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Abstract

Ranaviruses are emerging pathogens that have led to global impact and public concern. As a rarely endangered
species and the largest amphibian in the world, the Chinese giant salamander, Andrias davidianus, has recently
undergone outbreaks of epidemic diseases with high mortality. In this study, we isolated and identified a novel
ranavirus from the Chinese giant salamanders that exhibited systemic hemorrhage and swelling syndrome with
high death rate in China during May 2011 to August 2012. The isolate, designated Andrias davidianus ranavirus
(ADRV), not only could induce cytopathic effects in different fish cell lines and yield high viral titers, but also caused
severely hemorrhagic lesions and resulted in 100% mortality in experimental infections of salamanders. The
complete genome of ADRV was sequenced and compared with other sequenced amphibian ranaviruses. Gene
content and phylogenetic analyses revealed that ADRV should belong to an amphibian subgroup in genus
Ranavirus, and is more closely related to frog ranaviruses than to other salamander ranaviruses. Homologous gene
comparisons show that ADRV contains 99%, 97%, 94%, 93% and 85% homologues in RGV, FV3, CMTV, TFV and ATV
genomes respectively. In addition, several variable major genes, such as duplicate US22 family-like genes, viral
eukaryotic translation initiation factor 2 alpha gene and novel 75L gene with both motifs of nuclear localization
signal (NLS) and nuclear export signal (NES), were predicted to contribute to pathogen virulence and host
susceptibility. These findings confirm the etiologic role of ADRV in epidemic diseases of Chinese giant salamanders,
and broaden our understanding of evolutionary emergence of ranaviruses.

Introduction

Iridoviruses are associated with numerous mortality events
in aquaculture and wildlife conservation [1-3], and have
been recognized as killers for economically and ecologic-
ally important poikilotherms including fish, amphibians
and reptiles [4-6]. Their host ranges and virulence vary
widely among the described iridoviruses [4,6,7]. Among
five genera in the family Iridovidae, the genus Ranavirus
includes the majority of iridoviruses [8]. And, several mass
mortality and amphibian population declines in different
worldwide locations were reported to be caused by epi-
demic widespread and outbreaks of different ranaviruses,
such as frog virus 3 (FV3) [9,10], Ambystoma tigrinum
virus (ATV) [11,12], Rana grylio virus (RGV) [13,14], tiger
frog virus (TFV) [15] and common midwife toad ranavirus
(CMTV) [16]. At present, eleven ranaviruses isolated from
fish, amphibians and reptiles have been completely se-
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quenced [17-21]. Comparative analysis of ranavirus gen-
omic sequences revealed that the ranaviruses isolated
from amphibians have high degrees of genome sequence
colinearity [5,18] and CMTV represents an evolutionary
intermediate among the sequenced ranaviruses [20].

The Chinese giant salamander Andrias davidianus, is
the largest amphibian in the world. Because of its nat-
ural population decline and high values for scientific
conservation and medicinal use, it has been farmed in
many locations throughout China. Unfortunately, an
outbreak of epidemic disease with high mortality has oc-
curred on most of the farms since 2010. Ranavirus has
been suggested as a pathogen for diseases based on
major capsid protein (MCP) gene sequence analysis by
PCR [22,23], but its pathogen-related biological charac-
teristics, complete genome sequence and organization,
and evolutionary position in iridoviruses have remained
unknown. Since ranaviruses are known to infect more
than 70 amphibian species and to be emerging patho-
gens that have led to global impact and public concern
[24-27], and Chinese giant salamander is a rare and
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endangered species, comprehensive studies on the newly
emerging ranavirus will be of important significance for
increased understanding of its emergence and ecology
mechanisms as well as its conservation strategies. For
these purposes, we investigated the biological features of
a novel ranavirus from diseased Chinese giant salamanders,
determined and molecularly characterized its complete
genome, analyzed the significant genome changes between
the virus and other ranaviruses, and identified several
major genes contributing to pathogen virulence and spe-
cies susceptibility.

Materials and methods

Ethics statement

All animal procedures were conducted in accordance with
the recommendations in the Regulations for the Adminis-
tration of Affairs Concerning Experimental Animals of
China. The protocol was approved by the Institutional
Animal Care and Use Committee of the Institute of Hy-
drobiology, Chinese Academy of Sciences, and all efforts
were made to minimize suffering.

Sample collection

During May 2011 to August 2012, an outbreak of epi-
demic disease occurred in Chinese giant salamanders
from the natural habitats or farms in Hunan, Jiangxi and
Henan Provinces of China. Larval and adult salamanders
were affected. Generally, the incidence rate in larvae
(more than 40%) was higher than that in adults (about
10%), and the mortality was high up to nearly 100% in
the diseased salamanders. Ten diseased Chinese giant
salamanders (two larvae and eight adults) were collected
from the affected areas, and necropsy examination was
performed in the virology laboratory at the Institute of
Hydrobiology, Chinese Academy of Sciences. Tissue
samples were taken for virological and histopathological
studies.

Virus isolation

Liver, spleen and kidney tissues from diseased Chinese
giant salamanders were cut into pieces and homoge-
nized in phosphate buffered saline (PBS) with antibiotics
(100 IU penicillin mL™, 100 pg streptomycin mL™). Ex-
tracts were stored overnight at —20 °C, thawed, clarified
by centrifugation at 2000 x g and filtered through a ster-
ile 0.45 pm filter (Millipore, Billerica, MA, USA). The
filtered supernatant was used as the original viral isolate
for infecting cell lines and stored at —80 °C.

Epithelioma papulosum cyprini (EPC), Fathead minnow
(FHM), Grass carp fins (GCF), Grass carp ovary (GCO),
Bluegill fry (BF-2) and Chinook salmon embryo (CHSE)
cell lines maintained in our laboratory were used for virus
isolation and sensitivity tests. The above tissue homoge-
nates were inoculated onto confluent monolayers of these

Page 2 of 13

cells maintained in TC 199 medium with 5% fetal bovine
serum at 20 °C. When advanced cytopathic effects were
observed, the cell culture supernatants were harvested
and used as virus stocks for virus passages and charac-
terization. Virus titers were measured on the basis of
50% tissue culture infective dose (TCIDsg)/mL as de-
scribed previously [14,28].

Biophysical and biochemical property detection

The optimal temperature for virus propagation was
assayed by infection of EPC cell monolayers at 15 °C,
20 °C and 25 °C. Heat stability was measured by incubat-
ing the virus suspension at 56 °C for 30 min, and then
the titer was determined. Stability to pH was tested by
incubating the virus at 20 °C in TC 199 medium ad-
justed to pH 3.0 and pH 10.0. After 1 h of incubation,
the samples were titrated. Chloroform and 5-
iododeoxyuridine (IUdR) sensitivity were determined as
described previously [29].

Electron microscopy

Infected EPC cells were harvested after appearance of
CPE by scraping the cells into the medium, followed by
centrifugation at 700 x g for 10 min. The pellets were
fixed with 2.5% glutaraldehyde, post-fixed in osmium
tetroxide (OsO4), dehydrated and embedded in Epon-
812 [30,31]. Ultrathin sections were cut and stained with
uranyl acetate and lead citrate, and examined with elec-
tron microscopy (JEM-1230, JEOL, Tokyo, Japan).

Experimental infection

Healthy Chinese giant salamanders (mean weight of
about 120 g) were divided into two groups of four sala-
manders each. The salamanders in one group were each
injected intraperitoneally with 0.5 mL of virus stock pre-
pared from EPC cell cultures at a concentration of 1 x 10°
TCIDsemL ™, and salamanders in another group were
injected with PBS as controls. The challenged salamanders
were monitored daily, and the moribund salamanders
were harvested for histopathological examination and
virus re-isolation.

Histopathology

Tissue samples (liver, kidney, spleen, and intestine) were
fixed in 10% neutral buffered formalin, and then rou-
tinely processed and embedded in paraffin wax. Sections
(5 pm) were stained with hematoxylin and eosin, and
examined by light microscopy. Samples from normal
healthy salamanders were run in parallel as negative
controls.

Genomic DNA extraction and sequencing
Virus particles were purified from cell culture-amplified
virus stocks as described [32,33]. ADRV genomic DNA
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was prepared from purified virus particles by phenol-
chloroform extraction [34]. Sequencing of ADRV genome
was carried out using the Roche/454 GS FLX system
(Roche-454 Life Sciences, Branford, CT, USA). Briefly,
after the quality of ADRV genomic DNA was assessed by
agarose gel electrophoresis, 10 pug samples were broken
into fragments of 300-500 bp by nebulization. The whole
genomic library was amplified using GS emPCR kits and
sequenced with 454 GS FLX instrument according to the
manufacturer’s instructions. The consensus sequence of
the whole DNA sample was generated by assembly of the
454 sequencing data with GS De Novo Assembler soft-
ware version 2.6 (Newbler 2.6, Roche-454 Life Sciences).
The average reading frame length was about 360 bp with
58-fold genome coverage. The gaps were filled with the
primer-walking technique.

Genome annotation and analysis

Genomic DNA composition, structure, nucleotide and
amino acid sequences were analyzed with the DNASTAR
program (Lasergene, Madison, W1, USA). The open read-
ing frames (ORFs) were predicted using Gene Finding in
Viral Genome program [35] and NCBI ORF Finder [36].
ORFs were identified according to the following criteria
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[18-20]: (1) they were at least 120 bp, (2) they could be
detected by the two annotation methods, and (3) they
were not located within larger ORFs. Overlapping ORFs
were annotated only if they had homologs to other se-
quenced iridoviruses. Comparisons of homologous sequence
regions of ADRV with other viruses were conducted in
GenBank database using BLAST programs. Transmem-
brane domains (TM) were predicted using TMHMM 2.0
[37]. Secondary structures were predicted using the JPred
program [38]. Nuclear localization signal (NLS) and nu-
clear export signal (NES) were predicted using the
PredictProtein server [39] and NetNES 1.1 [40], respect-
ively. Multiple sequence alignment was conducted using
ClustalX 1.83, and sequence identities were calculated
using the MegAlign program. The genome sequence of
ADRYV was deposited into GenBank under accession no.
KC865735.

Phylogenetic analysis was performed based on the
alignment of the concatenated sequences of 26 iridovirus
core proteins from ADRV and other completely sequenced
iridoviruses. The phylogenetic tree was constructed by
MrBayes 3.2 using a mixed amino acid model with 150
000 generations and a sampling frequency of 100 [41].
DNA dot matrix plots were obtained using DNAMAN

A C

intestines (In) and bladder (Bl) (D), are shown.

Figure 1 Main symptoms of the diseased Chinese giant salamanders. The hyperemic and edematous orbit (A), ecchymotic oral mucosa (B),
skin edema and ulcer (C), congestion and swelling in the liver (Li) and spleen (Sp), as well as purplish ecchymoses in the kidney (Ki), lung (Lu),
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version 6 (Lynnon Corp., Quebec, Canada). Iridovirus se-
quences used for analysis were obtained from GenBank, and
the accession numbers were collected in Additional file 1.

Results

Symptoms of disease and histopathological changes
Gross examination revealed consistent syndromes among
diseased Chinese giant salamanders, including systemic he-
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morrhage and swelling in any internal or external tissues.
As shown in Figure 1, the diseased giant salamanders show
hyperemic and edematous orbits (Figure 1A), ecchymotic
oral mucosa (Figure 1B), cutaneous erosions and ulcerations
(Figure 1C), and extensive hemorrhages on the body surface.
Anatomical observations show congestion and swelling in
the liver and spleen, petechial lesions and purplish ecchym-
oses in the kidney, lung, intestines, and bladder (Figure 1D).

Liver

Spleen

Kidney

Intestine |

Figure 2 Histopathological changes in the liver, spleen, kidney and intestine of the diseased Chinese giant salamanders. The tissue

Diseased
o2

sections from normal (left) and diseased (right) salamanders were stained by hematoxylin and eosin. Various degrees of damage and cell necrosis
are present in the diseased liver, spleen, kidney, and intestine. An irregular hemorrhagic patch and sinusoidal congestion is shown by the arrow
in the diseased liver tissue. Bar =200 pm.
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Microscopic examination shows various degrees of da-
mage and cell necrosis in tissues from diseased salaman-
ders (Figure 2). Vacuolar degeneration of hepatocytes,
focal necrosis areas evidencing pyknosis and karyolysis,
and sinusoidal congestion were observed in the liver. Dif-
fuse necrosis of the splenic parenchyma, karyolysis of nu-
clei, and irregularly shaped cavities were present in the
spleen. Severe renal lesions, including degeneration and
necrosis of renal tubular epithelia cells, and tubular
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collapse were frequently observed. The intestinal villi were
destroyed and detached, and necrosis of mucous epithelia
cells and muscular fibrosis were present in the intestine.
No lesions were observed in the corresponding normal
tissues (Figure 2).

Virus isolation and identification
Tissue extracts from diseased salamanders induced cyto-
pathic effect (CPE) in EPC, FHM, GCF, GCO, CHSE

-

A

Figure 3 Light microscopy and electron microscopy observations. (A) Light micrographs of normal control (Con) and the ADRV infected (Inf)
EPC cells. Cytopathic effect (CPE) was observed at 48 h post-infection, Bar =200 um. (B) Electron micrographs of the ADRV infected cell. A large
viromatrix (VM) nearby the nucleus (N) and containing some scattered viral particles, a viral crystalline aggregate (CA) alongside the viromatrix.
VA, vacuole Bar =500 nm. On the upper left cormer is an enlarged image, showing the ADRV crystalline aggregate. Bar = 150 nm.
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Table 1 Different fish cell lines were infected with ADRV.

Fish cell line Time (h) of first Viral titer
appearance of the (TCIDsomL™)
cytopathic effect

Epithelioma papulosum 24 100

cyprini (EPC)

Chinook salmon embryo 24 106°

(CHSE)

Bluegill fry (BF-2) 24 10%°

Grass carp fins (GCF) 36 10%0

Grass carp ovary (GCO) 36 10°°

Fathead minnow (FHM) 48 10*°

and BF-2 cell lines after 24 h to 48 h of incubation. The
CPE characteristics in EPC cells included microscopic
foci, cell rounding and detachment, and extensive focal
plaques, which rapidly progressed to the entire cell
sheets with complete destruction occurring within 48 h
post infection (Figure 3A). Virus titers in these 6 cell
lines ranged from 10*® to 10%° TCIDsomL™" (Table 1).
Biophysical and biochemical analysis revealed that the
virus was sensitive to heat (56 °C, 30 min), acid (pH 3.0)
and alkaline (pH 10.0). Treatment of the virus with either
caused significant reduction of its infectivity. The viral in-
fectivity was almost completely inhibited by chloroform
and 5-iodo-2-deoxyuridine (IUdR) treatments, indicating
that the virus possessed a DNA genome and alipid-
containing envelope.

Ultrastructural observations of infected EPC cells show
features consistent with infections by ranaviruses [30,42,43],
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including large vitromatrix (VM) for virus factory within
the cytoplasm, viral crystalline aggregate (CA), and mature
virus particle budding from the cell plasma membrane
(Figure 3B). Some cellular changes including nuclear com-
paction and margination and vacuole formation were also
present in the infected cell. The mature virus particles
within the crystalline aggregate were relatively uniform in
size, with a diameter of about 150 ~ 160 nm. Based on the
disease characteristics, species infected, and ultrastructural
observations, the newly emerging virus from Chinese
giant salamander was therefore identified as Andrias
davidianus ranavirus (ADRV).

Pathogenicity of ADRV

To confirm the pathogenicity, ADRV from EPC cell cul-
tures was used to infect healthy Chinese giant salaman-
ders. Some typical hemorrhage and swelling syndromes,
identical to the naturally diseased salamanders, were ob-
served from the infected animals after 1 week, and 100%
mortality occurred within 3 weeks. The histological changes
in the infected tissues were similar to those described
above, and virus was re-isolated from the challenged sal-
amanders. These data demonstrate that ADRV is the
aetiological agent of the disease, and proved highly
pathogenic to Chinese giant salamander.

General features of ADRV genome

The complete nucleotide sequence of ADRV consists of
106,734 bp, with a G+ C content of 55%. Computer-
assisted analysis revealed 101 open reading frames (ORFs),
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Figure 4 Schematic diagram of ADRV genome organization. The ADRV genome is 106 734 bp in size, and contains 101
reading frames (ORFs). The scale is in kilobase pairs. Arrows indicate the size, location, orientation of the ORFs. The ADRV genome contains 26
11 amphibian subgroup-specific genes and 40 other genes.
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which encode putative proteins ranging in size from 44 to
1294 amino acids. All detailed annotation data for the 101
OREFs, such as position, size, predicted function, conserved
domain, and their homologous comparisons with other
amphibian ranaviruses (RGV, CMTYV, FV3, TFV and
ATYV) are provided in Additional file 2.

A schematic diagram of ADRV genome organization is
shown in Figure 4. Based on sequence homology to other
characterized proteins, 26 ORFs were identified as irido-
virus core genes [17], 24 ORFs as ranavirus-specific genes
and 11 ORFs as amphibian subgroup-specific genes,
whereas 40 other potential genes were unknown for
their characterization or function (see Additional file 2).

Phylogenetic relationship of ADRV and other iridoviruses

A phylogenetic tree was constructed based on the conca-
tenated protein sequences of the 26 iridoviral core genes
from 20 completely sequenced iridoviruses (Figure 5). The
tree shows that ADRV clustered closely with members of
the genus Ranavirus in the family Iridovidae, and is dis-
tantly related to the members from Lymphocystivirus,
Megalocytivirus, Chloriridovirus and Iridovirus. It was also
observed that ranaviruses of the genus Ranavirus were
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separated into two subgroups, the amphibian subgroup in-
cluding ADRV, CMTYV, RGV, FV3, TEV and ATV, and the
fish subgroup including EHNV, ESV, GIV and SGIV.
ADRYV is more closely related to CMTV, RGV FV3 and
TEV, which are frog (anuran) ranaviruses, than to ATV, a
salamander (urodele) ranavirus.

Genome sequence comparisons

To determine the similarity degree of the ADRV genome
with those of other amphibian ranaviruses, we carried
out dot plot analysis (Figure 6A). Interestingly, a com-
plete colinearity between ADRV and CMTYV genomes
was revealed as +45° line, and just only a single inversion
in the ADRV genome was detected to occur in the seg-
ment from 15049 to 104729 in comparison with RGV,
FV3 and TFV, and in the segment from 61713 to 90897
compared to ATV.

A comparison of genome architecture and the anno-
tated genes between ADRV and other ranaviruses revealed
significant deletion of 6 genes (7R, 15L, 41L, 49L, 57R and
81R in ADRV) in CMTYV although they have complete co-
linearity, whereas only one gene deletion (25L in ADRV)
was found in RGV (see Additional file 2). Moreover, two
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Figure 5 Phylogenetic tree of 26 iridoviral core protein sequences from 20 completely sequenced iridoviruses. Consensus bootstrap
confidence values are indicated at the nodes of the branches. The host of each virus and viral genus are listed at the right. Two subgroups, such
as "Amphibian subgroup” and “Fish subgroup”, were revealed in genus Ranavirus. ADRV appears in the amphibian subgroup, and it is most
closely related to CMTV, RGV, FV3 and TFV. The sequences used for this analysis are collected in Additional file 1.
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(See figure on previous page.)

Figure 6 Dot plot comparisons and genome architecture changes of amphibian subgroup ranaviruses. (A) Dot plot comparisons
between ADRV (horizontal axis) and known amphibian ranaviruses (vertical axis), such as ADRV, CMTV, RGV, FV3, TFV and ATV, respectively. (B)
Schematic diagram of genome architecture changes relative to ADRV among amphibian subgroup ranaviruses, such as ADRV, CMTV, RGV, FV3,
TFV and ATV, respectively. Red hatched arrows indicate genome segment inversion, black triangles show fragment insertion, and blank triangles

represent fragment deletion in comparison with the ADRV genome.

inserted fragments were detected from the CMTV gen-
ome, in which a 765 bp fragment was inserted at the cor-
responding position between 40792 and 40793 of ADRV
ORF 40R, and another 879 bp fragment was inserted at
the ADRV 42127-42128 position between ORF 42R and
43L. The latter inserted fragment was also observed in the
corresponding position of RGV, FV3, TFV and ATV ge-
nomes with variable size of 760 bp, 757 bp, 750 bp and
762 bp respectively, whereas the former fragment was
only found in the ATV genome, and another fragment of
1643 bp was inserted into ATV genome at the corre-
sponding position between 87890 and 87891 of ADRV
ORF 85L (Figure 6B). The statistical analysis shows that
ADRV contained 99%, 97%, 94%, 93% and 85% homolo-
gous genes in RGV, FV3, CMTV, TFV, and ATV, respect-
ively. Owing to these deletions/insertions, some genes
were discovered to exist in certain species of ranaviruses.
For examples, 49L exists only in ADRV and RGV, 7R and
57R in ADRV, RGV and FV3, 15L, 41L and 81R in ADRY,
RGYV, FV3 and TFV, 75L and 76R in ADRV, RGV, CMTV
and FV3, and 25L in ADRV, CMTYV, TFV and ATV (see
Additional file 2).

Major gene identification for contribution to pathogen
virulence and species susceptibility

Gene annotation and comparative analysis of ADRV
with other ranaviruses revealed several highly variable
and significantly functional genes in these ranavirus,
which might be related to pathogen virulence and spe-
cies susceptibility. For example, two duplicate genes en-
coding US22 family-like proteins were found in ADRV
(6R and 49L) and RGV (6R and 106R), whereas only one
homologue was observed in CMTYV, FV3 and TFV (see
Additional file 2). The deduced amino acid sequence of
ADRYV 6R shows 42%, 47%, and 79% identity to ADRV
49L, RGV 106R and RGV 6R respectively (Figure 7A),
suggesting that these two duplicate genes in ADRV have
been highly diversified from each other.

Another viral pathogenesis and virulence-related gene
vIF2q, the homologue of eukaryotic translation initiation
factor 2 alpha (elF2a), was also found to be highly variable
among ADRV and other ranaviruses. The N-terminal
PKR-binding domain (S1) and central helical domain
(HD) of vIF2a were highly conserved among ADRV 84L,
TEV 27R, ATV 57R and CMTYV 81L, but completely ab-
sent in RGV 28R and FV3 26R, and only 69 and 76 amino
acids of the C-terminal domain (CTD) remained in RGV

and FV3 vIF2a (Figure 7B). In addition, the C-terminal re-
gion was variable among these vIF2q, leading to their size
and identity differences, in which RGV 28R and FV3 26R
have only 16% and 13% identities to ADRV 84L.

Moreover, we were fascinated by another novel gene
ADRV 75L, which also existed in RGV (38R), CMTV
(nucleotides 77077-77352) and FV3 (nucleotides 41633—
41908). However, the corresponding homologous regions
for ADRV 75L were not previously annotated in CMTV
and FV3. ADRV 75L encodes a peptide of 144 amino
acids, and contains a nuclear localization signal (NLS)
motif and a nuclear export signal (NES) motif, whereas its
homologues in RGV, CMTV and FV3 lack a 53 amino
acid N-terminal sequence and the NLS motif, and have
only a NES motif (Figure 7C). The deduced amino acid
sequence of ADRV 75L shows 57-58% identities to the
homologues in RGV, CMTV and FV3.

Discussion

Ranaviruses are known to be agents of emerging infec-
tious disease that have raised global concern. Chinese
giant salamanders have been hit by viral epidemic dis-
eases in natural habitats or on farms since 2010 [22,23].
The universal symptoms include systemic hemorrhage and
serious swelling. In this study, we isolated and identified a
novel ranavirus (ADRV) from diseased Chinese giant sala-
manders, which could cause typical CPE in different fish
cell lines with yielding high virus titers and displayed se-
vere pathogenicity in vivo. We also determined and char-
acterized the complete genome sequence of ADRV. This is
the second completely sequenced ranavirus isolate from
urodele; the first one was ATV [44]. Based on genome size,
gene content and phylogenetic analysis, ADRV should
belong to the Amphibian subgroup of ranaviruses, and is
more closely related to CMTYV, RGV, FV3 and TFV (frog
ranaviruses) than to ATV (salamander ranavirus).

Dot plot analysis shows that ADRV shared complete
colinearity with a toad ranavirus CMTYV, and a single gen-
omic inversion was detected in ADRV compared to RGV,
FV3, TEV and ATV (Figure 6). Significantly, the inversion
does not involve any loss of genetic information, and the
inversion position is an absolute coincidence found pre-
viously in CMTV [20]. However, the detailed genome
comparisons of ADRV and other ranaviruses revealed
significant deletion of 6 genes (7R, 15L, 41L, 49L, 57R and
81R in ADRV) in CMTYV, whereas only one gene deletion
(25L in ADRV) was observed in RGV. Moreover, two
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nuclear export signal (NES) motif by the blue box.

Figure 7 Amino acid sequence alignments of three major genes among ADRV and other ranaviruses. (A) Multiple alignments of the
deduced two duplicate US22 family-like proteins in ADRV (6R, 49L) and RGV (6R, 106R). The secondary structure of US22 domain that is
comprised of four conserved a-helices (red H) and six 3-strands (blue E) was shown above the alignments, and the completely conserved
residues are indicated by black shaded regions. (B) Multiple alignments of ADRV 84L and its homologues in other known ranaviruses, such
as TRV, ATV, CMTV, RGV and FV3. The N-terminal PKR-binding domain (S1), central helical domain (HD) and C-terminal domain (CTD) are
shown above the alignments, and two cysteines are indicated by green. The VXRVDXXKGYXDL motif is marked by a box. The black shaded
regions indicate completely conserved residues, while the grey shaded regions are partially conserved residues with greater than 80%
identity. (C) Multiple alignments of ADRV 75L and its homologues in RGV, CMTV and FV3. The homologous regions for ADRV 75L in CMTV
(nucleotides 77077-77352) and FV3 (nucleotides 41633-41908) were translated into amino acid sequences and used in the alignments. The
conserved residues are indicated by black shaded regions. The nuclear localization signal (NLS) motif is marked by the purple box, and the

inserted fragments were detected in the CMTV genome,
while only one inserted fragment was observed in the cor-
responding position of RGV, FV3, TFV and ATV genomes.
Homologous gene comparison analysis shows that ADRV
contained 99%, 97%, 94%, 93% and 85% homologues in
RGV, FV3, CMTV, TFV and ATV respectively, and the
largest homologues existed between ADRV and RGV (see
Additional file 2). In addition, two duplicate genes encod-
ing US22 family-like proteins were found in ADRV (6R
and 49L) and RGV (6R and 106R), whereas only one
homologue was observed in CMTYV, FV3 and TFV. Fur-
thermore, RGV is a pathogenic agent that causes lethal
disease prevailing in China [2,13,14,19], while CMTV is a
disease agent geographically confined to the European
continent [20]. Based on this information and the fact that
the Chinese giant salamander is endemic to mainland
China, we speculate that ADRV and RGV might occupy
a common or closer evolutionary emergence in these
ranaviruses.

We have been wondering about where ADRV emerges
from and why ADRV causes a lethal disease and results
in epidemic outbreaks in Chinese giant salamanders?
The current data provide significant genetic evidence for
evolutionary emergence of ranaviruses. Significant gen-
omic changes including segment inversion, and fragment
insertion and deletion were observed in comparing ADRV
to other amphibian ranaviruses. Previous studies have
shown that the inversions between different ranavirus iso-
lates reflect the high recombination rate of ranaviruses,
and these genomic rearrangements may create novel,
more pathogenic viral strains as some genes are disrup-
ted or added [18,44]. Moreover, several major virulence-
related gene variations were also identified. For examples,
two duplicate genes encoding US22 family-like proteins
are highly diversified in ADRV (6R and 49L) and RGV (6R
and 106R), and the identity percentages between amino
acid sequences ranged from 42% to 79%. US22 family
genes have been reported in various herpesviruses, adeno-
viruses, poxviruses and iridoviruses [45], and most of the
family members are associated with viral replication and
pathogenesis [46-48], suggesting that the highly diversified
US22 family-like genes might contribute to viral pathogenesis

and species susceptibility of ADRV and RGV. Another
highly variable virulence-related gene is vIF2a, in which
two functional domains (S1 and HD) are completely ab-
sent in RGV and FV3. There are only 69 and 76 amino
acids remaining in part of the C-terminal domain. Re-
cently, the role of vIF2a in blocking the antiviral effects
of cellular PKR has been confirmed in some ranaviruses
[49,50], and the truncated vIF2« in FV3 was also demon-
strated to be involved in viral pathogenesis [51]. Thus, the
variable vIF2as in ranaviruses might be associated with
viral pathogenesis and host susceptibility. The third major
gene variation is a novel gene. In ADRYV, the novel 75L
gene contains both motifs of NLS and NES, whereas its
homologues in RGV, FV3 and CMTV lack a 53 amino
acid N-terminal sequence and the NLS motif, and has
only a NES motif. NLS motifs have been suggested to be
important for quick import and export of viral nucleopro-
tein [52,53] and for efficient viral protein synthesis [54,55],
and the nuclear localization role has been demonstrated
in RGV 50L gene with an NLS motif [56]. Perhaps, the
novel 75L gene with NLS and NES motifs might be in-
volved in viral protein synthesis and transport during
ADRYV infection, and might be a strongly virulent gene.
Indeed, genome architecture changes and major gene vari-
ations are the raw material basis for evolutionary emer-
gence, and major gene variations have been shown to
determine the pathogenicity of viruses [57,58]. Therefore,
our current findings suggest that ADRV might emerge
from a common ancestor of amphibian-subgroup rana-
viruses, in which the corresponding genetic change routes
through genomic changes include segment inversion, frag-
ment insertion and deletion, and some major virulence-
related gene variations.

In conclusion, we show that ADRV is the etiologic
agent for lethal epidemic diseases in Chinese giant sala-
manders. Genome characterization and comparison ana-
lysis indicates that ADRV should be a new member of
the Amphibian subgroup of ranaviruses, and that gen-
omic architecture changes and several gene variations
may contribute to evolutionary emergence of ADRV.
Since ranavirus can infect a wide range of hosts, and its
spread has been increased with global air travel and
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anthropogenic movement of animals [18], further re-
search into exploring the ecological and anthropogenic
mechanisms of emergence of ADRV-caused diseases will
be important for controlling this emerging pathogen.

Additional files

Additional file 1: Information of 21 completely sequenced
iridoviruses. Summary of genomic sequence information of 21 iridovirus
isolates from five genera within the family /ridoviridae.

Additional file 2: Characterization of predicted open reading
frames (ORFs) of ADRV. The detailed annotation data for ADRV ORFs,
such as position, size, predicted function, conserved domain, and their
homologous comparisons with other amphibian ranaviruses are shown.
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