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Abstract

host-virus interactions.

Cyprinid herpesvirus 3 (CyHV-3), a member of the family Alloherpesviridae is the causative agent of a lethal, highly
contagious and notifiable disease in common and koi carp. The economic importance of common and koi carp
industries together with the rapid spread of CyHV-3 worldwide, explain why this virus became soon after its
isolation in the 1990s a subject of applied research. In addition to its economic importance, an increasing number
of fundamental studies demonstrated that CyHV-3 is an original and interesting subject for fundamental research.
In this review, we summarized recent advances in CyHV-3 research with a special interest for studies related to
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1. Introduction
The common carp (Cyprinus carpio) is one of the oldest
cultivated fish species. In China, culture of carp dates back
to at least the 5 century BC, whereas in Europe, carp
farming began during the Roman Empire [1]. Nowadays,
common carp is one of the most economically valuable
species in aquaculture: (i) it is one of the main cultivated
fish for human consumption with a world production of
3.4 million tons per year [2]; (i) it is produced and stocked
into fishing areas for angling purpose; and (iii) its colorful,
ornamental varieties (koi carp) grown for personal plea-
sure and competitive exhibitions represent probably the
most expensive market of individual freshwater fish with
some prize-winners sold for 10*-10° US dollars [3].
Herpesviruses infect a wide range of vertebrates and
invertebrates [4]. However, the host-range of individual
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herpesvirus species is generally restricted revealing host-
virus co-evolution. In aquaculture, herpesvirus infections
have been associated with mass mortality of different fish
species causing severe economic losses [5-7]. In the late
1990s, a new highly contagious and virulent disease began
to cause severe economic losses in both koi and common
carp industries. Soon after its first known occurrences
reported in Israel, USA, and Germany [8,9], the disease
was described in various countries worldwide. The rapid
spread of the disease was attributed to international fish
trade and to koi shows around the world [10]. The causa-
tive agent of the disease was initially called koi herpesvirus
(KHV) because of its morphological resemblance to vi-
ruses of the order Herpesvirales [9]. The virus was subse-
quently called carp interstitial nephritis and gill necrosis
virus (CNGYV) because of the associated lesions [11]. Fi-
nally, on the basis of genome homology with previously
described cyprinid herpesviruses the virus was renamed
cyprinid herpesvirus 3 (CyHV-3) [12].

Because of its worldwide spread and the economic
losses it caused, CyHV-3 became rapidly a notifiable
disease and a subject of application oriented research.
However, an increasing number of recent studies have
demonstrated that it is also an interesting subject for
fundamental research. In this review, we summarized re-
cent advances in CyHV-3 research with a special interest
for those related to host-virus interactions.

2. Characterization of CyHV-3

2.1 General description

2.1.1 Classification

CyHV-3 is a member of genus Cyprinivirus, family
Alloherpesviridae, order Herpesvirales (Figure 1A) [13].
The Alloherpesviridae is a newly designated family
which regroups herpesviruses infecting fish and am-
phibians [14]. It is divided into four genera: Cyprinivirus,
Ictalurivirus, Salmonivirus, and Batrachovirus [13]. The
genus Cyprinivirus contains viruses that infect common
carp (Cyprinid herpesvirus 1 and 3; CyHV-1 and CyHV-3),
goldfish (Cyprinid herpesvirus 2; CyHV-2) and freshwater
eel (Anguillid herpesvirus 1; AngHV-1). Phylogenetic
analyses revealed that the genus Cyprinivirus forms a
clade distinct from the three other genera listed above
(Figure 1B). Viruses of the Cyprinivirus genus possess the
largest genomes (248-295 kb) in the order Herpesvirales.

2.1.2 Morphology

Like all members of the order Herpesvirales, CyHV-3 vi-
rions are composed of an icosahedral capsid containing
the genome, a lipid envelope bearing viral glycoproteins
and an amorphous layer of proteins termed tegument,
which resides between the capsid and the envelope [15].
The diameter of CyHV-3 virions is 167—-200 nm according
to the infected cell type (Figure 2) [15]. Morphogenesis of
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CyHV-3 is also characteristic of the order Herpesvirales,
with assembly of the nucleocapsid and acquisition of the
lipid envelope (derived from host cell trans-golgi mem-
brane) that take place in the nucleus and the cytosol of the
host cell, respectively [9,15,16].

2.1.3 Genome

The genome of CyHV-3 is a 295 kb, linear, double stranded
DNA molecule consisting of a large central portion flanked
by two 22 kb repeat regions, called the left and right repeats
[18]. To date, this is the largest genome among all sequenced
herpesviruses. The CyHV-3 genome has been cloned as a
stable and infectious bacterial artificial chromosome (BAC),
which can be used to produce CyHV-3 recombinants [19].

The CyHV-3 genome is predicted to contain 155 poten-
tial protein-coding open reading frames (ORFs), among
which eight (ORF1-ORF8) are duplicated in terminal re-
peats [13]. Nine ORFs are characterized by the presence of
introns [13]. CyHV-3 genome encodes five gene families:
ORF2, tumor necrosis factor receptor (TNFR), ORF22,
ORF25, and RING gene families [18]. The ORF25 family
consists of 6 paralogous sequences (ORF25, ORF26,
ORF27, ORF65, ORF148 and ORF149) encoding potential
type 1 membrane glycoproteins. Independently of the viral
strain sequences, ORF26 is described as a pseudogene;
while ORF27 has been characterized as pseudogene in
2 out of 3 sequenced laboratory strains [18]. All non-
fragmented members of this family (ORF25, ORF65,
ORF148 and ORF149) are incorporated in mature virions,
presumably in the envelope [20].

Interestingly, CyHV-3 genome encodes proteins poten-
tially involved in immune evasion mechanisms such as,
for example, G-protein coupled receptor (encoded by
ORF16), TNFR homologues (encoded by ORF4 and
ORF12) and an interleukine-10 (IL-10) homologue (encoded
by ORF134) [18].

Among the family Alloherpesviridae, twelve ORFs
(named core ORFs) are conserved in all sequenced viruses
and were presumably inherited from a common ancestor
[13]. The Cypriniviruses (CyHV-1, CyHV-2 and CyHV-3)
possess 120 orthologous ORFs. Twenty one ORFs are
unique to CyHV-3, including ORF134 encoding an IL-10
homolog [13]. The recently described second IL-10 homo-
log in the family Alloherpesviridae encoded by AngHV-1
does not seem to be an orthologue of the CyHV-3 ORF134
[21]. CyHV-3 shares 40 orthologous ORFs with AngHV-1
although the total number of ORFs shared by all CyHVs
with AngHV-1 is estimated to be 55 [13]. This supports
the phylogenetic conclusion that among the genus
Cyprinivirus, CyHVs are more closely related to each other
than to other members of the family Alloherpesviridae
[14]. Interestingly, CyHV-3 also encodes genes with
closest relatives in viral families such as Poxviridae and
Iridoviridae [18,22].
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Figure 1 Phylogeny of the order Herpesvirales and the Alloherpesviridae family. (A) Cladogram depicting relationships among viruses in
the order Herpesvirales, based on the conserved regions of the terminase gene. The Bayesian maximum likelihood tree was rooted using
bacteriophages T4 and RB69. Numbers at each node represent the posterior probabilities (values > 90 are shown) of the Bayesian analysis.

(B) Phylogenetic tree depicting the evolution of fish and amphibian herpesviruses, based on sequences of the DNA polymerase and terminase
genes. The maximum likelihood tree was rooted with two mammalian herpesviruses (HHV-1 and HHV-8). Maximum likelihood values (> 80 are
shown) and Bayesian values (> 90 are shown) are indicated above and below each node, respectively. Branch lengths are based on the number
of inferred substitutions, as indicated by the scale bar. AIHV-1: alcelaphine herpesvirus 1; AtHV-3: ateline herpesvirus 3; BoHV-1, -4, -5: bovine
herpesvirus 1, 4, 5, CeHV-2, -9: cercopithecine herpesvirus 2, 9; CyHV-1, -2: cyprinid herpesvirus 1, 2; EHV-1, -4: equid herpesvirus 1, 4; GaHV-1, -2, -3:
gallid herpesvirus 1, 2, 3; HHV-1, -2, -3, -4, -5, -6, -7, -8: human herpesvirus 1, 2, 3, 4, 5, 6, 7, 8; IcHV-1: ictalurid herpesvirus 1; McHV-1, -4, -8: macacine
herpesvirus 1, 4, 8; MeHV-1: meleagrid herpesvirus 1; MuHV-2, -4: murid herpesvirus 2, 4; OsHV-1: ostreid herpesvirus 1; OvHV-2: ovine herpesvirus 2;

PaHV-1: panine herpesvirus 1; PsHV-1: psittacid herpesvirus 1; RaHV-1, -2: ranid herpesvirus 1, 2; SaHV-2: saimiriine herpesvirus 2; SuHV-1: suid
herpesvirus 1; TUHV-1: tupaiid herpesvirus 1. Reproduced with permission from Waltzek et al. [14].

2.1.4 Genotypes

Whole genome analysis of three CyHV-3 strains isolated
in Israel (CyHV-3 I), Japan (CyHV-3 J) and United States
(CyHV-3 U) revealed high sequence identity between
the strains [18]. The relationships between these strains
revealed that U and I strains are more closely related to
each other and form one lineage (U/I), whereas | strain
is more distinct and forms a second lineage (J) [18]. The
existence of genetic differences between European line-
age (including U and I genotypes) and Asian lineage
(including J genotype) were later confirmed and suggests
independent CyHV-3 introductions in various geogra-
phical locations [23,24]. Furthermore, Kurita et al. de-
monstrated that the Asian lineage contains only two
variants (A1 and A2) while the European lineage has
seven variants (E1-E7) [24]. Recently, a new intermediate
genetic lineage of CyHV-3 including isolates from
Indonesia has been suggested [25]. This hypothesis was

Figure 2 Electron microscopy examination of CyHV-3 virion. Bar
represents 100 nm. Adapted with permission from Mettenleiter et al. [17].

later supported by analyses of multi-locus variable number
of tandem repeats (VNTR). These analyses also suggested
that genetically distinct viral strains can coexist in a same
location following various introduction events [26]. Al-
though previous study described presence of both CyHV-3
lineages in Europe [23], an European genotype of CyHV-3
has only been revealed recently in East and Southeast Asia
[27]. Recently, Han et al. described polymorphism in DNA
sequences encoding three envelope glycoprotein genes
(ORF25, ORF65, and ORF116) among CyHV-3 strains from
different geographical origins [28].

2.1.5 Proteome

Different groups used mass spectrometry to identify
CyHV-3 proteins and to study their interactions with cel-
lular and viral proteins. The structural proteome of
CyHV-3 was recently characterized by using liquid chro-
matography tandem mass spectrometry [20]. A total of 40
structural proteins, comprising 3 capsid, 13 envelope, 2
tegument, and 22 unclassified proteins, were described
(Figure 3). The genome of CyHV-3 possesses 30 potential
transmembrane-coding ORFs [18]. With the exception of
ORF81, which encodes a type 3 membrane protein
expressed on the CyHV-3 envelope, no CyHV-3 structural
proteins have been studied [20,29]. ORF81 is thought to
be one of the most immunogenic (major) membrane pro-
teins of CyHV-3 [29]. Recently, Gotesman et al. using
anti-CyHV-3 antibody-based purification coupled with
mass spectrometry, identified 78 host proteins and five po-
tential immunogenic viral proteins [30]. In another study,
concentrated supernatant was produced from CyHV-3
infected CCB cultures and analyzed by 2D-LC MS/MS in
order to identify CyHV-3 secretome. Five viral and 46 cel-
lular proteins were detected [31]. CyHV-3 ORF12 and
ORF134 encoding respectively a soluble TNFR homologue
and an IL-10 homologue, were among the most abundant
secreted viral proteins [31].

2.2 In vitro replication
CyHV-3 is widely cultivated in cell lines derived from
common carp brain (CCB), gills (CCG) and fin (CaF-2)
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[32,33]. Permissive cell lines have also been derived from
koi fin: KF-1 [9], KEC [11], KCF-1 [34], NGE-2 and
NGE-3 [16]. Non-carp cell lines, such as silver carp fin
(Tol/FL) and goldfish fin (Au) were also described as
permissive to CyHV-3 [35]. Oh et al. reported the ex-
pression of cytopathic effect (CPE) in cell line from fat-
head minnow (FHM) after inoculation with CyHV-3
[36], but this observation was not confirmed by other
studies [9,35].

In vitro study showed that all annotated CyHV-3 ORFs
are transcribed during CyHV-3 replication [37]. Transcrip-
tion of CyHV-3 genes starts as early as 1 h post-infection
and viral DNA synthesis initiates as early as 4—8 h post-
infection [37]. Similar to all other herpesviruses, most
of CyHV-3 ORF transcripts can be classified into three
temporal kinetic classes: immediate early (IE; n = 15
OREFs), early (E; n = 111 ORFs) and late (L; n = 22
ORFs). Seven ORFs are unclassified [37]. Fuchs et al.
demonstrated that CyHV-3 ORFs that encode for three
enzymes implicated in nucleotide metabolisms: thymi-
dine kinase (ORF55), dUTPase (ORF123) and ribonu-
cleotide reductase (ORF141) are nonessential for virus
replication in vitro [38].

2.3 Temperature restriction

Water temperature is one of the major environmental
factors that influences the onset and severity of viral in-
fection in fish [39]. This statement certainly applies to
CyHV-3 as temperature was shown to affect drastically

both viral replication in vitro and CyHV-3 disease
in vivo.

2.3.1 In vitro

CyHV-3 replication in cell culture is restricted by
temperature. Optimal viral growth in KF-1 cell line was
observed at temperatures between 15 °C and 25 °C.
Virus propagation and virus gene transcription are grad-
ually turned off when cells are moved from permissive
temperature to the non-permissive temperature of 30 °C
[40,41]. However, infected cells maintained for 30 days
at 30 °C preserve infectious virus, as demonstrated by
viral replication when the cells are returned to permis-
sive temperatures [40].

2.3.2 In vivo

CyHV-3 disease occurs naturally when water temperature
is between 18 °C and 28 °C. Several studies demonstrated
that transfer of recently infected fish (between 1 and 5
days post-infection (dpi)) to non-permissive low (< 13 °C)
or high temperatures (> 30 °C) significantly reduces the
mortality [11,42-44]. Water temperature was also shown
to affect the onset of mortality: the first mortalities oc-
curred between 5-8 and 14-21 dpi when the fish were
kept between 23-28 °C and 16-18 °C, respectively [42,45].

2.4 Geographical distribution
CyHV-3 was first isolated from infected koi originating
from Israel and USA in 2000 [9]. Soon after, outbreaks
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of CyHV-3 occurred in many countries in Europe, Asia
and Africa [10,22]. Currently, only South America,
Australia and northern Africa seem to be free of CyHV-3.
The global and rapid spread of the virus is thought to be
mainly due to the international trading of common and
koi carp, but also to koi shows.

2.5 Presence of CyHV-3 in natural environment

In addition to its economic impact on common and koi
carp industries, CyHV-3 has also a negative environmen-
tal impact by affecting wild populations of carp. In 2003,
the first outbreak of CyHV-3 disease among wild carp
occurred in the Yoshi river in Japan [46]. The virus then
spread among several freshwater systems and caused
mass mortalities in wild carp populations. In Lake Biwa,
about 70% of carp population (more than 100 000 fish)
died due to CyHV-3 infection in 2004 [46]. Mass mortal-
ities of wild carp have been also described in angling
waters in UK in 2003 [47], in New York and South
Carolina, USA in 2004 [48,49] and in Kawartha Lakes
region, Ontario, Canada in 2007 [50]. The monitoring of
the distribution of CyHV-3 in rivers and lakes in Japan
demonstrated that it can persist in the wild carp popula-
tions and can be subsequently transmitted to naive fish
[46,51,52]. Studies performed in habitats with CyHV-3
history suggested that sediments [53] and aquatic inver-
tebrates feeding by water filtration could represent po-
tential reservoirs of CyHV-3 [54]. Moreover the viral
DNA could be detected in water not only during the
outbreak of the disease but also for at least 3 months
after the end of mass mortality [51]. However, it has to
be noted that these studies relied on the detection of
viral genome and not CyHV-3 infectivity. Consequently
further studies are required to determine whether these
potential reservoirs of infectious virus could play a role in
CyHV-3 epidemiology.

3. Disease

3.1 Disease characteristics

CyHV-3 disease is seasonal, occurring when water
temperature is between 18 °C and 28 °C. It is restricted
to common and koi carp and their hybrids with other
species [55]. It is highly contagious and extremely viru-
lent with mortality rate that can reach 80 to 100%. Fish
infected with CyHV-3 by immersion, injection or oral
route and kept at 23-28 °C die between 5 and 22 dpi
with a peak of mortality between 8 and 12 dpi [9,56,57].
Gilad et al. suggested that loss of osmoregulation of
the gills, gut and kidney contributes to mortality dur-
ing acute infection with CyHV-3 [42]. Furthermore,
CyHV-3 infected fish are more susceptible to second-
ary infections by bacterial, parasitic or fungal patho-
gens which may cause further mortality within the
population.
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3.1.1. Clinical signs

The first clinical signs appear at 2—3 dpi. Fish become
lethargic, lie at the bottom of the tank with the dorsal
fin folded and exhibit loss of appetite. In ponds, infected
fish are usually gathering close to the water inlet or sides
of the pond and gasp at the surface of water. Gill necro-
sis coupled with extensive discoloration and increased
mucus secretion appear as early as 3 dpi. Depending on
the stage of the infection, the skin exhibits different clin-
ical signs, such as hyperemia, particularly at the base of
the fins and on the abdomen; pale, irregular patches on
the skin associated with mucus hypersecretion at the be-
ginning of infection; peeling away of dead epithelium
and lack of mucus cover in the later stage of infection;
appearance of epidermis surface with a sandpaper-like
texture; and herpetic lesions (Figure 4). In addition, fin
erosion and bilateral enophthalmia (sunken eyes) are ob-
served in the later stages of infection. Some fish show
neurologic signs in the final stage of disease, when they
become disoriented and lose equilibrium [9,10,58].

3.1.2. Histopathology

The most important histopathological changes are ob-
served in the gills. They involve erosion of primary la-
mellae, fusion of secondary lamellae and adhesion of gill
filaments [58,59]. Gills also exhibit hyperplasia, hyper-
trophy and/or nuclear degeneration of branchial epithe-
lium and congestion of the blood vessels in the gill arch
[15,59]. Severe inflammation and gill necrosis resulting
in the complete loss of lamellae can also be observed
[31,59]. In the kidney, the hematopoietic cells are the
most affected ones [15]. However, a weak peritubular in-
flammatory infiltrate is evident in kidney as early as 2
dpi and increases with time. It is accompanied by blood
vessel congestion and degeneration of the tubular epi-
thelium in many nephrons [59]. In the spleen and liver,
the most obviously infected cells are splenocytes and he-
patocytes, respectively [15]. In the liver, mild inflamma-
tory infiltrates are observed mainly in the parenchyma
[59]. In the brain, focal meningeal and parameningeal in-
flammation is observed [59]. Analysis of brain from fish
that showed clear neurologic signs revealed congestion
of capillaries and small veins associated with edematous
dissociation of nerve fibers in the valvula cerebelli and
medulla oblongata [15]. In the skin, the number of gob-
let cells is reduced by 50% in infected fish. Furthermore,
the goblet cells appeared mostly slim and slender which
suggests that mucus was released and had not been
replenished. In addition, erosion of skin epidermis is fre-
quently observed [60].

3.2 Host range and susceptibility
CyHV-3 causes a symptomatic disease only in common
and koi carp. Hybrids of koi x goldfish and koi x crucian



Rakus et al. Veterinary Research 2013, 44:85
http://www.veterinaryresearch.org/content/44/1/85

Page 7 of 16

Figure 4 Some of the clinical signs observed during CyHV-3 infection. (A) Severe gill necrosis. (B) Hyperemia at the base of the caudal fin.
(C) Herpetic skin lesions on the body (arrows) and fin erosion (arrowheads). Reproduced with permission from Michel et al. [22].
A\

carp are also affected by CyHV-3 disease, with mortality
rate of 35% and 91%, respectively [55]. Common carp x
goldfish hybrids have also been reported to show some
susceptibility to CyHV-3 infection; however, the mor-
tality rate observed was rather limited (5%) [61]. PCR
detection of CyHV-3 performed on cyprinid and non-
cyprinid fish species, but also on freshwater mussels and
crustaceans, suggested that these species could act as
reservoirs of the virus (Table 1) [54,62-67]. Cohabitation
experiments suggest that some of these fish species
(goldfish, tench, vimba, common bream, common roach,
European perch, ruffe, gudgeon, rudd, northern pike, sil-
ver carp and grass carp) can carry CyHV-3 asympto-
matically and transmit it to naive carp [64,65,68-70].
Consistent with this observation, in vitro studies showed
that CyHV-3 can replicate and cause CPE in cell cultures
derived not only from common and koi carp but also
from silver carp and goldfish [35]. Recent studies pro-
vided increasing evidence that CyHV-3 can infect
goldfish asymptomatically [68,69]. Finally, the World Or-
ganisation for Animal Health (OIE) listed four CyHV-3
susceptible species (Cyprinus carpio and its hybrids, gold-
fish, Russian sturgeon and Atlantic sturgeon) and two po-
tential susceptible species (grass carp and ide) [71].

Carp of all ages, from juveniles upwards, are affected
by CyHV-3, but younger fish (1-3 months, 2.5-6 g) seem
to be more susceptible to infection than mature fish
(1 year, ~ 230 g) [58]. Ito et al. suggested that carp larvae
are not susceptible to CyHV-3 since larvae (3 days post-
hatching) infected with virus showed no mortality

whereas most of the carp juveniles (>13 days post-
hatching) died after infection [72]. However, recent
study using CyHV-3 recombinant strain expressing lucif-
erase (LUC) as a reporter gene, demonstrates that carp
larvae are sensitive and permissive to CyHV-3 infection
immediately after hatching and that their sensitivity in-
creases with the developmental stages [73].

3.3 Pathogenesis

In early reports, it has been suggested that CyHV-3 may
enter the host through infection of the gills based on de-
tection of viral particles and viral genome in this organ
as early as 1-2 dpi [42,59]. However, more recent stud-
ies using in vivo bioluminescent imaging system demon-
strated that according to epidemiological conditions
CyHV-3 can enter carp either by skin (immersion in in-
fectious water) or pharyngeal periodontal mucosa infec-
tion (ingestion of infectious materials) (Figure 5) [57,74].
The epidermis of teleost fish is a living stratified squa-
mous epithelium that is capable of mitotic division at all
levels (even the outermost squamous layer). The scales
are dermal structures and consequently are covered by
the epidermis [74]. Removal of skin mucus and epider-
mal lesions facilitates the entry of virus into the host
(Figure 6) [75]. After initial replication in the epidermis
[74] the virus is spreading rapidly in infected fish as indi-
cated by detection of CyHV-3 DNA in almost all in-
ternal tissues as early as 24 h post-infection [42]. The
tropism of CyHV-3 for white blood cells most probably
explains such a rapid spread of the virus within the body
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Table 1 Organisms tested for CyHV-3 infection.

Common name (species) Detection of CyHV-3 Detection of CyHV-3 genome in

naive carp after cohabitation

DNA Transcript Antigen

Vertebrates
Cyprinidae

Goldfish (Carassius auratus) Yes [62,68-70] Yes [68] Yes [69] Yes [68-70]

Ide (Leuciscus idus) Yes [62,63] NT NT NT

Grass carp (Ctenopharyngodon idella) Yes [62,64,70] NT NT Yes [64,70]

Silver carp (Hypophthalmichthys molitrix) Yes [64,70] NT NT Yes [64,70]

Prussian carp (Carassius gibelio) Yes [64,70]/ No [65] NT NT Yes [70]/No [65]

Crucian carp (Carassius carassius) Yes [64] NT NT NT

Tench (Tinca tinca) Yes [64,65,70] NT NT Yes [64,65,70]

Vimba (Vimba vimba) Yes [63,64] NT NT Yes [64]

Common bream (Abramis brama) Yes [64,65] NT NT Yes [64]

Common roach (Rutilus rutilus) Yes [64,65] NT NT Yes [64]/No [65]

Common dace (Leuciscus leuciscus) Yes [64,65] NT NT No [65]

Gudgeon (Gobio gobio) Yes [64,65] NT NT Yes [65]

Rudd (Scardinius erythrophthalmus) Yes [65] NT NT Yes [65]

European chub (Squalius cephalus) Yes [64]/No [65] NT NT NT

Common barbel (Barbus barbus) Yes [64] NT NT NT

Belica (Leucaspius delineatus) Yes [64] NT NT NT

Common nase (Chondrostoma nasus) Yes [64] NT NT NT
Acipenseridae

Russian sturgeon (Acipenser gueldenstaedtii) Yes [66] NT NT NT

Atlantic sturgeon (Acipenser oxyrhynchus) Yes [66] NT NT NT
Cobitidae

Spined loach (Cobitis taenia) Yes [64] NT NT NT
Cottidae

European bullhead (Cottus gobio) Yes [64] NT NT NT
Esocidae

Northern pike (Esox lucius) Yes [64,65] NT NT Yes [65]
Gasterosteidae

Three-spined stickleback (Gasterosteus aculeatus) Yes [65] NT NT No [65]
Ictaluridae

Brown bullhead (Ameiurus nebulosus) Yes [65] NT NT No [65]
Loricariidae

Ornamental catfish (Ancistrus sp.) Yes [62] NT NT NT
Percidae

European perch (Perca fluviatilis) Yes [64,65] NT NT Yes [64]/No [65]

Ruffe (Gymnocephalus cernua) Yes [64]/No [65] NT NT Yes [64,65]
Invertebrates

Swan mussels (Anodonta cygnea) Yes [54] NT NT NT

Scud (Gammarus pulex) Yes [54] NT NT NT

NT- not tested.
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Inoculation Mode

Immersion

24 h pi

48 h pi

Figure 5 The portal of entry of CyHV-3 in carp analysed by bioluminescence imaging. Two groups of fish (mean weight 10 g) were
infected with a recombinant CyHV-3 strain expressing luciferase as a reporter gene either by bathing them in water containing the virus
(Immersion, left column) or by feeding them with food pellets contaminated with the virus (Oral, right column). At the indicated time
post-infection, six fish per group were analysed by bioluminescence IVIS. Each fish was analysed lying on its right and its left side. To analyze

Oral

plsecfcm™2)sr

Color Bar
Mir = 2, 44ed
Max = 7,16e5

internal signals, fish were euthanized and dissected immediately after in vivo bioluminescence imaging. Dissected fish and isolated organs were
analysed for ex vivo bioluminescence. The analysis of one fish is presented for each time point and inoculation mode. Pictures collected over the
course of this experiment are presented with a standardized minimum and maximum threshold value for photon flux. rba, right branchial arches;
Iba, left branchial arches; ro, right operculum; lo, left operculum; p, pharynx; aw, abdominal wall; i, intestine. Reproduced with permission from

Fournier et al. [57].

[76]. Virus replication in organs such as the gills, skin
and gut represents source of viral excretion into the
water. Recently, pharyngeal periodontal mucosa has
been shown to be the portal of entry of CyHV-3 after in-
fection by the oral route using food pellets contaminated
with the virus [57]. This model of inoculation led to the

spreading of the infection to the various organs tested as
well as resulted in clinical signs and mortality rate com-
parable to the infection by immersion [57].

All members of the family Herpesviridae exhibit 2
distinct phases in their biological cycle: Iytic replication
and latency. While lytic replication is associated with
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Ex vivo tail infection
without mucus removal

Ex vivo tail infection
after mucus removal

EM analysis

IVIS analysis

Figure 6 Effect of skin mucus removal on CyHV-3 binding to carp epidermal cells. Tail fin ventral lobes of carp were mock-treated or
treated by rubbing with a soft tissue paper to remove epidermal mucus. Immediately after skin treatment, tail fin explants were harvested and
inoculated ex vivo with a CyHV-3 recombinant strain expressing luciferase as a reporter gene (10° PFU/mL of culture medium for 2 h). At the end
of the 2 h inoculation period, a fragment of the fin was collected and processed for electron microscopy examination (EM analysis). The arrows
indicate CyHV-3 particles bound to cells or cell debris. Twenty-four hours post-inoculation, duplicate tail explant cultures were analyzed by
bioluminescence imaging (lower panels). Reproduced with permission from Raj et al. [75].

production of viral particles, latency consists in the
maintenance of the viral genome as a nonintegrated epi-
some and the expression of very few viral genes and
microRNAs. Upon reactivation, latency is replaced by
lytic replication. Even if latency has not been demon-
strated conclusively in members of the Alloherpesviridae
family, an increasing number of evidences support the
existence of latent phase. These evidences related to

CyHV-3 can be summarized as follows. (i) CyHV-3
DNA has been detected in the brain of fish that survived
primary infection and showing no clinical signs at 64 dpi
[42], and even 1 year post-infection [77]. (ii)) CyHV-3
persisted in the wild population of common carp for at
least 2 years after initial outbreak [46]. (iii) Finally,
St-Hilaire et al. described, in fish that survived the
primary infection, the induction of CyHV-3 reactivation
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by temperature stress several months after the initial
exposure to the virus [43]. Increased level of viral DNA in
gills without the appearance of disease symptoms has been
detected after stress induced by netting fish that survived
the primary infection and were kept at 20 °C for 81 dpi
[78]. Recent studies demonstrated that virus may become
latent in white blood cells and other tissues, remains
at very low copy numbers and can be reactivated by
temperature stress [76,79,80]. To date, the temperature-
dependent reactivation of the disease which resulted in
mortality of naive cohabitant fish has been described after
transferring the fish maintained at a low temperature to
the higher, permissive temperature [43,79]. These observa-
tions suggest that the temperature of the water could
regulate the switch between latency and lytic replication
and vice versa allowing the virus to persist in the host
population throughout the seasons even when the
temperature is non-permissive.

3.4 Transmission

To date, no evidence of CyHV-3 vertical transmission
has been reported. Horizontal transmission of CyHV-3
occurs either by direct transmission (fish to fish) or vec-
tor based transmissions. Direct transmission can be by
skin to skin contact of infected carp or cyprinid and
non-cyprinid fish species that can carry CyHV-3 asymp-
tomatically [64,68] against naive carp; or by cannibalistic
and necrophagous behaviors of the carp [22,57]. Several
potential vectors could be involved in the vector based
transmission of CyHV-3. Such vectors include fish drop-
pings [81], plankton [82], aquatic invertebrates feeding
by water filtration [54], piscivorous birds which could
transfer the disease by moving sick fish from one pond
to another [83], and finally the water being the major
abiotic vector. Secretion of viral particles into the water
either through shedding or together with sloughed epi-
thelial cells has been documented [59]. Furthermore, the
infectivity of CyHV-3 in water was shown to be con-
served for at least 4 h [58], even if longer period could
be observed depending on water composition (chemical
and microbial) [84]. For example, the infectivity of
CyHV-3 was drastically reduced after 3 days in environ-
mental water, although it remained quite stable for more
than 7 days in sterilized water [84].

3.5 Diagnosis

Various CyHV-3 diagnostic methods have been devel-
oped. They are based on the detection of infectious par-
ticles, viral DNA, transcripts, or antigens. Virus isolation
from infected fish tissues in cell culture was the first
method developed [9,11]. Although cell culture isolation
is not as sensitive as PCR-based methods, it is the only
technique able to detect infectious particles. Recently,
Dong et al. isolated for the first time CyHV-3 virus from
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diseased koi in mainland China using a newly developed
cell line from caudal fin of koi [34]. A complete set of
molecular techniques for detection of viral DNA frag-
ments has been developed, such as DNA hybridization,
PCR, nested PCR, one-tube semi-nested PCR, semi-
quantitative PCR, real-time TagMan PCR, and loop-
mediated isothermal amplification [22]. CyHV-3 genome
can also be detected and quantified in environmental
water by real-time TagMan PCR after viral concentra-
tion [85]. Recently, a mRNA-specific RT-PCR assay for
detection of replicating CyHV-3 in infected fish tissues
and cell cultures has been described [86]. ELISA tests
have been developed to detect specific anti-CyHV-3
antibodies in carp serum [22]. CyHV-3 has been also
detected in tissues and touch imprints of organs from
infected fish by immunohistochemistry and immuno-
fluorescence assays, respectively [59]. Monoclonal anti-
bodies against CyHV-3 ORF68 have been produced.
They were proved to detect specifically CyHV-3 without
cross-reaction against CyHV-1 and CyHV-2 [87]. Finally,
a CyHV-3-detection kit (The FASTest® Koi HV kit) that
allows the detection of CyHV-3 in gill swabs in just 15
min has been developed [88].

3.6 Vaccination

Soon after the identification of CyHV-3 as the causative
agent of koi herepsvirus disease (KHVD), an original
protocol was developed to induce a protective adaptive
immune response in carp [11]. This approach exploited
the fact that CyHV-3 induces fatal infections only when
temperature is between 18 °C and 28 °C. According to
this protocol, healthy fingerlings are exposed to the virus
by cohabitation with sick fish for 3-5 days at permissive
temperature (22 °C-23 °C). After that the fish are trans-
ferred to ponds for 25-30 days at non-permissive water
temperature (=30 °C). Despite its ingenuity, this protocol
has several disadvantages. (i) Fish that are “vaccinated”
with this protocol become latently infected by a virulent
strain and are therefore likely to represent a potential
source of CyHV-3 outbreaks if they later cohabitate with
naive carp. (ii) The increase of water temperature to
non-permissive is costly and correlated with increasing
susceptibility of the fish to secondary infection. (iii) Fi-
nally, after this procedure only 60% of immunized fish
proved to be resistant to a CyHV-3 challenge performed
by cohabitation with infected fish [11].

Attenuated live vaccines appear to be the most appro-
priate for mass vaccination of carp. Live attenuated vac-
cine candidates have been produced by serial passages in
cell culture of a pathogenic strain. A vaccine strain can-
didate was further attenuated by UV irradiation in order
to increase random mutations throughout the genome
[11,89]. Currently, a live attenuated vaccine developed
using this approach has been manufactured by KoVax
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Ltd. (Jerusalem, Israel) and is available for immersion
vaccination of common and koi carp in Israel [90]. Pro-
tection against CyHV-3 is associated with elevation of
specific antibodies against the virus [11,89]. However,
the duration of the protection conferred by the vaccine
has not been established [90]. This vaccine has two
major additional disadvantages: (i) the determinism of
the attenuation is unknown; and consequently, rever-
sions to a pathogenic phenotype cannot be excluded; (ii)
the attenuated strain retains residual virulence that
could be lethal for a portion of the vaccinated fish [91],
particularly for small/young fish.

An inactivated vaccine candidate was also described by
Yasumoto et al. [92]. It consists of formalin-inactivated
CyHV-3 trapped within a liposomal compartment. This
vaccine can be used for oral immunization in fish food.
Protection efficacy for carp was 70% [92].

4. Host-pathogen interactions

4.1 Genetic resistance of carp strains to CyHV-3

Genetic differences in resistance to CyHV-3 have been
described among different carp strains and crossbreeds.
Independent research groups demonstrated that resist-
ance to CyHV-3 can be significantly increased by
crossing of domesticated carp strains with wild carp
strains. Shapira et al. reported that the most resistant
carp crossbreed in their study (60% of survival) was
that between the domesticated carp strain Dor-70 and
the wild carp strain Sassan [93]. In comparison the
survival rate of domesticated carp strains Nasice and
Dor-70 as well as their crossbreed was much lower
(8%, 27% and 17.7%, respectively) [93]. Recently,
Piackova et al. demonstrated that most of Czech
strains and crossbreeds which are genetically related to
wild Amur carp were significantly more resistant to
CyHV-3 infection than strains with no relation to
Amur carp [94]. Carp genetic resistance to CyHV-3
has been investigated using 96 carp families derived
from diallelic crossing of two wild carp strains (Amur
and Duna) and two domesticated Hungarian strains
(Tat and HAKI 15) [95]. This study demonstrated that
crossing with wild carp strains may result in higher re-
sistance to CyHV-3. However, individual parents of the
strains are also important since many of the families
derived from the wild strains did not exhibit signifi-
cantly higher resistance [95]. Recently, resistance to
CyHV-3 has been also linked to the polymorphism of
the MHC class II B genes [56] and carp IL-10 gene
[96]. These findings support the hypothesis that the
outcome of the disease can be controlled in some ex-
tent by genetic factors of the host, and consequently,
that selection of resistant carp breeders is one of po-
tential ways to reduce the negative impact of CyHV-3
on carp aquaculture.
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4.2 Immune response of carp against CyHV-3

Knowledge on the immune mechanisms and immuno-
logical traits that can correlate with disease resistance in
fish as well as on the immune evasion mechanisms
expressed by CyHV-3, is essential for the development
of prophylactic strategies (such as vaccination) as well as
for the development of more resistant strains by the use
of molecular marker assisted selection. The information
related to these topics are summarized in this section.

Perelberg et al. studied the kinetic of anti-CyHV-3
antibody expression in the serum of carp infected at
different temperatures [91]. In fish that were infected
and maintained at 24 °C, antibody titers began to rise at
10 dpi and reached a peak around 20-40 dpi. It was
shown that protection against CyHV-3 is proportional to
the titer of specific antibodies produced during the pri-
mary infection. The level of antibodies decreased in the
absence of antigenic re-exposure. At 280 dpi, the titer of
anti-CyHV-3 antibodies of infected fish was only slightly
higher or comparable to that of unexposed fish. Never-
theless, immunized fish, even those in which antibodies
were no longer detectable were resistant to a lethal chal-
lenge; possibly because of the subsequent rapid response
of B and T memory cells to antigen re-stimulation [91].

Recently, a transcriptomic study uncovered the wide
array of immune-related genes involved in the anti-
CyHV-3 immune response of carp [97]. The response of
two carp lines with different resistance to CyHV-3 has
been studied using DNA microarray and real-time PCR.
Significantly higher expression of several immune-
related genes including number of those which are in-
volved in pathogen recognition, complement activation,
MHC class I-restricted antigen presentation and devel-
opment of adaptive mucosal immunity was noted in
more resistant carp line. Further real-time PCR based
analyses provided evidence for higher activation of CD8"
T cells in the more resistant carp line. Thus, differences
in resistance to CyHV-3 can be correlated with differen-
tially expressed immune-related genes [97].

The anti-CyHV-3 immune response has been studied in
the skin and the intestine of common carp [60,98]. These
studies revealed an up-regulation of pro-inflamatory cyto-
kine IL-1f, the inducible nitric oxide synthase (iNOS) and
activation of interferon class I pathways [60,98]. In skin,
CyHV-3 infection leads to down-regulation of genes en-
coding several important components of the skin-mucosal
barrier, including antimicrobial peptides (beta defensing 1
and 2), mucin 5B, and tight junction proteins (claudin 23
and 30). This probably contributes to changes in the skin
bacterial flora and subsequent development of secondary
bacterial infections [60]. Raj et al. demonstrated that skin
mucus also acts as an innate immune barrier and inhibits
CyHV-3 binding to epidermal cells at least partially by
neutralisation of viral infectivity [75]. In vitro study
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demonstrated that CyHV-3 inhibits activity of stimulated
macrophages and proliferative response of lymphocytes
and that this effect is temperature dependent [99].

4.2.1 Interferon type | response

Interferons (IFNs) are secreted mediators that play essen-
tial roles in the innate immune response against viruses.
In vitro studies demonstrated that CyHV-3 inhibits IFN
type I secretion in CCB cells [100]. Poly I:C stimulation of
CCB cells prior to CyHV-3 infection activated the IFN
type I response and reduced CyHV-3 spreading in the cell
culture [100]. In vivo studies showed that CyHV-3 in-
duced a systemic IFN type I response in carp skin and in-
testine and that the magnitude of IFN type I expression is
correlated with the virus load [60,98].

Recently, Tomé et al. demonstrated that CyHV-3
ORF112 encodes a new Z-domain family protein which
in vitro showed structural and functional properties similar
to the poxvirus E3L inhibitor of interferon response [101].
This suggested that CyHV-3 may use similar mechanisms
to inhibit interferon response as poxviruses. However, the
potential function of ORF112 in virus pathogenesis in vivo
has not been studied yet.

4.2.2 The role of CyHV-3 IL-10 homologue

CyHV-3 ORF134 encodes a viral homologue of cellular
IL-10 [18]. Its expression product is a 179 amino acid pro-
tein [102]. Common carp IL-10 and CyHV-3 IL-10 exhibit
26.9% identity (67.3% similarity) over a 156 amino acid
overlap [103]. Transcriptomic analyses revealed that
ORF134 is expressed as a spliced gene belonging to the
early [37] or early-late class [31]. Proteomic analyses of
CyHV-3 infected cell supernatant demonstrated that
ORF134 expression product is one of the most abundant
proteins of the CyHV-3 secretome [31]. In CyHV-3
infected carp, ORF134 is highly expressed during acute
and reactivation phase, while is expressed on a low level
during low-temperature induced persistent phase [102]. In
vivo study using a zebrafish embryo model suggested that
CyHV-3 ORF134 encodes a functional IL-10 homologue
[102]. Injection of mRNA encoding CyHV-3 IL-10 into
zebrafish embryos increased the number of lysozyme-
positive cells to a similar degree as observed with zebrafish
IL-10 [102]. Moreover, down-regulation of the IL-10 re-
ceptor long chain (IL-10R1) using a specific morpholino
abrogated the increase of the number of lysozyme-positive
cells after co-injection with either CyHV-3 IL-10 mRNA
or zebrafish IL-10 mRNA, indicating that it functions via
the IL-10 receptor [102].

Recently, a CyHV-3 strain deleted for ORF134 and a
derived revertant strain were produced using BAC clon-
ing technologies [31]. The recombinant ORF134 deleted
strain replicated in vitro comparably to the parental and
the revertant strains. Infection of fish by immersion in
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water containing the virus induced comparable mortality
for the three virus genotypes tested (wild type, deleted
and revertant). Quantification of viral DNA by real time
TagMan PCR and analysis of carp cytokines expression by
RT-qPCR at different times post-infection did not reveal
any significant difference between the groups of fish
infected with the three virus genotypes. Moreover, histo-
logical examination of infected fish did not reveal signifi-
cant differences between fish infected with the three
genotypes. Altogether, these results demonstrated that the
IL-10 homologue encoded by CyHV-3 is essential neither
for viral replication in vitro nor for virulence in vivo [31].

5. Conclusions

Since its first description in the late 1990s, CyHV-3 rap-
idly spread to different continents (Europa, Asia, North
America, Africa) causing severe financial losses in the
common carp and koi culture industries worldwide. In
addition to its negative economical and societal impacts,
CyHV-3 has also a negative environmental impact by af-
fecting wild populations of carp. These reasons explain
why CyHV-3 became rapidly a subject for applied sci-
ence and is now listed as a notifiable disease by the OIE.
In addition to its economic importance, recent studies
demonstrated that CyHV-3 is also a very attractive and
original subject of fundamental research: (i) it is phylo-
genetically distant from the vast majority of herpesvi-
ruses that have been studied so far (the latter belong to
the family Herpesviridae), thereby providing an original
field of research. (ii) It can be studied in laboratories by
infection of its natural host (homologous virus-host
model). (iif) The sequence of its genome published re-
cently revealed a fascinating virus with unique properties
in the Herpesvirales, such as an extremely large genome
(295 Kb), a high number of genes which are not hom-
ologous to known viral sequences, and genes that are
normally found exclusively in the Poxviridae [18]. (iv)
Importantly, the CyHV-3 genome revealed several genes
encoding proteins potentially involved in immune evasion
mechanisms. (v) Last but not least, the outcome of CyHV-3
infection is highly dependent on the temperature of the
water in which the carp are maintained.

6. Abbreviations

AngHV-1: Anguillid herpesvirus 1; Au: Goldfish fin cell; BAC: Bacterial artificial
chromosome; CaF-2: Carp fin cell; CCB: Cyprinus carpio brain cell;

CCG: Cyprinus carpio gill cell; CNGV: Carp interstitial nephritis and gill necrosis
virus; CPE: Cytopathic effect; CyHV-1: Cyprinid herpesvirus 1; CyHV-2: Cyprinid
herpesvirus 2; CyHV-3: Cyprinid herpesvirus 3; dUTPase: Deoxyuridine
triphosphate pyrophosphatase; FHM: Fathead minnow cell; iNOS: Inducible
nitric oxide synthase; IFNs: Interferons; IL-1(: Interleukin 13; IL-10: Interleukin
10; KFC: Koi fin cell; KF-1: Koi fin cell; KHV: Koi herpesvirus; KHVD: Koi
herpesvirus disease; LUC: Luciferase; MHC class Il B: Major histocompatibility
complex class Il B; NGF-2 and NGF-3: Epithelial-like cell line from fins of
coloured carp (2 and 3); ORF: Open reading frame; TK: Thymidine kinase;
TNFR: Tumor necrosis factor receptor; Tol/FL: Silver carp fin cell;

VNTR: Variable number of tandem repeats; 2D-LC MS/MS: Two-dimensional
liquid chromatography tandem mass spectrometry.
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