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Abstract

Mastitis, the inflammation of mammary glands resulting from bacterial infection, disrupts milk production in
lactating mammary glands. In this study, we injected lipopolysaccharide (LPS), one of the endotoxins from
Escherichia coli into mouse mammary glands to disrupt milk production, and we investigated the influence of LPS
on nutrient uptake, synthesis, and secretion processes for milk component production in alveolar epithelial cells
(AEC). The expression of genes relevant to the three-staged milk component production process (nutrient uptake,
synthesis, and secretion of milk components) were down-regulated within 12 h after LPS injection in AEC. The
internalization of glucose transporter 1 (GLUT-1) from the basolateral membrane to the cytoplasm occurred in
accordance with the down-regulation of gene expression 3 h after LPS injection. The abnormal localization of
adipophilin and beta-casein was also observed in the LPS-injected mammary glands. SLC7AT, an amino acid
transporter, was up-regulated 3 and 6 h after LPS injection. Furthermore, the inactivation of signal transducer and
activator of transcription 5 (STAT5) and the activation of STAT3 and nuclear factor-kappa B (NFkappaB) occurred 3 h
after LPS injection. These results indicate that the nutrient uptake, synthesis, and secretion of milk components in
AEC are rapidly shut down in the lactating mammary glands after LPS injection.

Introduction

Mammary glands supply milk as the sole nutrient source
for suckling pups and maintain galactopoiesis during lac-
tation. The milk contains abundant nutritive compo-
nents such as caseins, lactose, and lipids. Such milk
components are produced by the mammary alveolar epi-
thelial cells (AEC). AEC take up nutrients from the
blood stream as raw materials and synthesize several
milk components in the subcellular organelles. Synthe-
sized components are directionally secreted into the al-
veolar lumen through the apical membrane of AEC.
Thus, AEC carry out milk component production
through a three-staged process: nutrient uptake, synthe-
sis, and secretion of milk components during lactation.
However, mastitis, the inflammation of mammary glands
resulting from bacterial infection, disrupts normal milk
secretion from AEC [1]. Milk is the indispensable nutri-
ent source for suckling offspring in mammals, and
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mastitis is the most costly common disease in the dairy
industry. Therefore, it is important to know how in-
fected bacteria inhibit milk component production
through a three-staged process in AEC in mastitis.

At the first stage of milk component production, AEC
take up glucose, glycerol, fatty acids, and amino acids as
raw materials for milk component synthesis from the
blood capillary network, which closely surrounds mam-
mary alveoli [2]. To take up the enormous amount of
raw materials, several types of transporters and channels
exist in the basolateral membranes of AEC. Aquaporin 3
(AQP3) is a water and glycerol channel and localizes in
the basolateral membrane of secretory AEC [3]. Glucose
transporter 1 (GLUT-1) also exists in the basolateral
membrane of ACE in lactating mammary glands [4].
The fatty acid transporter (solute carrier family 27,
SLC27A) enhances the uptake of long-chain fatty acids
into cells [5,6]. Neutral amino acid transporter 1
(ASCT1) and cationic amino acid transporter (CAT)-1,
which are proteins encoded by the SLC1A4 and SLC7A1
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genes, respectively, are expressed in porcine mammary
glands during lactation [7].

At the second stage of milk component production, AEC
synthesize milk components from raw materials. Milk-
specific proteins such as caseins and whey acidic protein
(WAP) are synthesized from amino acids stimulated by
hormonal regulation via Signal Transducer and Activator
of Transcription 5 (STAT5) activation during late preg-
nancy [8-11]. AEC also initiate the synthesis of lactose at
the Golgi around the time of parturition [12]. Alpha-
lactalbumin modifies the substrate specificity of UDP-
glucosyltransferase and leads to the synthesis of lactose
from glucose and UDP-galactose [13]. Triglycerides, the
major lipid component of milk, are synthesized from glu-
cose, glycerol, and fatty acids in or on the surface of the
rough endoplasmic reticulum and are released into the
cytoplasm as small cytoplasmic lipid droplets (CLD) [14].
The sterol regulatory element binding protein 1 (SREBP1)
is a critical regulator of mammary secretory activation with
regard to lipid biosynthesis [15,16]. Fatty acid binding pro-
tein 3 (FABP3) has also been reported to contribute to lipid
biosynthesis by facilitating the intracellular transport of
fatty acids [17]. These reports suggest that proteins, lactose,
and lipids require gene expression relevant to their synthe-
sis pathway in addition to raw materials.

At the final stage of milk component production, milk
components are transferred to the apical membrane of
AEC and are released into the alveolar lumen through
specific intracellular pathways [18]. Caseins and lactose
are released by exocytosis from the Golgi as secretory
vesicles. Soluble N-ethylmaleimide-sensitive factor at-
tachment protein receptor (SNARE) proteins regulate
intracellular trafficking and exocytosis of secretory vesi-
cles through the plasma membrane [19,20]. Specific
SNARE proteins are predominantly arranged in distinct
subcellular compartments and contribute to distinct
trafficking pathways [21,22]. In lactating mammary
glands, several SNARE proteins have been reported to
be expressed in AEC, and SNAP-23, syntaxin-6, -7,
and -12, as well as VAMP-4 and -8 have been suggested
as candidate SNARE proteins involved in milk secretion
in AEC [23]. Small CLD, which are synthesized in the
rough endoplasmic reticulum, are released into the cyto-
plasm with a surface coat of proteins and polar lipids
[24]. Small CLD fuse with each other and form larger
CLD when being trafficked to the apical membrane [25].
Adipophilin has been identified as a major protein coat-
ing CLD and milk lipid globules (MLG), and the in-
crease in the expression of adipophilin is correlated with
the accumulation of CLD in AEC [15,26]. Adipophilin
has also been suggested to function as an adaptor linking
CLD to elements of the apical plasma membrane to fa-
cilitate their secretion with SNARE proteins [24,25,27].
Lipids exist in milk as MLG, which is a unique
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membrane-bound structure released in an apocrine fash-
ion [28]. These reports suggest that some of the SNARE
proteins and adipophilin are closely related with the exo-
cytosis of secretory vesicles and the apocrine secretion
of CLD.

AEC maintain nutrient uptake, synthesis, and secre-
tion of milk components during lactation [29]. The nor-
mal milk production in lactating mammary glands is
disrupted by mastitis, the inflaimmation of mammary
glands resulting from bacterial infection [30,31]. How-
ever, it remains unclear how and when the three-staged
milk component production process is inhibited in
mastitis. In this study, we injected lipopolysaccharide
(LPS), one of the endotoxins from Escherichia coli into
mouse mammary glands to disrupt milk production
because intramammary administration of LPS is a well-
established method for experimental induction of mas-
titis under defined conditions to study the immune
response of the mammary gland in cows [32-34]. AEC
directly bind to LPS via the LPS-specific receptor, Toll-
like receptor 4 [31,35]. We have previously reported that
the rapid induction of apoptosis in AEC occurs immedi-
ately after LPS injection [36]. LPS weakens the milk-
blood barrier by modulating claudins in AEC within 3 h
after LPS treatment [37]. Thus, LPS adversely affects lac-
tating AEC shortly after injection. Therefore, we investi-
gated how and when AEC shut down galactopoiesis after
LPS injection.

Materials and methods

Animals

Pregnant ICR mice were purchased from Japan SLC,
Inc. (Shizuoka, Japan). After parturition, the lactating
mice were kept with the suckling neonatal pups. LPS
originating from E. coli 0111:B4 was solubilized in
05 mM CaCl, and 05 mM MgCl,-containing
phosphate-buffered saline (mPBS). LPS (20 pg) was
injected into the fourth inguinal mammary gland via the
teat canal without injury on day 10 of lactation under
anesthesia with pentobarbital. Three, 6, or 12 h after
LPS injection, the mice were decapitated, and the mam-
mary glands were dissected. In addition, mice were re-
moved from pups 30 min before dissection. In each of
the experiments, the dissected mammary glands were
washed with mPBS and then used immediately. In this
study, we used non-treated mammary glands from non-
treated mice as the control (0 h of LPS injection) be-
cause vehicle (mPBS)-injected mammary glands did not
show any differences from mammary glands of mice
without injection treatment [36,37]. All experimental
procedures in this study were approved by the Animal
Resource Committee of Hokkaido University and were
conducted in accordance with the Hokkaido University
guidelines for the care and use of laboratory animals.
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Materials

LPS was purchased from Sigma-Aldrich (St. Louis, MO).
The following antibodies were used as primary
antibodies for immunological studies: rabbit poly-
clonal antibodies against AQP3 (Alpha Diagnostic, San
Antonio, TX), GLUT-1 (Millipore, Billerica, MA, USA),
nuclear factor-kappa B (NFkB, Cell Signaling Technol-
ogy, Danvers, MA, USA), phosphorylated-NF«B (Ser536,
Cell Signaling), STAT3 (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), phosphorylated-STAT3 (pSTATS3,
Tyr705, Cell Signaling), STAT5 (Cell Signaling),
phosphorylated-STAT5 (pSTATS5, Tyr694, Cell Signal-
ing), mouse monoclonal antibody against pan-keratin
(Sigma-Aldrich), rat monoclonal antibody against
CD11b (BioLegend, San Diego, CA, USA), goat poly-
clonal antibody against [B-casein (Santa Cruz), and
guinea pig polyclonal antibody against adipophilin
(Cell Signaling). Secondary Alexa Fluor 488-conjugated
goat anti-rabbit, anti-guinea pig, Alexa Fluor 546-
conjugated goat anti-mouse, anti-rat, and Alexa Fluor
546-conjugated donkey anti-goat antibodies were pur-
chased from Invitrogen/Molecular Probes (Eugene, OR,
USA). The secondary horseradish peroxidase-conjugated
anti-mouse, anti-rabbit, and anti-goat antibodies for west-
ern blotting analysis were purchased from Sigma-Aldrich.
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Quantitative real-time polymerase chain reaction

For quantitative real-time polymerase chain reaction
(PCR), total RNA from the mammary glands was ex-
tracted using an RNeasy’ Mini Kit (Qiagen, Valencia,
CA, USA) according to the manufacturer’s instructions.
Reverse transcription was performed using Rever-
TraAce® qPCR RT Master Mix (Toyobo, Osaka, Japan).
Quantitative real-time PCR was performed in a Light
Cycler” 480 (Roche Applied Science, Indianapolis, IN,
USA) using the THUNDERBIRD® SYBR® qPCR Mix
(Toyobo). The following outlines the amplification pro-
gram: 95 °C for 1 min followed by 40 cycles at 95 °C for
15 s and 58 °C for 1 min. The information about primers
is listed in Table 1. Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) was used as an internal control.

Immunofluorescence staining

For immunofluorescence staining of paraffin sections
(AQP3, pan-keratin, B-casein, adipophilin, and pSTAT?3),
the mammary glands were fixed with 4% formaldehyde
in PBS, pH 7.4, for 1 day at 4 °C and embedded in paraf-
fin. The embedded samples were sliced into 5-um sec-
tions, and the sections were deparaffinized and hydrated.
The sections were then immersed in antigen retrieval
buffer (10 mM Tris and 0.5 mM EGTA in distilled water,

Table 1 Primer sequences for real-time PCR in mouse mammary glands.

Gene Accession Primers Product size
number Forward Reverse

SLC1A4 NM_018861 cgcaggacagattttcacca catccccttccacattcacc 197
SLC7A1 NM_007513 cgtccctecteatttgctte gcgattacgggtgttttggt 289
SLC27A3 NM_011988 tctgggacgattgccagaaac caagcgcaccttatggtcacac 116
AQP3 NM_016689 ctggacgctttcactgtgggc gatctgctccttgtgtttcatg 309
GLUT-1 NM_011400 gcttcctgctcatcaategt gccgaccctcttctttcatce 17
UGP2 NM_139297 tcacaaacaaaacacgagcaga cacttgagcgatttccacca 89
PGM2 NM_028132 Caagcaagctgtecctctgt gatgtcctccacgctetgtt 137
a-lactalbumin NM_010679 accagtggctacgacacac Cggggaactcactacttttacac 106
FABP3 NM_010174 agtcactggtgacgctggacg aggcagcatggtgctgagctg 230
SREBP-1 NM_011480 gtcagcttgtggcagtggag tctgagggtggaggggtaag 90
CSN1S1 NM_007784 cctttccectttgggcttac tgaggtggatggagaatgga 193
CSN2 NM_009972 cttcagaaggtgaatctcatggg cagattagcaagactggcaagg 330
CSN3 NM_007786 tcgaccccattactcccattgtgt tgtaaaaggtaagggaagacgagaaagat 289
WAP NM_011709 aacattggtgttccgaaagc agggttatcactggcactgg 179
Lactoferrin NM_008522 ggctgagaaggcaggaaatg tttggggctatggctaggtg 183
VAMP-3 NM_009498 gctgccactggcagtaatcgaagac gagagcttctggtctctttc 113
VAMP-4 NM_01679%6 gggaccatctggaccaagatttgg catccacgccaccacatttgectt 225
Syntaxin-6 NM_021433 cgactggacaacgtgatgaa ctgggcgaggaatgtaagtg 216
SNAP-23 NM_001177792 gtgttgtggcctctgcatct ccatctcatcttctctggeatc 254
Adipophilin NM_007408 caggggtggtggataagacc ggtgataagcccgagagea 291
GAPDH NM_008084 gagcgagaccccactaacatce gcggagatgatgaccctttt 144
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pH 9.0) and heated in a microwave oven at 500 W for
20 min.

For immunofluorescence staining of frozen sections
(GLUT-1, pan-keratin, CD11b, and NF«xB), mammary
glands were embedded in OCT compound (Tissue Tek,
Sakura, Torrance, CA, USA) and rapidly frozen with
liquid nitrogen. The frozen samples were sliced into
5-um sections with a Leica CM 3050S cryomicrotome
(Mannheim, Germany). The sections were fixed with 1%
formaldehyde in PBS for 10 min at 4 °C and then with
methanol for 10 min at —20 °C.

The paraffin-embedded and frozen sections were incu-
bated with PBS containing 5% bovine serum albumin to
block nonspecific interactions and were then treated
with the respective primary antibody (diluted in blocking
solution) overnight at 4 °C. After the sections were
washed with PBS, they were exposed to the secondary
antibody for 1 h at room temperature in blocking solu-
tion. Controls were treated in the same manner, except
for the exclusion of the primary antibody. Images of the
stained sections were obtained using a confocal laser-
scanning microscope (TCS SP5; Leica) and LAS AF soft-
ware (Leica).

Western blotting analysis

The mammary glands were minced and lysed in buffer
containing 1% Triton X-100, 1% SDS, 100 mM
NaCl, 10 mM HEPES (pH 7.4), 2 mM EDTA, a phos-
phatase inhibitor mixture (PhosStop, Roche), and a pro-
tease inhibitor mixture (complete mini, Roche). The
lysates were then diluted with an equal volume of sam-
ple buffer (100 mMTris (pH 6.8), 100 mM dithiothreitol,
2% SDS, 0.2% bromophenol blue, and 20% glycerol), in-
cubated for 10 min at 70 °C, and stored at -20 °C as
samples for Western blotting.

The samples were electrophoresed using 8% or 12%
sodium dodecyl sulfate-polyacrylamide gels and trans-
ferred onto polyvinylidene difluoride membranes (Bio-
Rad, Hercules, CA, USA). The membranes were blocked
for 1 h with PBS containing 4% nonfat dried milk and
0.05% Tween 20. In the case of B-casein, PBS containing
2% bovine serum albumin was used for blocking. The
membranes were incubated overnight at 4 °C with pri-
mary antibodies diluted in PBS containing 2.5% bovine
serum albumin. Subsequently, the membranes were
washed in PBS containing 0.05% Tween 20 and incu-
bated for 45 min at room temperature with the appro-
priate secondary horseradish peroxidase-conjugated
antibodies diluted in the solutions used for blocking.
The immunoreactive bands were detected using Lumi-
nate Forte Western HRP substrate (Millipore). The
protein bands were visualized and quantified using a
Bio-Rad ChemiDoc™ EQ densitometer.
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Measurement of lactose, triglycerides, and -casein
Lactose, triglycerides, and B-casein, which were secreted
and accumulated in mammary alveolar lumens and
ducts as milk components, were extracted from the
mammary glands of mice non-treated or treated with
LPS. The minced mammary glands were suspended in 9
times its weight of PBS and then passed 30 times
through a 19-gauge needle. The suspension was then
centrifuged at 1500 x ¢ for 5 min at room temperature.
The supernatant (extract of accumulated milk in mam-
mary alveolar lumens and ducts) was used for the meas-
urement of lactose, triglycerides, and [B-casein.

The measurement of lactose was performed using the
F-kit for lactose/galactose (Boehringer Mannheim
GmbH, Mannheim, Germany). Briefly, each extract was
warmed at 70 °C for 15 min and mixed with 2 types of
reaction buffers according to the manufacturer’s proto-
col. After incubation for 15 min at 25 °C, the absorbance
of each mixture was measured at 340 nm.

The measurement of triglycerides was performed using
the Adipogenesis Assay Kit (Biovision Inc., Mountain
View, CA, USA) according to the manufacturer’s proto-
col. Briefly, each extract was warmed at 70 °C for 15 min
and then diluted 9-fold with Lipid Extraction Solution.
The diluted supernatant (50 pL) was transferred to each
well of a 96-well assay plate followed by the addition of
50 pL of Assay Buffer and 2 pL of lipase solution to each
well. After incubation for 10 min at 25 °C, 50 pL of the
triglyceride reaction mixture was added to each well
The plate was incubated at 37 °C for 30 min, and the ab-
sorbance was read at 570 nm.

Beta-casein in the extract was measured by densitom-
etry analysis of the B-casein bands detected by Western
blotting. Each extract was vigorously vortexed and then
diluted with 5 x Laemmli sample buffer for electrophor-
esis. After western blotting, densitometry analysis of the
B-casein bands was performed using a Bio-Rad Chemi-
Doc™ EQ densitometer.

Statistical analysis

Data are expressed as the mean (SD). The statistical sig-
nificance of differences between the mean values was
tested using a Student’s ¢ test. Differences between the
mammary glands of mice non-treated or treated with
LPS were considered significant at a p-value < 0.05 and
0.005. All experiments were performed at least 4 times
using different mice to ensure reproducibility.

Results

LPS down-regulates genes relevant for nutrient uptake
To evaluate the influences of LPS on the nutrient uptake
process, we examined the expression levels of amino
acid transporters (SLC1A4, SLC7A1), a fatty acid trans-
porter (SLC27A3), a water and glycerol channel (AQP3),
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and a glucose transporter (GLUT-1) by real-time PCR.
The expression level of SLC1A4 decreased by half at 3 h
after LPS injection and was less than one-fifteenth of
that observed in non-treated mammary glands after 12 h
(Figure 1A). In contrast to SLC1A4, SLC7A1 showed a
4-fold increase in the expression level at 6 h after LPS
injection and then returned to the expression level of
non-treated mammary glands after 12 h (Figure 1B). The
expression of SLC27A3 significantly declined by half at
3 h after LPS injection and was less than one-
seventeenth of that seen in treated mammary glands at
12 h after LPS injection (Figure 1C). The expression
level of AQP3 rapidly decreased after LPS injection to
less than one-sixteenth of that observed in non-treated
mammary glands and remained at the low expression
level at 6 and 12 h after LPS injection (Figure 1D). The
expression level of GLUT-1 significantly decreased ap-
proximately one-half at 3 h after LPS injection
(Figure 1E).

The localization patterns of AQP3 and GLUT-1 were ex-
amined by immunostaining. The localization of AQP3 was
observed clearly in the basolateral membrane of AEC
(Figure 2A). The staining intensity of AQP3 became weak
after LPS injection after 3 h. GLUT-1 was localized in the
basolateral membrane of AEC before LPS injection
(Figure 2B). Three hours after LPS injection, the
localization of GLUT-1 in the basolateral membrane was
barely observed and GLUT-1 was sparsely localized to the
basal sides of the cytoplasm. Six hours after LPS injection,
GLUT-1 was localized across the cytoplasm but not on the
plasma membrane. The localization of GLUT-1 partially
returned to the basolateral membranes without obvious
localization in the cytoplasm at 12 h after LPS injection.

LPS down-regulates the genes relevant to the synthesis
process

The expression levels of genes related to the synthesis of
milk components were determined by real-time PCR.
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UDP-glucose pyrophosphorylase 2 (UGP2), phosphogluco-
mutase 2 (PGM2), and a-lactalbumin participate in lactose
synthesis [38]. The expression of UGP2 was gradually
down-regulated and became less than one-fourth of the
non-treated mammary glands at 12 h after LPS injection
(Figure 3A). The expression level of PGM2 decreased by
half at 3 h after LPS injection and was somewhat restored
at 12 h after LPS injection (Figure 3B). The expression of
a-lactalbumin was steadily down-regulated and became less
than one-two hundredths of the non-treated mammary
glands 12 h after LPS injection (Figure 3C). FABP3 and
SREBP-1 are involved in the synthesis of triglycerides.
FABP3 significantly decreased at 6 h after LPS injection,
and the expression level of FABP3 at 12 h after LPS injec-
tion was less than one-thirtieth of that observed in non-
treated mammary glands (Figure 3D). The level of SREBP-1
decreased significantly at 3 h after LPS injection and
remained at a low expression level at 6 and 12 h after LPS
injection (Figure 3E). The gene expressions of milk-specific
proteins were also quantified. CSNS1, CSN2, and CSN3
decreased significantly at 6 h after LPS injection (Figure
3F-H). Twelve hours after LPS injection, the expression
levels of CSNS1, CSN2, and CSN3 were approximately
one-third, one-seventeenth, and one-fourth of those ob-
served in non-treated mammary glands, respectively. WAP
expression significantly declined at 6 h after LPS injection
and was approximately two-thirds of that seen in the non-
treated mammary glands (Figure 3I). Lactoferrin increased
significanly after LPS injection to nearly twice that of non-
treated mammary glands (Figure 3J).

LPS partially down-regulates the expression of genes rele-
vant to milk component trafficking

To evaluate the influence of LPS on the release of synthe-
sized milk components, the expression levels of SNARE,
which take part in cellular membrane trafficking of trans-
port vesicles, were quantified by real-time PCR. The expres-
sion level of VAMP-3 significantly decreased at 3 h after
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Figure 1 Influence of LPS on the gene expression of transport proteins and channel proteins required to supply raw materials for
milk. Expression levels of SLCT1A4 (A), SLC7AT (B), SLC27A3 (C), AQP3 (D), and GLUT-1 (E) in mammary glands non-treated (0 h) and at 3, 6, and
12 h after LPS injection were quantified by real-time PCR. Data represent the mean (SD) (n=6). *, p < 0.05; **, p < 0.005 vs. O h.
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Figure 2 LPS influence on the localization of AQP3 and GLUT-1 in AEC. Mammary glands non-treated (0 h) and at 3, 6, and 12 h after LPS
injection were immunostained with anti-AQP3 and anti-GLUT-1 antibodies. (A) Immunostained images of AQP3 (green) were merged with bright
(green) were merged with pan-keratin (red) as a marker of epithelial cells. Blue represents

LPS injection but did not show a significant difference at 6
and 12 h after LPS injection (Figure 4A). VAMP-4 did not
show a significant difference at 3 and 6 h after LPS injection
but decreased to nearly one-third of that observed in non-
treated mammary glands at 12 h after LPS injection
(Figure 4B). The expression of syntaxin-6 in mammary
glands treated with LPS increased approximately 2-fold
compared to that of non-treated controls (Figure 4C). The
expression level of SNAP-23 significantly decreased in
mammary glands at 3 and 6 h after LPS injection and de-
creased to approximately one-third of that seen in non-
treated mammary glands at 12 h after LPS injection
(Figure 4D). We also investigated the expression level of
adipophilin, which is involved in triglyceride storage and re-
lease. The adipophilin expression level declined after LPS
injection similar to SNAP-23 (Figure 4E).

LPS causes abnormal localization of milk components in
AEC

The localizations of 3-casein and adipophilin were investi-
gated to determine the influence of LPS on intracellular
trafficking of milk-specific proteins and CLD, respectively.

Beta-casein was localized around the nuclei on the luminal
side of the cytoplasm before LPS treatment (Figure 5A). At
3 h after LPS injection, B-casein was observed near the ap-
ical membrane. The staining intensity of B-casein became
weak at 6 h after LPS injection. At 12 h after LPS injection,
the staining intensity of B-casein was weak, and [-casein-
negative AEC were also observed.

Adipophilin is a CLD-binding protein that covers the sur-
face of CLD. Several sizes of CLD covered by adipophilin
were observed in the cytoplasm of AEC in non-treated
mammary glands (Figure 5B). The adipophilin-positive
CLD became large toward the apical membrane of AEC. At
3 h after LPS injection, large adipophilin-positive CLD de-
creased throughout the cytoplasm of AEC. Adipophilin-
positive CLD were hardly observed at 6 h after LPS injec-
tion. Large CLD reappeared at 12 h after LPS injection.

LPS causes the decrease in milk components in mammary
glands

To evaluate the influence of LPS on the release of major
milk components, milk accumulated in the alveolar lu-
mens and ducts was extracted from minced mammary
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Figure 3 Influence of LPS on the expression of genes related with milk component synthesis. Expression levels of UGP2 (A), PGM2 (B), a-
lactalbumin (C), FABP3 (D), SREBP-1 (E), CSN1S1 (F), CSN2 (G), CSN3 (H), WAP (1), and lactoferrin (J) in mammary glands non-treated (0 h) and at
3,6, and 12 h after LPS injection were quantified by real-time PCR. Data represent mean (SD) (n =6). *, p < 0.05; **, p < 0.005 vs. 0 h.

glands and used for the determination of triglycerides,
lactose, and B-casein contents. After 3 and 6 h, the con-
centration of triglycerides was approximately 6 mM in
the extracts from LPS-treated and non-treated mam-
mary glands (Figure 6A). A significant decrease in the
triglyceride concentration was observed at 12 h after
LPS injection; the concentration was reduced to less
than 2 mM. The concentration of lactose was also
decreased at 12 h after LPS injection, and the concentra-
tion was less than one-twelfth of that observed in non-
treated mammary glands (Figure 6B). The protein level
of B-casein in the extracts increased at 3 and 6 h after

LPS injection and then decreased by half at 12 h after
LPS injection compared to that of non-treated mammary
glands (Figure 6C, D).

LPS activates STAT3 and NFkB but inactivates STAT5

The STAT3 and NF«B pathways are activated by phos-
phorylation, and STATS5 is inactivated by dephosphoryla-
tion after weaning, which simultaneously causes the loss
of milk production ability in AEC [39,40]. To confirm
which signaling pathways are activated or deactivated by
LPS treatment, the phosphorylation of STAT3, STATS5,
and NFkB was examined. Phosphorylated STAT5 was
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Figure 4 Influence of LPS on the expression of genes required for milk component trafficking. Expression levels of VAMP-3 (A), VAMP-4
(B), syntaxin-6 (C), SNAP-23 (D), and adipophilin (E) in mammary glands non-treated (0 h) and at 3, 6, and 12 h after LPS injection were quantified
by real-time PCR. Data represent mean (SD) (n =6). *, p < 0.05; **, p <0.005 vs. 0 h.
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Magnified images
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Figure 5 Influence of LPS on the localization of B-casein and adipophilin in AEC. Mammary glands non-treated (0 h) and at 3, 6, and 12 h
after LPS injection were immunostained with anti-B-casein (red) and anti-adipophilin (green) antibodies. Immunostained images of 3-casein (A)
and adipophilin (B) were merged with bright field images and DAPI stained images (blue). Beta-casein-negative AEC were observed 12 h after
LPS injection (arrowhead). Adipophilin staining shows the shape of lipid droplets in AEC. Scale bars: 20 um.

6 h

detected in non-treated mammary glands but was not
observed in mammary glands at 3, 6, and 12 h after LPS
injection (Figure 7). In contrast, phosphorylated STAT3
was detected at 3 and 6 h after LPS injection and its
level was decreased at 12 h after LPS injection. Phos-
phorylated NFkB was detected scarcely in non-treated
mammary glands. An increase in phosphorylated NFxB
was observed at 3 h after LPS injection. At 12 h after
LPS injection, the levels of both NFkB and phosphory-
lated NFkB decreased.

The activation of STAT3 and NF«B in AEC was detected
by immunostaining. Phosphorylated STAT3 was localized
in the nuclei of AEC at 3 h after LPS injection, although
non-treated mammary glands did not show any positive re-
action to phosphorylated STAT3 (Figure 8A). Phosphory-
lated STAT3 in the nuclei of AEC was also observed at 6 h
after LPS injection, and some AEC showed phosphorylated
STAT3 at 12 h after LPS injection. NF«B is known to be
activated by phosphorylation in accordance with its trans-
location from the cytoplasm to the nucleus. The immuno-
staining of NFkB showed the translocation of NF«B from
the cytoplasm to the nucleus in a portion of AEC at 3 and

6 h after LPS injection, whereas NF«kB was observed in the
cytoplasm but not in the nucleus at 12 h after LPS injection
(Figure 8B). In addition, an immunoreaction to CD11b,
which is a marker of leukocytes containing neutrophils, was
observed in some cells localized in the alveolar lumen and
interstitial tissues [41].

Discussion

AEC express several lactation-specific genes to maintain
milk component production during lactation [29]. How-
ever, it remains poorly understood how and when the
milk component production shuts down after infection
in mastitis. In this study, we categorized lactation-
specific genes into the following 3 groups and investi-
gated their temporal expression changes: nutrient
uptake, synthesis, and secretion of milk components in
AEC. The gene expressions of channels and transporters
for the intake of water, glucose, glycerol, fatty acids, and
amino acids were rapidly reduced by approximately half
at 3 h after LPS injection. The immunostained images
also revealed the decreases of GLUT-1 and AQP3 from
the basolateral membranes of AEC at 3 h after LPS
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Figure 6 Influence of LPS on the amount of milk components
released into mammary glands. The concentration of triglycerides
(A) and lactose (B) in extracts from mammary glands non-treated
(0 h) and at 3, 6, and 12 h after LPS injection were measured by the
methods described in the Materials and Methods section. Beta-
casein in the extracts was detected by western blotting (C). The
B-casein bands were quantified by densitometry analysis (D). Data
represent the mean (SD) (n =8 for measuring triglycerides, n =4 for
measuring lactose, n =6 for measuring B-casein). *, p < 0.05; **,
p <0.005 vs. 0 h.

injection. These results indicate that the shutdown of
the nutrient uptake occurs shortly after LPS injection.
The expression levels of genes relevant to the synthesis
of lactose and triglycerides declined by approximately
half 3 h after LPS injection. The levels of 3 types of ca-
seins and WAP also began to decrease at 6 h after LPS
injection. The synthesis of milk components in AEC is
also down-regulated within 6 h after LPS injection. Fur-
thermore, the gene expressions for the secretion path-
way and the exocytosis of milk components such as
VAMP-4, SNAP-23, and adipophilin declined by ap-
proximately one-half were observed within 12 h after
LPS treatment. Thus, LPS rapidly shut down the milk
component production process, i.e., nutrient uptake,
synthesis, and secretion of milk components in AEC.
Although the genes relevant to milk production are
down-regulated in mastitis, lactoferrin and inflammatory
cytokines such as interleukin (IL)-1p, IL-6, and tumor
necrosis factor-a are up-regulated [42]. LPS also induces
the rapid increase in mRNA for IL-1p, IL-8, and tumor
necrosis factor-a after only 2 h in cultured bovine mam-
mary epithelial cells [43]. In this study, lactoferrin was

Oh 3h 6h
pSTATS s

12 h

STATS

pSTAT3

STAT3 v wem e o

pNFkB

NF«xB - = - -~

B-actin - e a—
Figure 7 Influence of LPS on STAT3, STAT5, and NFkB
phosphorylation in mammary glands. The phosphorylation of
STAT3, STAT5, and NFkB were examined by western blotting analysis
of mammary glands non-treated (0 h) and at 3, 6, and 12 h after LPS
injection using antibodies against STATS5, phosphorylated STATS,
STAT3, phosphorylated STAT3, NFkB, and phosphorylated NFkB.
Beta-actin was used as a control.

up-regulated after LPS injection although other genes
relevant to the synthesis of milk components did not
show up-regulation. Lactoferrin, which is released in in-
fected tissues, is suggested to concern inflammation and
immunomodulation processes in addition to its direct
antimicrobial properties [44]. Thus, the up-regulation of
inflammation-related proteins occurs simultaneously
with the down-regulation of milk-specific proteins. In
this study, SLC7Al, an amino acid transporter,
and syntaxin-6, a SNARE protein, were upregulated.
Interestingly, although the expression level of SLC1
A4 is not changed, the mRNA level of SLC7Al
increases in mammary glands at peak lactation com-
pared to early lactation, suggesting the presence of
different regulatory mechanisms between the expres-
sion of SLC1A4 and SLC7A1 [45]. Furthermore, in
mammary glands, there are several SNARE proteins
whose relationship with lactation or cellular secretion
of milk components remains unclear [23]. SLC7A1
and syntaxin-6 may contribute to the intake of amino
acids and trafficking of inflammation-related proteins,
respectively.
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Figure 8 LPS causes phosphorylation of STAT3, translocation of NFkB, and invasion of CD11b* leucocytes into the mammary alveolar
lumen. Mammary glands non-treated (0 h) and at 3, 6, and 12 h after LPS injection were immunostained with anti-phosphorylated STAT3, anti-
pan-keratin, anti-NFkB, and anti-CD11b antibodies. (A) Immunostained images of phosphorylated STAT3 (green) were merged with images of
pan-keratin (red) as a marker of epithelial cells. (B) Immunostained images of NFkB (green) were merged with images of CD11b (red) as a marker
of leucocytes containing neutrophils. Blue represents nuclear staining with DAPI. Arrowheads indicate the localization of NFkB in nuclei of AEC.

12 h

To initiate milk production, mammary glands require
activation of STAT5 by prolactin [46]. In normal mam-
mary glands, STAT5 is activated in termination of preg-
nancy and is rapidly inactivated after weaning, whereas
the activation of STAT3 and NFkB is known to be key
pathways involved in mammary gland involution [47].
Thus, the inactivation of STAT5 and the activation of
STAT3 and NFkB represent the initiation of involution
and the end of galactopoiesis. Interestingly, the inactiva-
tion of STAT5 and activation of NFkB and STAT3 in
AEC also promotes milk loss in the mammary glands
after infection [35,48]. Both STAT3 and NFxB have been
shown to regulate the expression of genes involved in in-
flammation within the mammary glands in mastitis [49].
These reports have clearly shown the importance of
STATS3, STAT5 and NFkB for shutdown of galactopoiesis
in mastitis. However, it remains unclear how early the
shutdown of galactopoiesis occurs in mastitis. Our study
shows that the inactivation of STAT5 and activation of
STAT3 and NF«B occurred at 3 h after LPS injection
with down-regulation of genes relevant to the milk com-
ponent production process and up-regulation of lactofer-
rin. AEC bind to LPS via Toll-like receptor 4, and the
binding of LPS to Toll-like receptor 4 stimulates the ac-
tivation of NFkB, recognized as translocation of NFkB
from the cytoplasm to the nucleus [31]. Therefore, it is
suggested that the rapid shutdown of galactopoiesis is
induced through the binding of LPS to AEC and the ac-
tivation of STAT3 and NFkB immediately after infection
in mastitis. The recruitment of CD11b-positive leuko-
cytes into the alveolar lumen, which is one of the

symptoms in early mastitis, may occur after the shut-
down of milk component production in AEC [1,41].

In this study, the down-regulation of lactation-specific
genes relevant to nutrient uptake and synthesis of milk
components occurred between 3 and 6 h after LPS injec-
tion. Immunostaining images of 3-casein and adipophilin
in AEC also revealed the posttranslational influences of
LPS on the milk secretion process within 6 h after LPS
injection. On the contrary, the amount of accumulated
milk components (triglycerides, lactose, p-casein) in the
alveolar lumens and ducts did not decrease until 12 h
after LPS injection. These results suggest that LPS
causes the abnormal accumulation of milk components
in the alveolar lumens and ducts. We previously re-
ported that myoepithelial cells maintain a contracted
state at least for 12 h after LPS treatment [36]. The con-
traction of the smooth muscle in myoepithelial cells by
oxytocin stimuli is required for milk ejection from the
alveolar lumen [50]. The mice lacking smooth muscle
actin are also unable to nurse their offspring [50,51].
LPS treatment may cause a defective milk ejection from
alveolar lumen by myoepithelial cells in addition to the
shutdown of galactopoiesis.

In summary, our results show that the expression of
genes relevant to the three-staged milk component pro-
duction process, consisting of nutrient uptake, synthesis,
and secretion of milk components in AEC, are rapidly
down-regulated in association with the inactivation of
STATS5 and the activation of STAT3 and NFkB. Some of
the proteins relevant to the milk component production
process also show abnormal localization after LPS
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injection. Therefore, we suggest that lactating mammary
glands rapidly shut down the milk production process
after LPS injection through expressional control and
posttranslational changes of proteins contributing to
milk component production in AEC. However, several
additional proteins and signaling pathways, which were
not investigated in this study, have been reported to
contribute to specific milk component production pro-
cesses in AEC. Furthermore, AEC are surrounded by
myoepithelial cells, microvascular endothelial cells, adi-
pocytes, and several immune cell types such as macro-
phages and neutrophils. We previously reported that the
cell-specific behavior and the tissue remodeling of the
alveolus occur after LPS injection in accordance with
disruption of the milk-blood barrier [36,37]. It is also
suggested that the milk component production process
is more intricately regulated.
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