 117 (T8), 141 (T9)
and 165 (T10) hours post infection (hpi), and subsequently
replaced with an equal amount of medium. Collected cell
culture supernatants were subjected to viral titration in
E-11 monolayers by endpoint dilutions assays. Viral titres
were calculated according to the Spearman-Karber for-
mula [40]. Finally, average titres expressed as TCID50/mL
were calculated among replicates, and were used for devel-
oping growth curves for each incubation temperature.
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Statistical analysis
The linear mixed model (LMM) for longitudinal data
[41] was used to investigate the influence of genotype,
temperature, exposure time and their possible interactions
on viral replication efficiency. Different types of models
with fixed and random effects were analysed according to
the experimental design. To assess the repeatability of
the experiment, replicates were tested as fixed effect, in
addition to genotype, exposure time, temperature and their
interactions. In this model it was assumed that each repli-
cate was independent. Secondly, a linear mixed model was
tested, where genotype, exposure time, temperature and
their interaction were considered as fixed effects, while rep-
licate was considered as a random effect. This model as-
sumed constant variance among replicates of the same
virus and among observations within the same replicate.
The latter model was further developed considering differ-
ent structures of variance and covariance matrix (VAR/
COV) to take into account the existence of possible cor-
relations (ρ) among repeated measurements of the same
replicate. The structures of VAR/COV were: compound
symmetry (CS), heterogeneous compound symmetry
(CSH), unstructured (UN), first order autoregressive (AR
(1)). P-values < 0.10 were considered significant. Graphical
Student residuals analysis (residuals versus predicted plot,
residuals distribution and residuals Q-Q plot) and tests
for residuals normality (Shapiro Wilks and Kolmogorov
Smirnov tests) were used to verify the goodness of the
proposed models [41]. SAS software 9.3 was used to
carry out the statistical analyses (PROC MIXED func-
tion) [42,43].

Results
Genetic characterization and phylogenetic analysis
The RNA1 genetic segment differed in length among
the four betanodavirus strains. The 5’-untranslated regions
(UTRs) were 78 nt long, whereas the 3’-UTRs varied from
75 to 77 nt. Strains 283.2009 and 367.2.2005 showed a
2949 nt ORF, corresponding to 983 aa, while the RNA1
coding region of samples 484.2.2009 and 389/I96 was 3 nt
longer, determining an amino acid insertion in the RdRp
at position 888. The RNA2 5’-UTRs and 3’-UTRs varied
from 26 to 27 nt and from 370 to 390 nt, respectively. The
complete ORF for strains 283.2009 and 389/I96 was
1017 nt, encoding a coat protein of 339 amino acids.
Viruses 484.2.2009 and 367.2.2005 presented an insertion
of 6 nt within the T4 variable region [44], corresponding
to 341 amino acids capsid protein. The deduced lengths of
RNA3 5’-UTRs and 3’-UTRs for the four betanodavirus
strains spanned from 23 to 26 nt and from 122 to 124 nt
respectively. RNA3 complete ORFs was 228 nt long, en-
coding 76 aa B2 protein.
The phylogenetic analysis based on the complete

ORFs of RNA1 and RNA2 genetic segments confirmed
that the 283.2009 and the 484.2.2009 isolates are indeed
RGNNV-type and SJNNV-type respectively, and corrob-
orated the identification of the RGNNV/SJNNV and
SJNNV/RGNNV reassortants (samples 367.2.2005 and
389/I96, respectively) (Figure 1).
Nucleotide and amino acid similarities calculated for the

RNA1 and the viral polymerase are 96.4% and 98% be-
tween strains 283.2009 and 367.2.2005, and 97.2% and
98.3% between strains 484.2.2009 and 389/I96. The RNA1
nucleotide sequence of the RGNNV and the RGNNV/
SJNNV viruses was 97.6 and 96.7% identical to that of
strain SGWak97 (corresponding to 99.3 and 97.6% amino
acid identity). The polymerase gene of the SJNNV and of
the SJNNV/RGNNV viruses was 97.1 and 97.8% identical
to that of strain SJNag93 (corresponding to 97.8 and
98.1% amino acid identity). Pairwise similarity was calcu-
lated also for the RNA1 nucleotide region spanning from
position 84 to position 1419 and putatively responsible for
betanodavirus temperature sensitivity [35], which cor-
responds to the polymerase N-terminal. Nucleotide iden-
tity was 96.1% between strains 283.2009 and 367.2.2005
(corresponding to 98.4% amino acid identity) and 97.7%
between strains 484.2.2009 and 389/I96 (corresponding to
97.7% amino acid identity). When considering the 84–
1419 nucleotide region, the SGWak97 strain was 97.3 and
96.7% identical to samples 283.2009 and 367.2.2005 (100
and 98.4% amino acid identity, respectively), and the
SJNag93 strain was 97.2 and 97.8% identical to samples
484.2.2009 and 389/I96 (96.8 and 97.9% amino acid iden-
tity, respectively). Finally, nucleotide and amino acid iden-
tities calculated for the RNA2 and the coat protein were
88.1% and 89.2% between strains 283.2009 and 389/I96,
and 97.3% and 97% between strains 484.2.2009 and
367.2.2005. The SGWak97 strain was 97 and 88.1% identi-
cal to samples 283.2009 and 389/I96 (96.3 and 87.9%
amino acid identity, respectively), and the SJNag93 strain
was 97.8 and 99.1% identical to samples 484.2.2009 and
367.2.2005 (97 and 98.8% amino acid identity, respectively).

Phenotypic characterization
Inoculated cells were inspected regularly for the appear-
ance of CPE (Table 2). At 15 °C, E-11 monolayers were
characterized by cell shrinkage, most likely due to the sub-
optimal incubation temperature for their cultivation. From
93 hpi (T7) onwards, an alteration of all the infected
monolayers was observable, where cells appeared dark
and contracted and tended to detach from the surface of
the flask. However, no specific lesions related to betanoda-
virus infection (i.e. vacuolization of cells) were detected
and none of the four viruses determined the complete dis-
ruption of cell monolayers at this temperature. At 20 °C,
no CPE was noticed at the early stages of the infection.
However, at 69 hpi (T5) all the betanodavirus strains
under investigation showed typical cellular vacuoles
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which evolved into extended foci of rounded, granular and
vacuolated cells after 93 hpi (T7). All the viral strains de-
termined the complete disruption of cell monolayers by
117 hpi (T8). At 25 °C, the RGNNV-type, the SJNNV-type
and the two reassortants showed the same phenotype:
after 69 hpi (T5) the presence of diffuse CPE was observed,
resulting in the disruption of the monolayers at 93 hpi
(T7). Interestingly, clear phenotypic differences among the



Table 2 Cytopathic effect (CPE) observed in E-11 cell monolayers infected with RGNNV, SJNNV, RGNNV/SJNNV, SJNNV/RGNNV betanodavirus strains at
different incubation temperatures

15 °C 20 °C 25 °C 30 °C

RGNNV SJNNV RGNNV/
SJNNV

SJNNV/
RGNNV

RGNNV SJNNV RGNNV/
SJNNV

SJNNV/
RGNNV

RGNNV SJNNV RGNNV/
SJNNV

SJNNV/
RGNNV

RGNNV SJNNV RGNNV/
SJNNV

SJNNV/
RGNNV

T1 § § § § - - - - - - - - - - - -

T3 § § § § - - - - - - - - + + + - + + + -

T5 § § § § + + + + + + + + + + + + + + + + - + + + + +

T7 * * * * + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

T8 * * * * + + + + + + + + + + + + + + + + + + + + + + + + + +

T9 * * * * + + + + + + + +

T10 * * * * + + + + + + + +

Data were recorded at T1 (20 hpi), T3 (45 hpi), T5 (69 hpi), T7 (93 hpi), T8 (117 hpi), T9 (141 hpi) and T10 (165 hpi). Cells appearance, estimation of the CPE and its degree of severity were assessed according to the
following levels: cell shrinkage (§); alteration of the cell monolayer characterized by dark and contracted cells with the tendency to detach from the surface of the flask (*); absence of CPE (−); cellular alteration and
presence of diffuse vacuoles (+); presence of diffuse foci of rounded, granular and vacuolated cells (+ +); presence of diffuse foci of rounded, granular and vacuolated cells and initial cell monolayer disruption (+ + +);
presence of diffuse foci of rounded, granular and vacuolated cells and advanced cell monolayer disruption (+ + + +); complete cell monolayer disruption (+ + + + +).

Panzarin
et

al.Veterinary
Research

2014,45:56
Page

6
of

11
http://w

w
w
.veterinaryresearch.org/content/45/1/56



Panzarin et al. Veterinary Research 2014, 45:56 Page 7 of 11
http://www.veterinaryresearch.org/content/45/1/56
four betanodavirus strains were noticed at 30 °C. In par-
ticular, the RGNNV strain and the RGNNV/SJNNV reas-
sortant determined an early appearance of CPE just after
45 hpi (T3), which became more severe at 69 hpi (T5). The
complete disruption of cell monolayer was observable
after 93 hpi (T7). Noteworthy, the SJNNV strain and the
SJNNV/RGNNV reassortant showed a completely differ-
ent phenotype. In particular, the SJNNV/RGNNV strain
determined the appearance of diffuse vacuoles after 69 hpi
(T5), while no CPE was observable for the SJNNV isolate.
By 93 hpi (T7) both the SJNNV strain and the SJNNV/
RGNNV reassortant induced the emergence of multiple
foci of vacuolated cells. CPE severity worsened over time,
but none of these strains determined the complete disrup-
tion of the cell monolayers by the end of the experiment.

Growth kinetics
The average titres determined in culture supernatant sam-
ples collected at different time points were used to develop
graphs describing the growth kinetics of the RGNNV and
the SJNNV genotypes and their natural reassortants at dif-
ferent incubation temperatures (Figure 2). At 15 °C, a simi-
lar growth was noted for all the viruses, with a slight and
slow increase of viral titre over time, although strains
SJNNV and SJNNV/RGNNV seemed to have a better fit-
ness, particularly towards the end of the experiment. In
general, the chronic trend of viral growth indicates that this
temperature is suboptimal for betanodavirus replication.
The higher titres were recorded after 165 hpi (RGNNV:
105.1 TCID50/mL; SJNNV: 105.7 TCID50/mL; RGNNV/
SJNNV: 105.3 TCID50/mL; SJNNV/RGNNV: 106.1 TCID50/
mL). At 20 °C, all the viruses displayed comparable kinet-
ics. However, this temperature showed a higher compati-
bility with an improved replication fitness, determining a
regular increase of viral titre over time, particularly for
strains SJNNV and SJNNV/RGNNV. The higher titres
were obtained at 117 hpi (RGNNV: 106.9 TCID50/mL;
SJNNV: 106.8 TCID50/mL; RGNNV/SJNNV: 107.0 TCID50/
mL; SJNNV/RGNNV: 107.4 TCID50/mL). At 25 °C, the
RGNNV strain and the two reassortants showed an acute
growth trend characterized by a rapid and efficient replica-
tion, yielding high titres (107.9 TCID50/mL) after 93 hpi.
However, this condition was suboptimal for the SJNNV
strain, which showed a slow growth and had a lower titre
(106.3 TCID50/mL after 93 hpi). Interestingly, at 30 °C the
differences in replication efficiency among strains became
striking. RGNNV and RGNNV/SJNNV rapidly multiplied
during the first hours of incubation, reaching the peak of
replication (107.5 TCID50/mL and 107.3 TCID50/mL, re-
spectively) only after 55 hpi. The acute phase was followed
by a progressive decrease in viral titres, until the cell
monolayer was completely disrupted. On the contrary,
the SJNNV and the SJNNV/RGNNV betanodaviruses
showed a chronic growth trend, characterized by a slow
and poor replication. The higher titres were obtained at
117 hpi (SJNNV: 105.5 TCID50/mL; SJNNV/RGNNV:
106.2 TCID50/mL).

Statistical analysis
Given the diverse phenotypes and growth kinetics of
viral strains at different incubation temperatures, data
related to the observation points T9 (141 hpi) and T10

(165 hpi) at 20 °C and T8 (117 hpi), T9 (141 hpi) and T10

(165 hpi) at 25 °C are missing for all viruses, as well as
data associated with T8 (117 hpi), T9 (141 hpi) and T10

(165 hpi) at 30 °C for viruses RGNNV and RGNNV/
SJNNV. This is why statistical analysis was performed
using a reduced dataset, so as to have the same number
of exposure times (up to T7, corresponding to 93 hpi)
for each temperature and genotype.
The first tested model, where replicates were considered

as fixed effects, demonstrated the repeatability of the ex-
periment, highlighting that differences in titres measure-
ments among different replicates are not significant.
The best LMM selected for longitudinal data presented

genotype, exposure time, temperature and their inter-
action as fixed effects while the replicate was considered
as a random effect, with a AR(1) structure of VAR/COV
matrix (ρ = 0.18). Graphical Student residuals analysis,
Shapiro Wilks and Kolmogorov Smirnov tests of posterior
analysis, confirmed the goodness of the proposed model
(Additional file 1).
The analysis indicated that variables genotype, exposure

time, temperature and their interactions were significant
to explain the trend of the titres and highlighted the exist-
ence of differences among the increase of viral titres over
time, depending on the temperature. In detail, the analysis
showed that at 15 °C viral titres of strains RGNNV, SJNNV
and SJNNV/RGNNV increased significantly more than
RGNNV/SJNNV titres over time. Furthermore, no differ-
ence existed between the replication efficiency of pairs
RGNNV and SJNNV, RGNNV and SJNNV/RGNNV,
SJNNV and SJNNV/RGNNV over time. At 20 °C, no sig-
nificant difference was observed between the increase of
viral titres of strains RGNNV and RGNNV/SJNNV, and
strains SJNNV and SJNNV/RGNNV over time, while iso-
lates SJNNV and SJNNV/RGNNV showed a significantly
higher replication efficiency when compared to strain
RGNNV and strain RGNNV/SJNNV. At 25 °C and 30 °C,
SJNNV viral titres increased significantly less than
RGNNV, RGNNV/SJNNV and SJNNV/RGNNV titres
over time. However, at both temperatures no significant
differences were noticeable among the replication efficien-
cies of viruses RGNNV, RGNNV/SJNNV and SJNNV/
RGNNV.
In order to evaluate whether the statistical observa-

tions might have been biased by the use of a restricted
dataset, additional analyses were performed considering
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all the observation points up to 165 hpi for strains
RGNNV, SJNNV, RGNNV/SJNNV and SJNNV/RGNNV
at 15 °C, and for viruses SJNNV and SJNNV/RGNNV at
30 °C. The model developed for 15 °C showed no signifi-
cant differences in the replication fitness of strains
RGNNV, SJNNV, RGNNV/SJNNV and SJNNV/RGNNV.
At 30 °C, the difference in terms of replication efficiency
observed between strains SJNNV and SJNNV/RGNNV in
the time slot T0-T7 was not significant when considering
the entire duration of the experiment (up to T10 corre-
sponding to 165 hpi).
Generally speaking, strains RGNNV and RGNNV/

SJNNV showed similar growth trends at 15, 20, 25 and
30 °C. Similarly, the SJNNV and the SJNNV/RGNNV
viruses exhibited comparable replication fitness at all
the temperatures considered. Differences in viral titres
between pairs RGNNV-RGNNV/SJNNV and SJNNV-
SJNNV/RGNNV became more evident at 30 °C.

Discussion
Betanodavirus natural infections can occur at different
water temperatures, depending on the genotype. The
association between the onset of VNN and environmen-
tal conditions has been documented in several papers
[45,46]. A number of experimental trials have also dem-
onstrated the effect of temperature, infectious dose and
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viral multiplication rate on betanodavirus pathogenicity
and disease course [36,47-49]. These observations have
led to the assumption that betanodavirus replication is
most likely a temperature-sensitive process, as previously
hypothesized also by Hata et al. [35]. With the aim
of shedding light into the complex interplay existing
between betanodavirus genetic features, environmental
conditions and viral replication capacity, the present
study investigates the effect of temperature on the
in vitro replication of naïve RGNNV and SJNNV strains
and on natural reassortants. We observed that all the vi-
ruses barely grew at 15 °C, while the rise of the incuba-
tion temperature up to 20 and 25 °C resulted in a boost
of their multiplication capacity. The only exception was
strain SJNNV, which showed a reduced fitness at 25 °C.
A sharp increase in viral titre of the RGNNV and the
RGNNV/SJNNV strains was noticeable at 30 °C, while
the SJNNV and the SJNNV/RGNNV viruses showed a
suboptimal growth kinetics comparable to that observed
at 15 °C. Remarkably, viruses possessing the polymerase
gene of the same genotype exhibited comparable replica-
tion trends, and strains with the RNA1 segment of the
RGNNV genotype efficiently multiplied at higher tem-
peratures (30 °C). All these data confirm that the RNA1
genetic segment and its encoded protein play a major
role in controlling temperature sensitivity of fish noda-
viruses, substantiating previous findings by Hata et al.
[35]. Nevertheless, a possible role of the RNA2 and the
RNA3 cannot be ruled out a priori although, to the best
of the authors’ knowledge, there is no evidence for the
involvement of these molecules in the regulation of
betanodavirus replication.
Interesting observations resulted from the sequencing

analysis carried out in this study. Within the amino acid
region 1–445 which controls betanodavirus temperature
dependency [35], four transmembrane domains (TMDs)
with moderate level of hydrophobicity were previously
identified for the Greasy Grouper Nervous Necrosis
Virus (GGNNV, belonging to the RGNNV genotype)
[50] and the Atlantic Halibut Nodavirus (AHNV, group-
ing within the BFNNV genotype) [51]. These TMDs are
located at positions 1–40, 225–246 for the AHNV, and
at positions 153–173, 229–249 for the GGNNV. All but
the TMD 153–173 were confirmed to contain mitochon-
drial targeting signals, responsible for the localization of
protein A within the mitochondria membrane and for
the formation of the replication complex. Interestingly,
three putative TMDs located at positions 6–26, 152–173
and 224–249 were identified for the RGNNV, SJNNV,
RGNNV/SJNNV and the SJNNV/RGNNV viruses herein
characterized. TMD 224–249 was not predicted for
strain SJNNV (data not shown), which notably replicates
less efficiently at 25 and 30 °C. Furthermore, when com-
paring the RGNNV, SJNNV, RGNNV/SJNNV, SJNNV/
RGNNV, SGWak97 and SJNag93 sequences correspond-
ing to the TMDs identified by Guo et al. and Mézeth
et al. [50,51], 9 amino acid signatures characteristic for
each genotype were identified at positions 7, 19, 155, 223,
232, 235, 241, 251 and 254. In detail, 4 out of 9 signatures
determined a dramatic change in the physical-chemical
properties of the amino acids: Ala7-RGNNV vs Glu7-SJNNV;
Met223-RGNNV/Leu223-RGNNV vs Lys223-SJNNV; Thr241-RGNNV

vs Leu241-SJNNV; Pro251-RGNNV vs Gln251-SJNNV. Positive-
strand RNA viruses commonly associate their polymerase
and viral RNA to the membranes of cellular organelles
to replicate their genomes [52]. Several members of the
nodaviridae family, namely AHNV, Flock house virus
(FHV), GGNNV, Nodamura virus, Wuhan Nodavirus
(WhNV), have shown to replicate in the mitochondria
[50,51,53-55]. It is reasonable to speculate that the four
betanodavirus strains herein described possess the same
replication strategy, while the existence of specific amino
acid signatures might relate with differences in growth
kinetics of betanodaviruses with diverse genomes. The role
of these mutations in determining protein A localization,
membrane affinity, viral RNA recruitment, stability and
accumulation as well as protein A interaction with host
cell proteins is an issue which certainly deserves further
investigations.
Results on viral replication obtained in this study were

fully corroborated by extensive statistical analysis, and
substantiate previous findings reported by Hata et al.
[35], achieved by using the reverse genetics technique.
Importantly, despite the methodological limits of our
study due to the use of naïve reassortant strains, which
have shown a certain degree of genetic diversity if com-
pared to the parental RGNNV and SJNNV, the study of
natural viruses give the most truthful picture of beta-
nodavirus phenotype in response to temperature and de-
finitively clarify the effect of genetic reassortment on
viral replication. Interestingly, in our previous work we
discovered that the polymerase gene evolves more rap-
idly than the viral capsid gene [23]. Whether this is a
consequence of betanodavirus adaptive mechanisms to
different climate and environmental conditions mainly
regulated by RNA1, it is still an open question.
Recently, Vendramin et al. [36] have compared the

pathogenicity of ten different betanodavirus strains, in-
cluding samples 283.2009 (RGNNV), 484.2.2009 (SJNNV),
367.2.2005 (RGNNV/SJNNV) and 389/I96 (SJNNV/
RGNNV). Sea bass juveniles were bath challenged at 20 °C,
and were subsequently subjected to gradually increasing
water temperatures (23 and 25 °C). Overall, it was observed
that the mortality rate proportionally increased with water
temperature. Noteworthy, strain 283.2009 (RGNNV) was
the most lethal virus, reassortant strains 389/I96 and
367.2.2005 increased their pathogenicity at 23 and 25 °C
respectively, and virus 484.2.2009 (SJNNV) was lethal for
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fish at 20 °C without any further increase in pathogenicity
at higher temperatures. Generally speaking, the in vivo re-
sults obtained by Vendramin et al. are in agreement with
the outcomes of the present study, and the mortality rate
determined by different betanodavirus strains seems to re-
flect their in vitro multiplication capacity at 20 and 25 °C,
suggesting that replication efficiency is crucial for betano-
davirus pathogenicity. However, our results indicate that al-
though both the SJNNV/RGNNV and the SJNNV strains
induced CPE at 30 °C but not at 15 °C, each virus reached
nearly identical titres when the two incubation tempera-
tures were compared. This means that for the SJNNV/
RGNNV and the SJNNV genotypes the appearance of CPE
is not exclusively dose-dependent, which suggests that
temperature might influence viral phenotype through dif-
ferent mechanisms other than replication efficiency.
Data gained in the present study might have practical

implications, as they could help infer the viral phenotype
on the basis of the genetic data. Furthermore, the in vitro
characterization of the viral phenotype appears to be a
suitable methodology for the prediction of betanodavirus
pathogenicity under controlled environmental conditions,
and might have important applications in fish farming and
vaccinology. Indeed, Nishizawa et al. [49] applied the
principle of regulating viral pathogenicity by controlling
fish rearing temperature, and immunized sevenband
grouper (Epinephelus septemfasciatus) with a live vaccine
strain by keeping the water temperature at 17 °C. This vac-
cination strategy, despite the obvious limitations for appli-
cation in open farms or sea cages, might be used inside
hatcheries or, alternatively, during transportation of fish to
reduce the volume of vaccine needed [56]. Additionally,
the identification of viruses which replicate more effi-
ciently in vitro may assist in selecting a candidate vaccine
strain suitable for high-throughput antigen production.

Additional file

Additional file 1: Graph Student residual analysis: residuals versus
predicted plot, residuals distribution and residuals Q-Q plot.
Residuals without a particular trend, with normal distribution and good
alignment over line indicate that the model is correct. The hypothesis of
normal distribution of residuals is further tested using the Shapiro-Wilk
and Kolmogorov-Smirnov test. Value of p > 0.10 indicates that the residual
has a normal distribution.
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