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Abstract

Infections with bovine viral diarrhea virus (BVDV) of the genus pestivirus, family Flaviviridae, are not limited to cattle
but occur in various artiodactyls. Persistently infected (Pl) cattle are the main source of BVDV. Persistent infections
also occur in heterologous hosts such as sheep and deer. BVDV infections of goats commonly result in reproductive
disease, but viable Pl goats are rare. Using 2 BVDV isolates, previously demonstrated to cause Pl cattle and
white-tailed deer, this study evaluated the outcome of experimental infection of pregnant goats. Pregnant goats

(5 goats/group) were intranasally inoculated with BVDV 1b AU526 (group 1) or BVDV 2 PA131 (group 2) at
approximately 25-35 days of gestation. The outcome of infection varied considerably between groups. In group 1,
only 3 does became viremic, and 1 doe gave birth to a stillborn fetus and a viable PI kid, which appeared healthy
and shed BVDV continuously. In group 2, all does became viremic, 4/5 does aborted, and 1 doe gave birth to a
non-viable PI kid. Immunohistochemistry demonstrated BVDV antigen in tissues of evaluated fetuses, with similar
distribution but reduced intensity as compared to cattle. The genetic sequence of inoculated viruses was compared
to those from PI kids and their dam. Most nucleotide changes in group 1 were present during the dam’s acute
infection. In group 2, a similar number of mutations resulted from fetal infection as from maternal acute infection.
Results demonstrated that BVDV may cause reproductive disease but may also be maintained in goats.

Introduction
Bovine viral diarrhea virus (BVDV) is the prototypic mem-
ber of the genus pestivirus in the family Flaviviridae. The
description of genetically distinct BVDV isolates from out-
breaks of severe disease in North American cattle herds
in the 1990’s prompted reclassification of BVDV into 2
species, BVDV 1 and BVDV 2 [1,2]. Infections with both
species of BVDV can induce a wide spectrum of clinical
manifestations with subtle to severe clinical signs resulting
from respiratory, reproductive, or immunosuppressive
diseases [3]. A central aspect in the maintenance and
perpetuation of BVDV in cattle populations are persistently
infected (PI) animals that are infected in utero prior to de-
velopment of immunocompetence and shed BVDV for life.
Infections with BVDV are not limited to cattle but have
been reported in various domestic and free-ranging artio-
dactyls. Evidence of BVDV infection exists in 7 of the 10
families comprising the mammalian order Artiodactyla
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including Antilocapridae, Bovidae, Camelidae, Cervidae,
Giraffidae, Suidae, and Tragulidae, representing over 50
species [4]. As in cattle, clinical signs of BVDV infection
in heterologous hosts are variable and depend on different
host and virus-associated factors, but respiratory and
reproductive diseases are commonly reported [4]. BVDV
infection of heterologous hosts during pregnancy may
manifest as reproductive failure and result in fetal resorp-
tion, fetal mummification, stillbirth, or abortion [4]. Con-
genital infection of the heterologous fetus may result in
fetal death, fetal anomalies, developmental malformation
of the fetal central nervous system, or birth of non-viable
offspring [5-10]. An especially noteworthy outcome of
congenital BVDYV infection in heterologous hosts is the
occurrence of persistent infection, which has been reported
in different species [6,7,11-14]. The efficiency with which
BVDV crosses the placental barrier and induces persistent
infection appears to differ among species. In cattle, the
rate of fetal infection and development of PI offspring fol-
lowing maternal BVDV infection during early pregnancy
approaches 100% [15,16]. While efficient transplacental
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infection was also detected in white-tailed deer (Odocoileus
virginianus), studies in domestic swine reported the oc-
currence of fetal infection in only 1 of 20 gilts or 1 of 43
fetuses born to 4 gilts, respectively [10,17,18].

BVDV infections of small ruminants are similar to those
in cattle, and evidence of infection exists in many countries,
where seroprevalence rates from 3 to 35% were detected
[4]. BVDV seroprevalence rates are commonly greater than
those for border disease virus [4]. In small ruminants,
postnatal infections commonly cause mild clinical signs,
including pyrexia and leucopenia [19]. Infections in preg-
nant small ruminants may result in uteroplacental path-
ology and pregnancy loss by fetal resorption or abortions
[9]. In sheep, BVDV rapidly crosses the placental barrier,
and the virus was detected in fetal tissues by RT-PCR and
immunohistochemistry approximately 100 h following
infection [20]. While transplacental BVDV infection in sheep
can result in pregnancy losses and non-viability of lambs,
reports of viable PI offspring are also common [6,21].

In goats, natural infections with both species of BVDV
are reported [22,23]. Field outbreaks of BVDV-associated
disease in goats are mainly characterized by pregnancy
losses and neonatal morbidity and mortality [22,24].
Similarly, experimental inoculation of pregnant goats
with cytopathic and non-cytopathic BVDV resulted in
severe pregnancy losses with abortion and fetal death
rates of up to 100% [9,25]. The occurrence of viable PI
goats appears to be much rarer than in other species,
such as cattle and sheep. However, two recent reports
of viable PI goats born to dams infected during exposure
to PI cattle infected with BVDV 1 exist [26,27].

The goal of the present study was to evaluate the
outcome of experimental BVDV infection in pregnant
goats at an earlier gestational age than in previous
studies using BVDV 1 and 2 isolates that were previously
documented to cause persistent infections in cattle and
white-tailed deer [13,17].

Materials and methods

Experimental inoculation and sample schedule

The research described herein was performed under the ap-
proval of the Institutional Animal Care and Use Committee
of Auburn University (2011-2014). All reported times
are in reference to the time of BVDYV inoculation (time 0).
10 adult, female, crossbred goats were obtained and
confirmed to be negative for BVDV by virus isolation
(VI) and BVDV-antibodies by virus neutralization (VN)
using the BVDV strains BVDV 1b AU526 and BVDV 2
PA131. On day -38, following 10 days of fence-line contact,
2 adult bucks were placed into the same pasture to allow
natural mating. Breeding success was evaluated by trans-
rectal ultrasound examination on days: -9, -4, and -1
(29, 34, and 37 days following initial exposure to bucks).
On day -1, all does appeared to be pregnant; however, in
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3 does, pregnancy confirmation lacked confidence and the
possibility of a false positive pregnancy confirmation was
considered. In the remaining does, individual gestational
lengths were estimated to be 25 to 35 days based on
observations of breeding activity and ultrasound find-
ings. Because of the desire to inoculate animals during
early pregnancy, all does, including those without affirmed
pregnancy status, remained in the study.

On day 0, does were randomly assigned to 1 of 2 groups
and transported to 2 pastures at the North Auburn BVDV
unit at Auburn University. Following collection of initial
blood samples for VI and VN, 5 does per group were inoc-
ulated with either BVDV 1b or BVDV 2 of bovine origin.
Using a disposable intranasal cannula designed to intra-
nasally vaccinate calves, 10° cell culture infective doses
(50% endpoint) (CCIDs) of the BVDV 1b AU526 (group 1)
or BVDV 2 PA131 (group 2) strains diluted in 2 mL of
minimum essential medium (MEM) (1 mL containing
5 x 10* CCIDs, per nostril) were intranasally instilled.
After completion of inoculations, an additional aliquot
of each inoculum was stored at —-80 °C for estimation of
actual received viral dose by viral titration.

Throughout the study, animals were visually inspected
daily for clinical signs of illness and evidence of reproduct-
ive losses. On days 0, 6, 8, 10, and 14, physical examinations
were performed and blood samples were collected for VI
On day 14 and then every 14 days until does gave birth,
blood was collected for VN, and pregnancy examinations
were performed by transrectal or transabdominal ultra-
sound. If ultrasonic evidence of fetal non-viability or
clinical signs of abortion were observed, vaginal swabs were
collected for assay by reverse transcriptase-polymerase
chain reaction (RT-PCR) and VI. Animals with evidence
of fetal non-viability (significant reduction of intrauterine
fluid, absence of fetal heart beat, and absence of fetal move-
ment) were administered 2 mL of dinoprost tromethamine
(Lutalyse®, Zoetis Inc., Kalamazoo, MI, USA) and uterine
contents were collected approximately 48 — 72 h later.
Crown-rump lengths were determined on recovered fetuses
to estimate gestational age of death based on a previously
published equation (y = 24.42 + 0.39x) [28,29]. Fetuses were
dissected to collect tissues including liver, heart, thymus,
skin, brain, and placenta for VI and RT-PCR.

When kids were born, viability and ability to nurse were
evaluated. Kids were individually identified by ear tag, and
blood samples were collected for VI and VN on the day of
birth. From all live-born kids, 16 — 25 mm? skin biopsies
were collected from the ear pinna using ear notch pliers
and placed into tubes containing phosphate-buffered saline
for antigen capture ELISA and formalin-containing tubes
for immunohistochemistry. When possible, a necropsy was
performed on aborted and stillborn fetuses and deceased
kids, and representative tissue sections were collected for
VI, RT-PCR, and immunohistochemistry. Approximately
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30 days after all does had given birth, blood samples were
collected from kids for VI and VN.

Virus isolation

Detection of BVDV was performed in buffy coat cells
from whole blood samples of adult goats and kids, tissues
of aborted fetuses and non-viable kids, and uterine fluids
through co-cultivation with MDBK cells. Briefly, the 1 mL
sample suspension was layered over MDBK cells that had
been seeded 24 h earlier into wells of a 6-well culture
plate. Following a 1-h adsorption period, 3 mL of MEM
with 10% equine serum was added. The plates were incu-
bated for 4 days. Following a single freeze-thaw cycle to re-
lease intracellular virus, lysates from this procedure were
assayed on MDBK cells in triplicate by an immunoperoxi-
dase monolayer assay using the BVDV-specific monoclonal
antibodies D89 and 20.10.6 [30].

Virus titration

Virus titration was performed on aliquots of the inocula
and sera of kids positive at birth by VI on buffy coat sam-
ples. The quantity of BVDV was determined by multiple
ten-fold dilutions of samples in triplicate and employed the
statistical method of Reed and Muench [31]. An immuno-
peroxidase monolayer assay was performed to confirm the
presence of non-cytopathic BVDV as described above.

Virus neutralization

Sera were separated from clotted blood following collec-
tion and stored at —80 °C until analysis. A standard virus
neutralization microtiter assay was used for the detec-
tion and quantification of antibodies in sera of adult
goats and kids. Sera were tested for neutralizing anti-
bodies as previously described using the corresponding
BVDV strain with which the group had been inoculated
[32]. The antibody titer was defined as the inverse of the
highest dilution with complete inhibition of staining by
the immunoperoxidase test.

Reverse transcriptase polymerase chain reaction

and sequencing

Viral RNA was detected by a two-round rapid-cycle nested
RT-PCR assay on vaginal swabs and uterine fluids of does
with non-viable fetuses and on tissues of aborted fetuses
or non-viable kids as previously described in detail [33].
If positive for BVDV, samples were purified using the
QIAquick® PCR purification kit (Qiagen) according to the
manufacturer’s specifications and sequenced by automated
dye terminator nucleotide sequencing using both the 5’
and 3’ primers (BVD 180 and HCV 368, respectively).
Consensus sequences were determined for each sample
using Align X° computer software (Vector NTI Suite 7.1,
InforMax, Inc., Bethesda, MD, USA) and results were used
to compare the nucleotide sequences of BVDV in samples
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with those of BVDV 1b AU526 or BVDV 2 PA131 used
for inoculation.

Antigen capture ELISA

BVDV antigen detection was performed on skin biopsy
samples of live-born kids using a commercially available
kit (IDEXX Laboratories, Westbrook, ME 04092, USA)
developed for BVDV detection in bovine samples, ac-
cording to the manufacturer’s instructions. Samples
were classified as positive if the sample to positive (S/P)
ratio was = 0.30.

Immunohistochemistry

Ear skin biopsies collected at birth from live-born kids were
submitted for immunohistochemical detection of BVDV
antigen at the BVDV laboratory at Auburn University. The
monoclonal antibody 15C5 (Syracuse Bioanalytical, East
Syracuse, NY, USA) that specifically targets the BVDV
glycoprotein E™ was used to detect BVDV antigen as pre-
viously described [34]. Additionally, immunohistochemical
analysis was also performed on tissues of suitable stillborn
fetuses and deceased kids in the laboratory of one of
the co-authors (BWB). Briefly, sections of formalin-fixed
paraffin-embedded tissues were cut at 4 pum. Slides were
deparaffinized and stained on an automated immuno-
histochemical stainer (Ventana Medical Systems, Inc.,
Tucson, AZ, USA). The monoclonal antibody 15C5
(Idexx Laboratories, Westbrook, ME, USA) was used
as the primary antibody [35,36]. Positive and negative
controls for BVDV staining consisted, respectively, of a
slide containing known positive bovine tissue along with
slides of test samples using an irrelevant primary antibody.
After deparaffinization on the immunohistochemistry
stainer, the slides were incubated with Protease III
(Ventana Medical Systems, Inc., Tucson, AZ, USA) for
12 min. Before application of the primary antibody
(optimally diluted at 1:5000), a blocking step using
Antibody Diluent (Ventana Medical Systems, Inc., Tucson,
AZ, USA) for 12 min was applied. Primary antibody in-
cubation was for 44 min at 37 °C. Secondary antibody,
alkaline phosphatase, and substrate were proprietary
(Ventana Medical Systems, Inc., Tucson, AZ, USA).
Tissues were counterstained with hematoxylin for four
minutes and coverslipped with glass coverslips. The
monoclonal antibody 15C5 has been successfully uti-
lized in samples from heterologous hosts [13,34,37].

Comparison of genomic sequences of progenitor BVDV
and BVDV isolated from dams and PI kids

Viruses that were isolated from dams 50 (group 1) and
108 (group 2) during the acute phase of infection on day
6, the viruses from their kids (50a and 108a, respectively),
and the BVDV 1b AU526 and BVDV 2 PA131 inoculum
were subject to full genome sequencing to determine
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nucleotide changes that were introduced during the in-
fection process. The 6 viral genomes were sequenced
using a random primed, barcoded library technique
that allowed the determination of 20 viral genomes
simultaneously [38] using the Ion Torrent PGM platform
(Life Technologies, Inc., Grand Island, NY, USA). Briefly,
140 pL of virus stock treated with a cocktail of nucleases
was added to degrade host nucleic acids as previously
described [39]. The viral RNA was purified and was used
in reverse transcription (RT) reactions using primers con-
sisting of 20 bases of known sequence (barcode) and 8 ran-
dom nucleotides at the 3’ end [40]. Second strand ¢cDNA
was synthesized in the same tube using Sequenase 2.0
polymerase (Affymetrix, Inc., Santa Clara, CA, USA) as
previously described [41]. The double-stranded cDNA
was amplified using a primer consisting of the 20 base
known sequence used to prime the RT reaction. The indi-
vidual virus libraries were pooled so that all libraries were
equimolar in the 300 to 400 base cDNA. The DNA was
size-selected using a Pipen Prep (Sage Science, Inc.,
Beverly, MA, USA) and the 20 genome library was se-
quenced using the Ion Torrent with standard chemistries.
After demultiplexing, the individual genomes were assem-
bled using Lasergene 10 SeqMan NGen software (DNAstar,
Inc., Madison, W1, USA). The viral sequences correspond-
ing to BVDV isolates AU526, 50, 50a, PA131, 108 and
108a were submitted to GenBank and have the accession
numbers KF835697 through KF835702, respectively.

Results

Clinical observations and virology for adult does

Prior to inoculation, VI and VN demonstrated that all
does were seronegative and not BVDV-infected. Viral
titration in aliquots of inocula that were frozen after
inoculation of both groups demonstrated that the re-
ceived viral dose of inoculation was 3.31 x 10> CCIDs/mL
for BVDV AU526 and 4.26 x 10> CCIDsy/mL for BVDV
PA131. In the 14 days following inoculation, clinical signs
of disease were not observed in either group, with excep-
tion of nasal discharge in 1 doe infected with BVDV PA131
on day 10. On days 6, 8, and 10 of the study, rectal tem-
peratures remained below 39 °C in animals of group 1. On
day 14, hyperthermia was detected in 2 does of group 1
(#28: 39.6 °C and #50: 40.1 °C). In group 2, elevated rectal
temperatures were observed in individual animals on days
8 (#115: 39.4 °C), 10 (#77: 39.7 °C and #108: 39.8 °C),
and 14 (#115: 40.1 °C). Inoculation resulted in viremia
and seroconversion in 3/5 does in group 1 and 5/5 does in
group 2 (Table 1).

On days 14 and 28, pregnancies of normal ultrasonic
appearance were confirmed in all does except 1 in group
1 (doe 28), which had been included in the study without
confident affirmation of pregnancy. On day 42, ultrasound
examinations in 4/5 does in group 2 demonstrated evidence
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of pregnancy failure including reduced uterine fluid,
lack of fetal heart beat, and lack of fetal movement.
While pregnancies in group 1 continued to have nor-
mal ultrasonic appearance, more pronounced signs of
pregnancy failure were detected in 4/5 does in group 2
on day 52. Additional ultrasound examinations on days
54 — 59 confirmed fetal non-viability in 4/5 does of group
2 resulting in administration of dinoprost tromethamine
to induce expulsion of uterine contents.

Clinical observations and virology for fetuses and
live-born offspring

Following induction of abortion in 4/5 does in group 2,
5 fetuses were collected from 3 does, but uterine contents
were not recovered from the fourth doe. Upon collection, fe-
tuses appeared mummified, and fetal death was estimated to
have occurred on study day 25-30 (55—60 days of gestation).
BVDV could not be isolated from tissues of recovered
fetuses; however, all tissues were positive for viral RNA
by RT-PCR (Table 2). Sequence homology between the
5” UTR of BVDV from fetal tissues and BVDV PA131
was demonstrated in all recovered fetuses.

Does in group 1 gave birth to 7 live kids and 1 still-
born fetus (Table 2). All live-born kids were active and
viable, and were observed to nurse shortly after birth.
Brachygnathia was observed in a male kid (#127A), but
other congenital abnormalities were not detected. The
stillborn fetus was approximately 60% smaller than its
live-born twin, was hairless, and in an early stage of
mummification. BVDV was not detected by VI in tissues
of the stillborn fetus. In contrast, BVDV was isolated from
buffy coat cells of the viable kid (50A) born to the same
doe as the stillborn fetus. In ear skin biopsies of this
BVDV-positive kid, BVDV antigen was detected by immu-
nohistochemistry and ELISA. Serum from this animal did
not contain detectable neutralizing antibodies to BVDV
AU526. BVDV was subsequently isolated in buffy coat
cells and serum collected 30 days after birth, confirming a
persistent BVDV infection in kid 50A.

In group 2, only 1 doe (108) maintained the pregnancy
to term and gave birth to a weak kid (108A) that was
unable to stand or nurse. In contrast to other does of
group 2, antibody titers of doe 108 increased during the
last weeks of pregnancy (Table 1). BVDV was isolated
from buffy coat cells in a blood sample collected from
kid 108A at birth. BVDV antigen was detected on ear
notches by ELISA and immunohistochemistry, and the
kid was seronegative for BVDV 2 PA131 at birth. The
animal was euthanized 12 h after birth as result of its
moribund state. BVDV and viral RNA were identified
in tissues collected at necropsy, and the kid was diag-
nosed as PI. At post-mortem examination, longitudinal
sections of the femurs showed expanded metaphyseal
regions and increased medullary density in metaphyseal
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Table 1 Virological assessment of pregnant goats following BVDV infection at approximately 25 days of gestation

Doe ID Day 0 6 8 10 14 28 42 54 70 84 98 112 153
VN Vi vi Vi Vi Vi VN VN VN VN VN VN VN VN
AU526 28 <2 - - - - - <2 <2 <2 <2 <2 <2 <2 <2
50 <2 - + + - - 256 1024 2048 2048 4096 4096 4096 4096
76 <2 - + + - - 128 256 1024 512 512 1024 1024 1024
127 <2 - + - - - 64 256 128 128 256 512 256 2048
130 <2 - - - - - <2 <2 <2 <2 <2 <2 <2 <2
PA131 77 <2 - + - 1024 2048 4096 4096 4096 4096 8192 4096
108 <2 - + - 1024 4096 8192 8192 8192 4096 16384 16384
115 <2 - + + - - 2048 2048 4096 2048 2048 2048 2048
117 <2 - + - - - 2048 4096 1024 2048 2048 512 1024 512
132 <2 - + + + - 1024 4096 8192 2048 4096 2048 4096 2048

VI - virus isolation, VN - virus neutralization.

and diaphyseal regions. A dense core of tan, mineralized
bone filled the metaphysis and extended uniformly into
the central medullary cavity of the diaphysis. The femoral
metaphysis was expanded by regularly arranged, narrow
spicules of retained primary spongiosa. The deep metaphy-
seal to diaphyseal regions contained retained cartilage cores
layered on unremodeled osteoid trabeculae. Osteoclasts
were not observed in the metaphysis. There was a paucity
of bone marrow elements within narrowed intertrabecular
spaces. Hepatic lobular architecture was disrupted by ex-
panded portal tracts and centrilobular regions. Perivascular
areas within both zones were prominent due to increased
perivascular collagen, hematopoietic cells, and a moderate

number of inflammatory cells. Extramedullary hematopo-
esis associated with the presence of many megakaryocytes
was observed in hepatic sinusoids and splenic red pulp.
A reduction in the number of cortical lymphocytes in
examined lymphnodes and Peyer’s patches was detected.
In summary, gross and histopathological lesions included
long bone osteopetrosis with subsequent extramedullary
hematopoiesis and lymphoid depletion.

BVDV-antigen distribution in tissues of fetuses and
live-born off-spring

While the state of mummification in 3 aborted fetuses of
group 2 precluded immunohistochemical BVDV-antigen

Table 2 Clinical and virological assessment of fetuses and kids from BVDV-infected goats

Day of birth 30-day follow-up
Vi VT \'l PCR \'l VT
ID Description WBC  Serum VN ELISA Ear notch Tissue Tissue WBC Serum Nasal Swab W
AU526  50A Viable Pl +  35x10" <2 + Weak + n n +  35x10"  20%10° 64
508 Stillborn n n n n n - n n n n n
76A Normal - n 4096 - - n n - n n 1024
127A  Brachygnathia viable - n 256 - - n n - n n 512
1278 Normal - n <2 - - n n - n n 512
130A Normal - n <2 - - n n - n n <2
1308 Normal - n <2 - - n n - n n <2
130C Normal - n <2 - - n n - n n <2
PA131 77A Fetal mummy n n n n n - + n n n n
778 Fetal mummy n n n n n - + n n n n
108A Non-viable PI + 20%10° <2 + n + + n n n n
115 Not recovered n n n n n n n n n n n
117A Fetal mummy n n n n n - + n n n n
132A Fetal mummy n n n n n - + n n n n
132B Fetal mummy n n n n n - + n n n n

IHC - immunohistochemistry, n - test not performed, VI -virus isolation, VN - virus neutralization, VT - virus titration.
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detection, tissue samples from the stillborn fetus of group
1, two mummified twin fetuses of group 2, and the PI kid
of group 2 were suitable.

In placental tissues associated with the stillborn fetus
of group 1, BVDV-antigen staining was observed in
trophoblasts. The thymus of this fetus contained BVDV
antigen in scattered random cells of the interlobular
septae, smooth muscle cells of arterioles, lymphocytes,
and rarely in thymic corpuscules. BVDV antigen was
also detected in renal glomeruli and neurons of the
cerebrum of the stillborn fetus. Very pale staining of
uncertain significance was detected in hair follicles of
examined skin tissues. BVDV antigen staining was absent
in other examined organs including the gastrointestinal
tract, kidneys, lungs, ovaries, and heart.

BVDV antigen was not detected in placental tissues
associated with the twin fetuses recovered from doe 132
of group 2. All examined tissues of these fetuses, with
exception of scattered staining in apocrine gland epithe-
lium in the skin of one fetus (Figure 1), did not contain
BVDV antigen.

BVDV antigen was detected in autolytic cell debris as-
sociated with trophoblasts of placental tissues of the PI
kid (108A) of group 2. The distribution and intensity of
antigen staining in tissues of this kid varied by organ
system and was most pronounced in nervous tissues and
thymus. Within the central nervous system, antigen
staining was present in endothelial cells of cerebrum,
cerebellum, and spinal cord (Figure 2); tunica media of
the cerebrum and cerebellar meninges; neurons of the
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Figure 1 Bovine viral diarrhea virus antigen in apocrine gland
epithelium of an aborted goat fetus. Presence of bovine viral
diarrhea virus (BVDV) antigen was evaluated in tissues of a fetus
aborted by a goat experimentally infected with BVDV 2 PA131 by
immunohistochemistry using the monoclonal antibody 15C5. In this
fetus, BVDV antigen was only detected in apocrine gland epithelium
of the skin. No other analyzed tissues demonstrated positive
antigen staining.
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Figure 2 Bovine viral diarrhea virus antigen in cerebral
endothelium of a persistently infected goat kid. A weak,
non-viable goat kid was born to a goat experimentally infected with
bovine viral diarrhea virus (BVDV) 2 PA131 at approximately 25 days
of gestation. A diagnosis of persistent BVDV infection was made
based on virus isolation and antigen detection in buffy coat cells
and ear notch samples, respectively. At necropsy, BVDV was detected
by virus isolation from tissues. BVDV antigen staining was present in

various tissues, but most pronounced in nervous and thymic tissues.

cerebrum and obex; and in optic nerve fibers near the
optic cup. Antigen staining in the skin was very sparse
and often limited to apocrine glands. Sparse staining was
also present in epithelia of renal tubules, macrophages of
the liver, epithelial cells of the exocrine pancreas, spleen,
and thyroid gland. Other examined organ systems, includ-
ing gastrointestinal tract, respiratory system, cardiovascu-
lar system, urogenital system, and skeletal muscles did not
contain detectable BVDV antigen.

Comparison of genomic sequences

Compared to the progenitor virus BVDV AU526 used
for inoculation of group 1, 36 nucleotide changes were
detected in the virus sequenced from a sample collected
on day 6 from doe 50. Of these nucleotide changes, 14
(38.9%) occurred in the coding region for the non-
structural BVDV proteins and 22 (61.1%) occurred in
the coding region for the structural BVDV proteins.
Nucleotide changes resulted in 15 amino acid substitu-
tions, of which 8 and 7 were present in coding regions for
the non-structural and structural proteins, respectively.
All 36 nucleotide changes detected in its dam, were
also present in the virus of PI kid 50A, in which only 2
additional nucleotide changes were detected. Of these 2, 1
was a non-synonymous nucleotide change in the coding
region for the E2 protein and the other a synonymous nu-
cleotide change in the coding region for the nonstructural
protein NS4b. For group 2, inoculated with BVDV PA131,
10 nucleotide changes were detected in the virus from doe
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108. Of these, 1, 4, and 5 occurred in the 5’UTR, coding
region for the non-structural BVDV proteins, and coding
region for the structural BVDV proteins, respectively. Of
the nucleotide changes in the coding region for non-
structural proteins, 3 resulted in amino acid substitutions.
Also, 3 of the nucleotide changes in the structural protein
coding region were non-synonymous. The genomic se-
quence of the virus isolated on the day of birth from PI
kid 108A contained 6 of the 10 nucleotide changes detected
in the virus from its dam. The remaining 4 nucleotide
changes present in the dam’s virus were reverted to
those of the progenitor PA131. However, as compared
to the progenitor virus, 9 additional nucleotide substi-
tutions were detected in the virus of PI kid 108A that
were not present in the virus of its dam.

Discussion

The present study evaluated the outcome of BVDV infec-
tion in pregnant goats during early gestation following
experimental inoculation with BVDV 1 or BVDV 2 isolates
from PI cattle. While only 3 of 5 does in group 1 became
viremic and seroconverted, viremia and seroconversion
was detected in all does inoculated with BVDV 2 PA131,
and antibody titers in group 2 were markedly greater than
in group 1. In an experimental infection study, in which
seronegative heifers were challenged with either BVDV 1
or 2 at increasing doses, viremia and subsequent fetal
infection occurred at dose of 10* CCIDs, of BVDV 2 but
not at doses below 10* CCIDs, of BVDV 1 [42]. In this
study, the received dose of viral inoculum appeared to
have been approximately 1 log lower than intended for
each group, possibly explaining the lower rate of viremia
in group 1. However, in a study in 2-month old pigs, the
utilized BVDV 1 isolate caused viremia and tissue infection
at a dose that was 4 logs lower than that of BVDV 2 [43],
possibly indicating that the different rates of viremia be-
tween group 1 and 2 of this study are the result of variation
between individual BVDV isolates rather than differences
between the 2 species of BVDV. The high rate of abor-
tion in group 2, corresponds to previous reports of caprine
BVDV infection in which reproductive failure, including
fetal resorption, abortion, fetal mummification, still-
birth, and birth of congenitally infected kids with severe
gross and histological pathology were the most common
outcome regardless of BVDV strain [5,9,22,44]. Pregnant
does infected with BVDV at various stages of gestation
experienced abortions in all trimesters of pregnancy, em-
phasizing that BVDV should be included as a differential
diagnosis for abortions in goats [5].

Clinically, the outcome of infection differed consider-
ably between the groups. With exception of the stillborn
fetus and brachygnathia in an otherwise healthy kid,
infection of group 1 with BVDV 1b AU526 was clinically
inapparent as is common for many BVDV outbreaks in
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cattle. The normal appearance and shedding of BVDV from
PI kid of group 1 could have facilitated the maintenance
and transmission of BVDV as has been reported in goats
previously [26]. In that study, cohabitation of BVDV-naive
pregnant goats with a PI goat resulted in the birth of twin
PI offspring. In contrast, cohabitation of pregnant goats
with a PI calf resulted in pregnancy losses in all goats [26].
A PI goat born to a dam exposed to PI calves in Germany
also appeared clinically healthy in the first months of life,
but developed ill-thift, poor body condition, and anemia
by 1 year of age [27]. In contrast, 2 PI goats in a recent
study were born with signs of neurologic disease including
tremor and ataxia [26]. Neurologic disease in that study
may have resulted from infection at a later stage of ges-
tation (38 — 45 days) as compared to this study and was
reported in previous studies in fetuses and kids from
goats experimentally infected at approximately 60 days
of gestation [5,9].

In contrast to group 1, infection with BVDV 2 PA131
resulted in severe reproductive disease in 4 of 5 does of
group 2. The only kid born in group 2 was non-viable,
and was diagnosed as PI based on the presence of BVDV
in buffy coat cells and tissues, presence of BVDV antigen
in ear skin biopsies as detected by immunohistochemistry
and ELISA, absence of serum antibodies at birth, and pres-
ence of BVDV antigen in tissues at approximately 125 days
after inoculation with BVDV. Osteopetrotic changes as ob-
served in the long bones of this kid have been previously
reported in PI calves and bovine fetuses [45,46], but not in
goats. A recent study evaluating the long bone morphogen-
esis in bovine fetuses experimentally infected with BVDYV,
concluded that the observed cyclic abnormal trabecular
modeling of PI fetuses is secondary to reduced numbers of
osteoclasts [45]. Similarly, in the PI kid of group 2 a paucity
of metaphyseal osteoclast was also detected. In contrast,
normal bone trabeculae and growth plates and presence of
BVDV antigen in osteocytes, osteoblast, and osteoclast were
detected in PI goats in a previous report [26].

The ability of both viruses to induce persistent infection
in a heterologous species (white-tailed deer) was previ-
ously demonstrated [13,47]. Similar to the present study,
cohabitation of pregnant white-tailed deer with a cow
PI with BVDV AU526 did not result in early pregnancy
losses and all does gave birth to 1 — 2 fawns of which 3
were viable and PI and 2 were stillborn [47]. In con-
trast, of 9 pregnant white-tailed deer co-infected with
BVDV 1 BJ and BVDV 2 PA131, only 1 gave birth to a fawn
PI with PA131, while the other does experienced early
pregnancy losses [13]. Similar detrimental effects of BVDV
2 PA131 were not observed in previous studies in cattle,
in which abortions following experimental inoculation
were not observed and PI fetuses were recovered from
all unvaccinated heifers approximately 75 days following
challenge [48,49]. Whether the apparent difference in fetal
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virulence between BVDV 1 and 2 in this study was specific
to the utilized isolates or reflects a differing ability of the
two BVDV species to induce persistent infection in heter-
ologous hosts is uncertain and requires further study. In
previous reports of viable PI goats, BVDV 1le and 1 h were
isolated, but cohabitation of pregnant goats with PI cattle
infected with BVDV 2a did not result in viable offspring
[5,26,27]. In contrast, experimental BVDV 2 infection of
pregnant sheep resulted in the birth of viable PI lambs
[50]. While both species of BVDV can infect alpacas
[51,52], only the subgenotype 1b has been isolated from
PI alpacas in North America and the United Kingdom
[7,53-55]. The simultaneous inoculation of pregnant
alpacas with two BVDV 1b isolates of cattle or alpaca
origin, respectively and a BVDV 2 strain of cattle origin,
resulted in birth of crias PI with 1b of cattle or alpaca ori-
gin, but not BVDV 2 [56]. Further research is necessary to
elucidate the viral factors that allow survival of the fetus
and establishment of persistent infection in cattle and
heterologous species.

Only scattered BVDV antigen was detected in the skin
of 1 of the aborted fetuses of group 2. In contrast, differ-
ent tissues of the stillborn fetus of group 1 and the PI
kid of group 2 contained antigen staining. Antigen stain-
ing was most pronounced in placental tissues, thymus,
and nervous tissues, which is in agreement with a previ-
ous report [57]. However, in that study, the heart was
also recommended as a sample suitable for detection of
BVDV in aborted caprine fetuses, but heart samples did
not contain antigen in the present study. Previous stud-
ies demonstrated that fetal nervous tissues are a primary
target following congenital BVDV infection in cattle, sheep,
and white-tailed deer [8,34,58,59]. While BVDV antigen
was not detected in goat fetuses from which BVDV was
isolated in a previous study [60], nervous tissues in this
and another study contained widespread antigen staining
in neuronal and non-neuronal cells [57]. In another re-
port, BVDV antigen could not be detected in tissues out-
side of the CNS and was restricted to the brain stem and
spinal cord of some fetuses from dams infected with non-
cytopathic or cytopathic BVDV [61]. In contrast to cattle
and white-tailed deer, for which skin is a preferred sample
for BVDV diagnostics and PI detection [34,62], BVDV
antigen was only sparsely distributed in the skin of exam-
ined fetuses and the non-viable kid. Similarly, skin samples
from only 1 of 14 aborted fetuses and neonatal goats in
previous study contained BVDV antigen [57]. The ear
notch sample from the PI kid of group 1 also had only
weak positive antigen staining, thus suggesting that BVDV
diagnostics in cases of caprine abortions and PI detection
in goats should not solely rely on immunohistochemistry
in skin samples.

The rapid rate of mutation that occurs during replica-
tion of BVDV is well established and has been attributed
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to the error-prone RNA polymerase of the virus [63]. A
recent study in cattle documented that genetic change is
introduced more rapidly following the establishment of
single persistent infection than from multiple acute infec-
tions [64]. Similar to the present study, in which 16 (42%)
amino acid substitutions were detected in the progeny
BVDV AU526, in cattle, a single passage of BVDV AU526
through a PI fetus resulted in 48 nucleotide changes [64].
In pregnant cattle exposed to PI calves shedding progenitor
virus, the majority of nucleotide changes detected in
progeny virus from resulting PI calves were already present
during the acute infection of the exposed cow [65]. In
that study, a total of 48 nucleotide changes were de-
tected between BVDV AU526 of the progenitor PI calf
and BVDV AU526 from the progeny PI calf exposed in
utero to the progenitor virus. Of these, 45 nucleotide
changes were present in virus isolated from serum col-
lected on day 6 during the acute infection of the dam,
and only 3 additional nucleotide changes occurred in
the progeny PI calf [65]. In the present study, the ma-
jority of nucleotide changes detected in the PI kid of
group 1 were also present in samples collected during
the acute infection of the dam. In contrast to these
findings and previous reports in cattle, the number of
nucleotide changes in BVDV PA131 detected following
acute infection of the dam was equal to that resulting
from passage in the PI fetus. The relatively large pro-
portion of genetic change that occurred in fetus 108A
and the resulting immunological response of the dam
may have had a role in the high rate of abortion in group 2.
The immunological response of the dam to changes in
the viral genome originating from the PI fetus and the
specificity of this response is currently unknown. In PI
cattle, the immunological tolerance to the persistent
virus is highly specific, and CD4+ T-cells from PI cattle
challenged with a heterologous virus can recognize sin-
gle amino acid differences between the challenge and
persistent virus [66]. In pregnant heifers carrying a PI
fetus, the expression of IFN-stimulated gene 15kd fol-
lowing BVDV infection was considerably lower than in
heifers pregnant with a transiently infected fetus [67].
Furthermore, prolonged downregulation of chemokine
receptor 4 and T cell receptor pathways was observed in
blood of cattle pregnant with a PI fetus [68]. If the maternal
immunosuppression were as specific to the infecting virus
as in PI cattle, ongoing viral mutation in the infected fetus
may result in immunoreactivity and failure of pregnancy.
Alternatively, the greater rate of reproductive failure in
group 2 may have resulted from the ability of BVDV 2
isolates to cause transplacental infections more readily,
as has been suggested in previous studies [69,70].

In summary, infections of pregnant goats with BVDV 1
or 2 resulted in considerably different outcomes. While in-
fection with BVDV 2 PA131 resulted in severe reproductive
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disease as is common for BVDV infection in goats, infec-
tion with BVDV 1 AU526 was clinically less apparent and
could have resulted in dissemination of the virus. These
results emphasize that in addition to an immediate effect
on reproductive health, BVDV may have the potential for
maintenance in heterologous species, including goats.
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