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A global model of avian influenza prediction in
wild birds: the importance of northern regions
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Abstract

Avian influenza virus (AIV) is enzootic to wild birds, which are its natural reservoir. The virus exhibits a large degree
of genetic diversity and most of the isolated strains are of low pathogenicity to poultry. Although AIV is nearly
ubiquitous in wild bird populations, highly pathogenic H5N1 subtypes in poultry have been the focus of most
modeling efforts. To better understand viral ecology of AIV, a predictive model should 1) include wild birds,
2) include all isolated subtypes, and 3) cover the host’s natural range, unbounded by artificial country borders.
As of this writing, there are few large-scale predictive models of AIV in wild birds. We used the Random Forests
algorithm, an ensemble data-mining machine-learning method, to develop a global-scale predictive map of AIV,
identify important predictors, and describe the environmental niche of AIV in wild bird populations. The model has
an accuracy of 0.79 and identified northern areas as having the highest relative predicted risk of outbreak. The
primary niche was described as regions of low annual rainfall and low temperatures. This study is the first global-
scale model of low-pathogenicity avian influenza in wild birds and underscores the importance of largely unstudied
northern regions in the persistence of AIV.
Introduction
The influenza viruses that caused the four deadliest hu-
man pandemics of the past century (1918, 1957, 1968,
2009) contained gene segments from avian influenza ac-
quired through recent reassortment events (reviewed in
[1]). Influenza is thought to have originated in wild
birds, and waterfowl are considered the primary reser-
voir. Avian influenza virus (AIV) most commonly infects
Anseriformes, Passeriformes, and Charadriiformes in wild
populations, particularly family Anatidae [2]. The Asian
strains of the highly pathogenic H5N1 AIV subtype in
poultry have received the most attention because of eco-
nomic losses caused by this subtype, the virus’s transmis-
sibility from chicken to human [3,4], and fears over a
new human influenza pandemic [5]. However, HPAI
H5N1 is not the only strain with pandemic potential:
cases of human infection with interspecies H7 and H9
subtypes have been reported [6,7] and others, such as
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H6, can be highly pathogenic to poultry. The vast majo-
rity of influenza strains are of low pathogenicity to
poultry, but because AIV is a virus of great diversity with
the potential for rapid evolution [8], the full range of its
variation should be considered rather than just focusing
on a single strain or subtype. A massive reservoir of ge-
netic diversity for potential reassortment of AIV exists
in wild bird populations, from which nearly all combina-
tions of hemagglutinin (H) and neuraminidase (N) sub-
types have been isolated [9-11].
A number of ongoing surveillance projects record the

subtypes of AIV isolated from wild birds [9,10,12,13].
Large cooperative databases, such as the Influenza Re-
search Database (IRD), curate the surveillance efforts of
multiple institutions. IRD provides an opportunity to
apply predictive modeling to AIV on a global scale. In
the prediction and risk assessment of infectious diseases,
geographic information systems (GIS) and predictive
modeling techniques are important tools [14]. Predictive
models of Chagas disease [15], malaria [16], leishmania-
sis [17], and Lyme disease [18] have been used to map
disease prevalence and identify important factors con-
tributing to risk. Several models have assessed risk fac-
tors for H5N1 in domestic poultry and produced high
resolution models for India [19], Vietnam [20], and
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China [21]. One predictive map of multiple species of
wild birds and subtypes of AIV was developed for the
continental United States [22], and one for flyways adja-
cent to the Pacific Rim [23].
As of this writing, there are no global-scale predictions

of LPAI in wild birds. The development of a global
model could be an important tool in the management
and risk assessment of AIV in the interest of public and
animal health. Our model extends the value of AIV sur-
veillance efforts by using the data for predictive pur-
poses, not simply for descriptive purposes. In addition, a
global model encompasses the distribution range of im-
portant reservoir species, many of which travel vast dis-
tances [24] in cross-continental migratory journeys to
and from breeding grounds each year. We used ensem-
ble data-mining machine-learning methods to 1) identify
important predictor variables, 2) quantitatively describe
the environmental niche of AIV in wild bird populations,
and 3) develop a near-global-scale predictive map (ex-
cluding Antarctica) of AIV based on this described
niche.

Materials and methods
Wild bird data
Sample data points of AIV-negative and AIV-positive
data for wild birds were obtained from the Influenza Re-
search Database online [25]. This dataset spans five years
(2005–2010) of surveillance data providing geo-
referenced collection coordinates for each sample, spe-
cies name, AIV-positive or –negative status (determined
by the collecting institution), viral subtype (where avail-
able), and many other collection specifics. We did not
distinguish between high- and low-pathogenicity AIV
strains in our dataset. We groomed the database to re-
move samples from domestic species and samples from
unidentified species (listed as “Unknown”). In addition,
this version of the database contained many instances
where the latitude and longitude values were inverted;
we examined each point for a match between GPS coor-
dinates and collection location, and corrected it if the
error was obvious or removed it if uncertainty remained.
We randomly divided the data points into two pools for
training the model (47 898 points) and testing the model
(12 080 points) using MS Excel and imported both sets
as point layers into ArcMap v.10.0 (Esri, Redlands USA).

Environmental variable layers
Forty-one predictor variable layers for ArcGIS were ac-
quired from open source projects and included biocli-
matic, geographic, and anthropogenic variables
(Table 1). The extent of this model is bounded by these
data layers, which exclude Antarctica. Bioclimatic vari-
ables included mean temperature for each month, for
quarters (e.g. wettest quarter), and annual means for
precipitation and temperature. A number of time-
dependent variables were included (i.e. mean tempe-
rature in January - December) and were manipulated in
order to maintain their relevance to collection locations
in the Southern Hemisphere. For points with negative
latitude values, time-dependent variables were shifted by
6 months, such that months were correctly associated
with the austral seasons. Geographic variables included
elevation, which has been identified as an important fac-
tor in other AIV models [19], and lakes, rivers, and wet-
lands, which are important to waterfowl. We calculated
some layers from existing predictor variables using the
Spatial Analyst Tool in ArcMap. The distances from
fresh water features and coastline were calculated using
the Euclidean Distance Tool. Slope was calculated from
elevation and aspect was in turn calculated from slope.
Anthropogenic variables included indices of human ma-
nipulation, infrastructure, and population density. Due
to the importance of chickens and pigs in the transmis-
sion of AIV to humans, we included predicted poultry
and pig densities [26,27]. Not all layers included Antarc-
tica, so the entire continent was excluded from the study
area (layers trimmed at −57° latitude) to prevent biases
in calculation. We then used the Geospatial Modeling
Environment (GME; [28]) to intersect, or extract the
values of the predictor variables at the same geographic
coordinates as the sample data points. GME adds the
values of each predictor variable to the database as an
additional column. The intersected database is then
imported into ArcMap for visualization. Layers and
metadata are stored at and can be obtained from the
Ecological Wildlife Habitat Analysis of the Land- and
Seascape (EWHALE) Lab at the University of Alaska
Fairbanks (UAF).

Defining the outbreak niche
We used the Random Forests algorithm [34], an ensem-
ble data-mining machine-learning method, to identify
the variables that best predicted the AIV-positive niche.
We chose this particular algorithm because it is a
powerful method of data-mining that performs with
equal or superior accuracy to other algorithms (such as
TreeNet, MARS, and Regression Tree Analysis) when
used in ecological prediction [35,36]. Random Forests is
relatively immune to overfitting and noise [34], which is
a valuable feature when many similar predictor variables
are incorporated. In addition, Random Forests ranks
predictor variables by their contribution to model accu-
racy and the Variable Importance Scores (VIS) are nor-
malized to the highest scoring variable. Using the pool
of training data, we ran the Random Forests analysis
method for classification trees in Salford Predictive
Miner (Salford Systems, San Diego USA) with the fol-
lowing settings: class weights were balanced to up-



Table 1 The predictor variables used by the Random Forests algorithm to create a global prediction map for avian
influenza virus in wild birds.

Predictor variable Details VIS Project source

Annual precipitation (mm) In mm; 30 arc-seconds, 1 km spatial resolution 100.0 WorldClim [29]

Mean temperature, June (°C) In °C; 30 arc-seconds, 1 km spatial resolution 85.2 WorldClim

Mean temperature, April (°C) In °C; 30 arc-seconds, 1 km spatial resolution 76.1 WorldClim

Precipitation of driest quarter (mm) In mm; 30 arc-seconds, 1 km spatial resolution 68.4 WorldClim

Mean temperature, November (°C) In °C; 30 arc-seconds, 1 km spatial resolution 64.9 WorldClim

Precipitation seasonality In mm; 30 arc-seconds, 1 km spatial resolution 63.1 WorldClim

Mean temperature of driest quarter (°C) In °C; 30 arc-seconds, 1 km spatial resolution 62.5 WorldClim

Annual mean temperature (°C) In °C; 30 arc-seconds, 1 km spatial resolution 54.8 WorldClim

Mean temperature, February (°C) In °C; 30 arc-seconds, 1 km spatial resolution 49.7 WorldClim

Mean temperature, January (°C) In °C; 30 arc-seconds, 1 km spatial resolution 45.7 WorldClim

Temperature seasonality Standard deviation × 100 45.0 WorldClim

Precipitation of wettest quarter (mm) In mm; 30 arc-seconds, 1 km spatial resolution 42.9 WorldClim

Mean temperature, December (°C) In °C; 30 arc-seconds, 1 km spatial resolution 38.6 WorldClim

Maximum temperature of warmest
month (°C)

In °C; 30 arc-seconds, 1 km spatial resolution 38.0 WorldClim

Precipitation of driest month (mm) In mm; 30 arc-seconds, 1 km spatial resolution 37.5 WorldClim

Mean temperature, October (°C) In °C; 30 arc-seconds, 1 km spatial resolution 36.1 WorldClim

Mean temperature, September (°C) In °C; 30 arc-seconds, 1 km spatial resolution 32.6 WorldClim

Precipitation of coldest quarter (mm) In mm; 30 arc-seconds, 1 km spatial resolution 32.3 WorldClim

Population density (persons/km2) Population density for 2010, 2.5’ resolution, persons/km2 29.3 Gridded Popn of the World, v.3 [30]

Mean temperature of coldest
quarter (°C)

In °C; 30 arc-seconds, 1 km spatial resolution 28.4 WorldClim

Mean temperature, July (°C) In °C; 30 arc-seconds, 1 km spatial resolution 28.3 WorldClim

Isothermality (°C) (Mean Diurnal Range/Temperature Annual Range);
In °C; 30 arc-seconds, 1 km spatial resolution

26.6 WorldClim

Mean temperature of wettest
quarter (°C)

In °C; 30 arc-seconds, 1 km spatial resolution 25.2 WorldClim

Mean diurnal range (°C) In °C, (mean of monthly temperature(max – min)) 24.3 WorldClim

Mean temperature, August (°C) In °C; 30 arc-seconds, 1 km spatial resolution 22.7 WorldClim

Mean temperature, March (°C) In °C; 30 arc-seconds, 1 km spatial resolution 21.0 WorldClim

Temperature annual range (°C) In °C; 30 arc-seconds, 1 km spatial resolution 18.4 WorldClim

Elevation (m) In m; 30 arc-seconds, 1 km spatial resolution 18.3 WorldClim

Predicted pig density (per km2) Animal density/km2; 3 min of arc 18.0 Gridded livestock of the world [31]

Mean temperature of warmest
quarter (°C)

In °C; 30 arc-seconds, 1 km spatial resolution 17.0 WorldClim

Precipitation of wettest month (mm) In mm; 30 arc-seconds, 1 km spatial resolution 15.0 WorldClim

Distance from coast (m) Calculated from coastline 12.6 Esri

Precipitation of warmest quarter
(mm)

In mm; 30 arc-seconds, 1 km spatial resolution 12.1 WorldClim

Minimum temperature of coldest
month (°C)

In °C; 30 arc-seconds, 1 km spatial resolution 11.2 WorldClim

Human footprint index Percentage of relative human influence (0–100) 10.4 Last of the Wild [32]

Distance from rivers, lakes, or wetlands Calculated from combined large and small lake polygons,
nd lakes and wetlands grid

9.7 Global Lakes and Wetlands
Database [33]

Slope Calculated from elevation 9.0 Esri

Human influence index Summative index of human disturbance (0–72) 8.8 Last of the Wild [32]
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Table 1 The predictor variables used by the Random Forests algorithm to create a global prediction map for avian
influenza virus in wild birds. (Continued)

Predicted poultry density (per km2) Animal density/km2; 3 min of arc 7.9 Gridded livestock of the world [31]

Aspect positive degrees from 0 to 359.9, measured clockwise from north;
calculated from slope

6.7 Esri

Mean temperature, May (°C) In °C; 30 arc-seconds, 1 km spatial resolution 5.4 WorldClim

Variables are listed in order of their Variable Importance Score (VIS) or relative contribution to model accuracy as calculated by Random Forests.
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weight the smaller number of AIV-positive samples
against AIV-negative samples; the number of trees was
set to 500; and seven predictors were used at each
node [34].
The top five variables with the highest VIS were

chosen for further examination. To compare the number
of AIV-positive and -negative samples taken across each
variable’s range of values we plotted density using
Spotfire S+ (TIBCO, v.8.2, Palo Alto USA). The ranges
within which peaks occur suggest underlying mecha-
nisms, which may be driving AIV outbreaks. Partial de-
pendence plots were produced using the “partialPlot()”
command in the RandomForest package [37] in R sta-
tistical programming language [38]. Partial dependence
can be thought of as an index summarizing the quan-
tified relationship of a predictor with the response
variable after averaging the noise of non-relevant pre-
dictors [39]. Partial dependence plots can be useful in
illustrating general trends in model accuracy’s depen-
dence on predictors. The partial dependence of a
variable’s effect is best understood by examining gen-
eral patterns in relation to the values of the predictor
variable rather than the specific values of partial
dependence.
As a negative control, we calculated AUC for the

AIV-positive status of the training subset against three
individual predictors: the predictor with the highest
importance score, the lowest importance score, and
Annual Mean Temperature. We examined partial de-
pendence plots for the general relationship between
the range of predictor values and AIV-positivity (e.g.
Figure 1a for Annual Precipitation). Predictor values
for each point in the subset of training data were nor-
malized between 0 and 1. If the relationship was nega-
tive, then the values were inverted such that low
values of the variable predicted high occurrence. All
three sets of normalized values were then subjected to
AUC calculations.

Predictive map
To predict the relative occurrence of AIV in unsampled
areas, we applied the model to a lattice of points spaced
100 km apart and calculated a predicted value for each
point. Random Forests expresses the predicted occur-
rence of AIV as a Relative Occurrence Index (ROI)
rather than a probability score [40]. In ArcMap, we ap-
plied the Inverse Distance Weighted Tool (IDW) to
interpolate these ROI values between the points, and
generated a map of predicted AIV outbreak locations.
The final map was projected as Robinson (sphere) with
the central meridian at 145° so that Africa and Europe
are displayed intact.
To evaluate the performance of the model, we calcu-

lated the Receiver Operating Characteristic (ROC)
curve by plotting true positive points (AIV-positive sta-
tus) against false positives with the program
ROC_AUC [41]. A ROC value of 0.5 means a model
accuracy of 50% in predicting positives and is no bet-
ter than the random assignment of positive or negative
status. A ROC value of 1.0 shows the model accurately
classified 100% of points. If the area under the
resulting curve (AUC) exceeds the critical value of 0.7,
the model has high predictive power [42]. To evaluate
accuracy, the model was applied to the pool of testing
points. A ROC curve was calculated for these points
using their predicted ROI value against their experi-
mental AIV-positive status.

Results
Important predictor variables
Annual precipitation, mean temperature in June, and
mean temperature in April were the most important
predictor variables with VIS of 100, 85.2, and 76.1, re-
spectively. Predictor variables with VIS above 50 were
split almost equally between precipitation measurements
and the mean temperatures in November, the driest
quarter (3 month period), and annual mean temperature
(Table 1). In the density plots (Figure 1a-e) the relative
frequency of sampling was approximated by the dens-
ity of the AIV-negative group of samples (represented
by the solid black line); the range of values over which
sampling occurred was inferred from the AIV-negative
group. In general, the lack of perfect correspondence
between AIV-positive (dotted red line) and AI–negative
groups showed that there were unequal densities of
AIV-positivity across the sampling range. Thus AIV-
positive samples did not occur at the same relative
frequency as sampling effort. The ranges where the
density of AIV-positive samples exceeded those of
AIV-negative samples imply conditions correlated with



Figure 1 Density plots for important variables. Density plots for the variables with the five highest variable importance scores as calculated
by Random Forests in the accuracy of the predictive model of avian influenza in wild birds (A-E). The density, or the likelihood of a variable to
take on a value, of AIV-positive samples for each variable is represented by red dotted lines, the AIV-negative by black solid lines.

Herrick et al. Veterinary Research 2013, 44:42 Page 5 of 9
http://www.veterinaryresearch.org/content/44/1/42
AIV-positivity. In the case of annual precipitation
(Figure 1a), moderate (1400 mm) and very low
(~0 mm) values were correlated with AIV-positivity.
The partial dependence of AIV-positivity on annual
precipitation exhibited a similar trend: very high de-
pendence at 0 mm, a trough, and then moderately
high dependence at values over 1000 mm (Figure 2a).
These patterns imply that areas of low annual precipi-
tation are most correlated with AIV-positivity, although
areas of relatively high annual precipitation show some
correlation as well. Areas of very low and high mean
temperatures in June and April were correlated with
AIV-positivity (Figures 1b,c), while areas of moderate
temperature were not. June and April displayed similar
patterns with a strong peak at the high range of sam-
pling (~28°C and 30°C, respectively) and at the lowest
ranges (~10°C and 0°C, respectively). Examination of
partial dependence revealed that AIV-positivity was
high at the lowest temperatures, dropped sharply at
moderate temperatures, and gradually increased at the
higher end of the range (Figures 2b,c). Thus areas with
low temperatures in June and April were correlated
with AIV-positive samples. Precipitation of the driest
quarter displayed one peak at 50 mm where AIV-
positives had a higher density than AIV-negatives
(Figure 1d). However, while the partial dependence
was high at this value, it appears as a lone spike in
an area of low partial dependence. Partial dependence
on precipitation increases above 150 mm and reaches
high levels above 250 mm (Figure 2d). While the
highest density of AIV-positives occurred at relatively
low annual precipitation, partial dependence was



Figure 2 Partial dependence plots for important variables. Partial dependence plots for the variables with the five highest variable
importance scores as calculated by Random Forests in the accuracy of the predictive model of avian influenza in wild birds (A-E). Plots show the
partial dependence of a high Relative Occurrence Index value for avian influenza on each predictor variable.
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highest at the highest range during the driest quarter,
which may reflect a low seasonality or variation in
rainfall during the year. Mean temperature in Novem-
ber was correlated with AIV-positivity at low and
high values (Figures 1e and 2e). Highest partial de-
pendence occurred at the lowest ranges (< −20°C).
Based on the important predictor variables, the niche of
AIV-positive samples in this study was described as re-
gions of low annual rainfall and low temperatures.
There appears to be a secondary niche that described
regions of high precipitation and higher temperatures.

Ecological niche model
Random Forests produced a robust ecological niche
model for AIV in wild birds and identified important
predictor variables. The model had an ROC/AUC of
0.79 on the training points and 0.76 on the testing
points, lending high confidence to its prediction of the
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relative occurrence of AIV in wild birds on a global
scale. The negative control test was performed by calcu-
lating AUC for the training subset against Annual Pre-
cipitation (the highest scoring predictor, AUC = 0.59),
Mean Temperature in May (the lowest scoring predictor,
AUC = 0.47), and Annual Mean Temperature (AUC =
0.47). Although Annual Precipitation received a higher
AUC value than the other predictors, this AUC still did
not reach the acceptability threshold of 0.7, demonstrat-
ing that individual variables were poor predictors of
AIV. Northern areas had the highest values of Relative
Occurrence Index and temperate regions had the lowest
(Figure 3). Interestingly, an equatorial band of relatively
high predicted occurrence was observed, which may re-
flect regions characterized by the secondary niche.
Discussion
While much of AIV modeling has focused on low-
latitude regions and HPAI H5N1, we demonstrated that
northern regions are important when all strains of AIV
and wild reservoir species are taken into account. By cre-
ating a global-scale model, we identified important areas of
high predicted occurrence that were missed by AIV models
for temperate and sub-tropical regions. Small, local models
are vital developing strategies for managing acute outbreaks
Figure 3 Global map of the predicted relative occurrence of avian inf
constructed using the Random Forests algorithm on 41 predictor variables
training databases. Locations where one or more AIV-positive samples wer
samples were collected are marked with white. A single dot may represent
Robinson (sphere) projection, central meridian 145°.
of specific diseases. However, a global scale perspective is
necessary for AIV because, unlike other diseases, is carried
by a host that is capable of migrating long distances and
potentially infecting others along its path. Furthermore, a
model that excludes wild birds, which are the natural reser-
voir for the virus, neglects the source of gene segments for
future infections and potential pandemic strains.
Our model represents the first global-scale predictive

map of AIV in wild birds. Using available global AIV
data, we identified northern areas as having the highest
relative predicted risk of outbreak. Important predictor
variables included low temperatures and low annual pre-
cipitation. Cold winters and low rainfall may represent con-
tinental climates at high latitudes. Areas with these types of
climatic conditions include landscapes in Siberia, the Rus-
sian Far East, Mongolia, and northern Canada, all of which
had high indices of relative occurrence of AIV. Similar con-
ditions at lower latitudes may be created by high elevation,
such as the climate of the Tibetan Plateau, which also had a
high score. The partial dependence of AIV-positivity on
rainfall was bimodal and peaked at very low and high values.
This apparently contradictory finding that extremes in rain-
fall were correlated with AIV-positivity may be explained
through laboratory studies of transmission and persistence
of the virus. Aerial, non-contact transmission of influenza
between guinea pigs was most efficient below 35% relative
luenza virus (AIV) in wild birds. The predictive model was
. The dots on the map represent all samples in both the testing and
e collected are shown as black dots; locations where no positive
multiple samples taken at that location. This map is presented in
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humidity [43]; thus, we expect dry climate to be condu-
cive to the aerial spread of virus. At low relative humidity
and temperature (~6°C, < 46% rh), virus persisted over
two weeks on metal, glass, and in soil [44]. Wet condi-
tions and low temperatures were also conducive to viral
persistence: the virus remains viable nearly ten times longer
in 17°C water than 28°C water [45]. At low temperatures
and high relative humidity (~7°C, ~88% rh), the virus
persisted over two weeks in chicken feces [44]. Low
temperature is the common factor in these studies. While
low relative humidity contributes to transmission and per-
sistence on smooth surfaces, the virus also remains viable
in water and damp materials such as bird feces. As the virus
is transmitted efficiently in water, either through the fecal-
oral route [46] or via tracheal shedding [47], dabbling ducks
(such as Anatidae) in cool northern regions may be at in-
creased risk of contracting AIV from the environment.
Our findings differed from other AIV models in the

importance and range of anthropogenic variables. In our
model, anthropogenic factors were represented by hu-
man population density as well as the Human Influence
Index and the Human Footprint Index [32], which are
indices calculated based on human population density,
land transformation, transportation infrastructure, and
electrical power infrastructure. All the anthropogenic
variables received very low VIS with human population
density scoring the highest at 29.3. Previous models
identified high human population density and high farm-
ing intensity (especially rice cropping and aquaculture)
as important predictors [19,20,48]. The niche they de-
scribed is characterized as having a high human popula-
tion, high level of anthropogenic disturbance, and the
high annual temperature and humidity of the sub-
tropical climates for which the models were designed
(i.e. Bangladesh, Vietnam, and Thailand). However, these
studies were specific to HPAI H5N1 in poultry. While
the one North American model in wild birds identified
low minimum temperatures, with which our model was
consistent, they also identified the amount of cropland as
an important factor [22]. In general, our model did not
predict high occurrence of AIV in the continental United
States when compared to northern regions, which have
not been modeled previously.
Our model demonstrated a novel use of surveillance

data that goes beyond the yearly reporting of infected
species and viral subtypes isolated. The application of
environmental data, GIS, and machine-learning extends
the usefulness of surveillance results. However, the pre-
diction of relative occurrence presented here is not a
final, definitive map of avian influenza in wild birds, but
rather an initial attempt that demonstrates that a useful
signal can be gleaned from the noise found in a global
dataset. Indeed, it serves to highlight shortcomings in
available data. In particular, nearly all data were collected
in the Northern Hemisphere. In addition, this Northern
Hemispheric niche could then be tested on southward-
migrating birds to see if the same predictions are appli-
cable. A predominance of Anatidae could create a spatial
bias for northern regions and a temporal bias for summer
months if most sampling is carried out during summer
breeding season at high latitudes. However, if one uses the
mean temperature in November as a proxy for latitude,
there appears instead to be a strong temperate bias in col-
lection with AIV-positive peaks occurring to either side.
The bifurcate niche evident here is an interesting topic for
future analysis. The mechanisms responsible for this niche
require further investigation in order to clarify how the im-
portant bioclimatic variables contribute to AIV-positivity.
While ongoing surveillance is important to under-

standing the dynamics of AIV, efforts should include wil-
derness areas, such as Siberia, that have received less
attention. Models such as this one could receive add-
itional fine-tuning if these results were to guide future
sampling efforts in regions of high predicted occurrence,
much of which remains unsampled. As both AIV-
positive and AIV-negative data are incorporated into this
model, all results from prediction-guided sampling
strengthen the prediction, even if only a small percent-
age of AIV-positive samples are isolated. Given the sheer
quantity of data collected by long term surveillance ef-
forts, an unprecedented opportunity exists to produce
future models of greater accuracy. If data were curated
and publically available, models could be treated as
transparent, replicable science experiments. Improved
global scale models could not only increase the under-
standing of viral ecology, but also serve to guide the
management of influenza risk policy for the benefit of
public health on a global scale. A global model of AIV
must be a collaborative effort and we hope this initial
attempt encourages greater cooperation and data-sharing
among members of the AIV research community.
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