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Abstract

Salmonid alphavirus subtype-3 (SAV-3) infection in Atlantic salmon is exclusively found in Norway. The salmonid
alphaviruses have been well characterized at the genome level but there is limited information about the
host-pathogen interaction phenomena. This study was undertaken to characterize the replication and spread of
SAV-3 in internal organs of experimentally infected Atlantic salmon and the subsequent innate and adaptive
immune responses. In addition, suitability of a cohabitation challenge model for this virus was also examined.
Groups of fish were infected by intramuscular injection (IM), cohabited (CO) or kept uninfected in a separate tank.
Samples of pancreas, kidney, spleen, heart and skeletal muscles were collected at 2, 4 and 8 weeks post infection
(wpi). Pathological changes were assessed by histology concurrently with viral loads and mRNA expression of
immune genes by real time RT-PCR. Pathological changes were only observed in the pancreas and heart (target
organs) of both IM and CO groups, with changes appearing first in the pancreas (2 wpi) in the former. Lesions with
increasing severity over time coincided with high viral loads despite significant induction of IFN-a, Mx and I1SG15.
IFN-y and MHC-I were expressed in all tissues examined and their induction appeared in parallel with that of IL-10.
Inflammatory genes TNF-q, IL-12 and IL-8 were only induced in the heart during pathology while T cell-related
genes CD3g, CD4, CD8, TCR-a and MHC-II were expressed in target organs at 8 wpi. These findings suggest that the
onset of innate responses came too late to limit virus replication. Furthermore, SAV-3 infections in Atlantic salmon
induce Th1/cytotoxic responses in common with other alphaviruses infecting higher vertebrates. Our findings
demonstrate that SAV-3 can be transmitted via the water making it suitable for a cohabitation challenge model.

Introduction

Salmonid alphaviruses (SAV) are pathogens of salmonid
fish causing pancreas disease (PD) and sleeping disease
(SD) in Atlantic salmon (Salmo salar L.) and rainbow
trout (Oncorhynchus mykiss), respectively. They repre-
sent species of single stranded, positive polarity RNA
viruses belonging to the genus Alphavirus in the family
Togaviridae where they are the only ones infecting fish
[1,2]. At present, they have only been isolated in Europe
[3] and are responsible for great economic losses in the
farmed aquaculture industry [4]. SAV are grouped into 6
subtypes (SAV-1 to SAV-6) [5], with SAV-3 being the
only subtype restricted to Norway [6].
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Clinical signs and histopathology associated with SAV
infections are detailed elsewhere [3,7] and include de-
generation of the exocrine pancreas and myopathy of
heart and skeletal muscles. Mortalities can range from
1% to about 48% [3,8]. Commercial vaccines in the form
of injectable preparations are available despite that the
protection offered is equivocal [3]. Indeed the number of
PD epizootics has remained high over the years [9].

The development of efficacious vaccines depends on a
good understanding of protective immune mechanisms.
For SAV infections, this has not been achieved in detail
and although several studies have been undertaken to
examine host responses, very few have addressed in-vivo
immune responses besides Desvinges and co-workers
[10] who showed that phagocytic activity of head kidney
leucocytes, levels of lysozymes and complement were
significantly elevated following experimental infections,
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indicating an active immune reaction. These authors,
however, failed to detect the interferon response prob-
ably due to the poor sensitivity of the method used.
Interferons are the hallmark of antiviral responses in
most living organisms [11] and have been shown to be
important for the host response against alphaviruses in
higher vertebrates [12]. They comprise three classes of
cytokines (types I to III). Amongst the three types, types
I (IEN o, B, o, & k) and III (\) are directly induced by
viruses [11,13-15]. For the remaining of this article, we
will not differentiate between IFN subtypes.

Following entry into the host, virus nucleic acids are
sensed by host pattern recognition receptors (PRR) in-
cluding Toll-like receptors (TLR 3/7/8/9) in endosomes
and retinoic acid inducible gene I (RIG-I), melanoma
differentiation factor-5 (MDAS5) and DNA-dependent ac-
tivator of IFN regulatory factors (DAI) in the cytosol
[16]. Once activated, the receptors signal via MyD88/
TRIF adaptors (TLR) or through the mitochondrion-
associated adaptor IPS-1 (RIG-I and MDAS5), all culminat-
ing in the phosphorylation and translocation of interferon
regulatory factors (IRF) into the nucleus where they
induce transcription of IFNa and IFEN[ genes resulting in
the production of IFN [17-19]. Interferons exert their
effects by binding to IFN receptors (IFNAR) on target cells
thereby triggering signal transduction via the Janus kinase
Signal transducer activator of transcription pathway [20].
This leads to the transcription of an array of antiviral
genes such as Mx, ISG-15, double stranded protein kinase
R (PKR) and 2-5oligoadenylate synthetase (OASs)
[21-23]. It is also noteworthy that a positive feed-back loop
exists whereby IFNa and IFNP act through IFNAR to
up-regulate virus sensing and enhance antiviral responses
[16].

Through in-vitro studies, it has been shown that IFN«
induces protection against SAV-3 induced-CPE in Atlan-
tic salmon head kidney (TO) cells [24]. This is, however,
dependent on the time of exposure to interferon prior to
infection. Furthermore, a positive correlation between
[FNa-stimulated gene Mx expression and protection of
cells against SAV-induced CPE has also been demon-
strated [25,26]. The situation in-vivo, however, remains
poorly understood. The in-vivo environment represents
a complex milieu that differs from that of in-vitro set-
tings. For interferons, it has been shown that these
environments can vyield different effects on viruses
[27,28]. While a recent study has shown that I[FNa and
its stimulated genes are up-regulated at early time (1-5
days) in the kidneys following SAV-1 infection of Atlan-
tic salmon [29], antiviral responses in target organs re-
main unknown. The purpose of the present study
therefore was to examine in-vivo host responses, espe-
cially IFNa and ISG, following experimental infection of
Atlantic salmon with SAV-3 in target organs. Real-time
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PCR was used to assess gene expression changes. Al-
though interferon expression is known to be important
at early times following infection, sampling times of 2, 4
and 8 weeks following virus injection were chosen in the
present study since this is when pathological changes are
known to occur. Besides, interferon responses are known
to play a role in the clearance of viruses even after the
onset of adaptive immune responses [27]. Cohabitants
were included in order to determine the suitability of
such a model for fish challenges against SAV-3. Our
findings demonstrate that the virus yield and pathology
progress despite the expression of interferon and related
genes, in conformity with earlier reports [24].

Materials and methods

Virus isolation and cell culture

Chinook salmon embryonic cells (CHSE-214; ATCC
CRL-1681) were used for virus propagation. The cells
were maintained at 20°C with L-15 media (Invitrogen,
Paisley, UK) supplemented with 5% FBS, L-glutamin and
gentamycin. The virus used in the present study has pre-
viously been described [24], is fully sequenced and
shown to be a typical SAV-3 subtype [GenBank:
JQ799139].

Experimental challenge

Approximately 70 Atlantic salmon (Salmo salar L.) pre-
smolts purchased from Sersmolts AS in Sannidal, Nor-
way and weighing 35 + 10 g were used. The fish were
healthy and the hatchery from which they were pur-
chased had had no previous records of PD outbreaks.
The fish were transported to the Norwegian School of
Veterinary Science/Veterinary Institute shared wetlab by
road in oxygenated bags. After 1 week acclimatization,
the fish were treated with formalin (diluted 1:4000 in
water) against ectoparasites for 30 min. The fish were
then kept for a further week prior to the start of the
experiment.

Challenging of the fish was done by first anaesthetizing
them with 0.5 mL chlorobutanol per 1L of water. Thirty
fish were injected intramuscularly (IM) with 0.2 mL of
the virus (2 x 10° TCIDsy/mL). One group of 15 unin-
fected fish were fin-clipped and cohabitated with the
virus-injected group to document virus replication to a
level that will result in virus shedding and spread
through water. The control group consisted of 15 fish
that were injected with L-15 medium and were kept in a
separate tank from the SAV-infected fish.

Sample collection

At 2, 4 and 8 weeks post-infection (wpi), 10 SAV-3
injected fish, 5 cohabitants and 5 control fish were sacri-
ficed. Parallel tissues including head kidney, spleen,
heart, pancreas and muscle were collected in 10%
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phosphate buffered formalin for histopathology and
RNAlater (Sigma, St. Louis, USA) for gene expression
analysis. Tissue samples preserved in formalin were fixed
for a minimum of 4 days while those kept in RNAlater
were stored at —80°C until required.

Histopathology

Paraffin-embedding, sectioning and staining with
hematoxylin and eosin (H&E) were done according to
standard histological procedures.

RNA isolation and cDNA synthesis

Total RNA was isolated using the RNeasy mini Kit (Qia-
gen, Hilden, Germany) with on-column DNase treat-
ment according to the manufacturer’s instructions. The
concentration of RNA was determined by spectropho-
tometry using the Nanodrop ND1000 (Nanodrop Tech-
nologies, Wilmington, USA). For each sample, 1 pg of
total RNA was subjected to cDNA synthesis using the
SuperScript III reverse transcriptase system (Invitrogen,
Paisley, UK) and oligo(dT),o primers in a total volume
of 20 pL. The synthesized cDNA was diluted 5 times by
adding 80 uL distilled water and stored at —20°C until
further use.

Quantitative real-time PCR

Quantitative real-time PCR was performed using the
LightCycler® 480 (Roche, Mannheim, Germany) instru-
ment. For each gene, 2 uL of cDNA was used as tem-
plate in a mixture of specific primers (10 uM) and the
LightCycler 480 SYBR Green I Master mix (Roche) in a
final volume of 20 pL. The mixtures were first incubated
at 95°C for 10 min, followed by 40 amplification cycles
(10 s at 95°C, 20 s at 60°C and 8 s at 72°C). The
sequences of all primers used in this study are provided
in Table 1.

For the viral E2 gene, the reaction mix containing 10
puL of Probe Master, 1 pL of primer-probe mix (final
concentration of each primer (0.9 uM, probe 0.25 uM),
2 pL of cDNA template and 7 puL water was incubated
for 10 min at 95°C, followed by 45 amplification cycles
(10 s at 95°C, 30 s at 60°C and 1 s at 72°C). To calculate
the absolute quantity of the virus, recombinant pGEM-T
easy (Promega, Madison, USA) plasmid containing the
E2 gene of SAV-3 was used to make a standard curve in
nine orders of magnitude from 10° to 105, thus the copy
number or viral cDNA was determined. The specificity
of the PCR products from each primer pair was con-
firmed by the melting curve analysis and subsequent
agarose gel electrophoresis.

The relative expression of the following genes was
examined: [FN-a, Mx, ISG-15, IFN-y, TNF-a, IL-12, IL-
10, IL-8, CD3e, CD4, CD8, TCR-a, MHC-I, and MHC-
II. To calculate the gene products, the 2-CT method was
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used as described elsewhere [31]. All quantifications
were normalized to B-actin.

Statistical analysis

One-way ANOVA with the Bonferroni post test was per-
formed using GraphPad Prism version 5.00 for Windows
(GraphPad Software, San Diego, CA, USA). The signifi-
cant level for rejection of Ho was set at p < 0.05.

Results

Pathological changes, viral load and innate immune
responses

Salmonids challenged with SAV do not develop clinical
signs and mortalities are absent [3,32,33] but intramus-
cular or intraperitoneal injection of virus has been
shown to result in an infection with high replication
levels in target organs [32] with reproducible pathology.
These infections are typically observed from 3 weeks
post challenge and onwards, but with some differences
between subtypes [34]. In order to understand the dy-
namics of infection we studied the interaction between
viral proliferation of SAV-3 and host responses. This
included, firstly, the description of pathology in primary
target organs (pancreas and heart) and concomitantly,
an assessment of virus replication levels in these organs;
secondly, an assessment of the innate host responses
following infection by examination of certain cellular
markers and cytokines at transcription level before
attempting to characterize the ensuing adaptive im-
mune response. Tissues tested included primary target
organs of SAV-3 and also the secondary replication
site (skeletal muscle). In addition we also examined
virus replication and also innate and adaptive immune
genes in the head kidney and spleen. The expression
of genes in the group injected intramuscularly (IM) as
well as cohabitants (CO) were reported as mean fold
changes relative to the control group.

Fish intramuscularly injected with SAV-3

In the IM group, pathological changes were first
observed at 2 weeks post infection (wpi) in the pancreas
characterized by acinar cell necrosis (Figure la), con-
comitant with high virus replication (Figure 2a). This
was found despite high up-regulation of IFN« expression
at 2 wpi (Figure 3a), increased expression of interferon-
stimulated genes (ISGs) Mx (Figure 3b) and ISG-15
(Figure 3c). At 4 wpi, advanced degeneration and necro-
sis of acinar cells as well as inflammatory cell infiltration
was observed in this group (Figure 1b), and correspond-
ingly higher virus replication at this time point, increas-
ing slightly from 2 to 4 wpi, albeit non-significantly
(Figure 2a). Despite a higher inflammatory index in the
pancreas at 4 wpi, there was no additional increase in
expression of IFN-a; the expression was not different at
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Table 1 Primers and probe sequences used for quantitative real-time PCR

Genes Primer sequence GenBank accession no.

B-actin Fwd CCAGTCCTGCTCACTGAGGC AF012125
Rev GGTCTCAAACATGATCTGGGTCA

SasalFN-a Fwd TGGGAGGAGATATCACAAAGC AY216594
Rev TCCCAGGTGACAGATTTCAT

Mx Fwd TGCAACCACAGAGGCTTTGAA U66475
Rev GGCTTGGTCAGGATGCCTAAT

ISG15 Fwd AAGTGATGGTGCTGATTACGG AY926456
Rev TTGGCTTTGAACTGGGTTACA

IFN-y Fwd CTAAAGAAGGACAACCGCAG AY795563
Rev CACCGTTAGAGGGAGAAATG

TNF-a (1&2) Fwd AGGTTGGCTATGGAGGCTGT NM_001123589
Rev TCTGCTTCAATGTATGGTGGG NM_001123590

IL12-B Fwd CTGAATGAGGTGGACTGGTATG BT049114
Rev ATCGTCCTGTTCCTCCG

IL-10 Fwd CGCTATGGACAGCATCCT EF165029
Rev AAGTGGTTGTTCTGCGTT

IL-8 Fwd GGCCCTCCTGACCATTACT NM_001140710
Rev ATGAGTCTACCAATTCGTCTGC

CD3- Fwd TCAGGGCTCGGAAGAAGTCT NM_001123622
Rev GCCACGGCCTGCTGA

CD4 Fwd GAGTACACCTGCGCTGTGGAAT NM_001124539
Rev GGTTGACCTCCTGACCTACAAAGG

CD8-a Fwd CACTGAGAGAGACGGAAGACG NM_001123583
Rev TTCAAAAACCTGCCATAAAGC

TCR-a Fwd GCCTGGCTACAGATTTCAGC BT050114
Rev GGCAACCTGGCTGTAGTAGC

MHC | Fwd CTGCATTGAGTGGCTGAAGA AF508864
Rev GGTGATCTTGTCCGTCTTTC

MHC I Fwd TCTCCAGTCTGCCCTTCACC BT049430
Rev GAACACAGCAGGACCCACAC

NSAV-E2* Fwd CAGTGAAATTCGATAAGAAGTGCAA EF675594
Rev TGGGAGTCGCTGGTAAAGGT

E2 Probe* FAM-5"- AGCGCTGCCCAAGCGACCG- 3-MGB

*From Hodneland & Endresen [30].

2 wpi compared to 4 wpi (Figure 3a). The same was
observed with Mx and ISG-15 (Figure 3b and c). By 8
wpi, these pathological changes progressed to the extent
that most of the exocrine pancreatic tissue had been lost
(Figure 1c). This resulted in a further decline in the
amount of virus (Figure 2a; p < 0.001), as would be
expected when the tissue supporting virus replication is
lost. IFN-a expression at 8 wpi (Figure 3a) had been
reduced to background levels (p < 0.01), also in con-
formity with the loss/destruction of most of the exocrine
pancreatic tissue at this time point. Mx and ISG-15 also
fell to background levels (Figure 3b and c).

In the heart, no histopathological changes were
observed at 2 wpi (Figure 1d) and the first lesions were

observed at 4 wpi, seen as necrotic myocardial cells in
the spongy layers (Figure le). IEN-a was markedly upre-
gulated by 2 wpi but unlike the pancreas, the expression
in the heart remained fairly constant (p = 0.05) from 2
to 4 wpi (Figure 3a). Similarly, Mx and ISG-15 was
markedly upregulated by 2 wpi, 50-fold and 640-fold, re-
spectively. Despite this, there was a sharp increase in
viral load during this period (Figure 2a, p < 0.001). By 8
wpi, the severity of lesions in terms of necrotic cardio-
myocytes increased and there was a marked infiltration
of inflammatory cells not seen at 4 wpi, firstly in the
ventricular spongy layer, then extending to the compact
layers (Figure 1f). Occasionally, necrotic cells were also
found in the atrium. The viral load remained unchanged
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Figure 1 Pathological changes in different tissues of Atlantic salmon following infection with salmonid alphavirus subtype 3. (A)
Pancreas, 2 wpi. Arrows = Multifocal necrosis in exocrine pancreatic cells.); (B) Pancreas, 4 wpi. Star = necrotic areas; (C) Pancreas, 8 wpi. Note
depleted exocrine tissue; (D) Heart (ventricle), 2 wpi, normal; (E) Heart (ventricle), 4 wpi. Arrow = necrotic myocardial cell; (F) Heart (ventricle),
8 wpi, extensive cardiomyocytic necrosis and infiltration of inflammatory cells in the compact and spongious layers.

from 4 to 8 wpi (Figure 2a). At 8 wpi there was a moder-
ate increase of IFN-a expression (non-significant) con-
sistent with the increase in inflammatory response at
this time point (Figure 1f). The expression of Mx was
lower (non-significant) and markedly down for 1SG-15
(p < 0.001) in this organ (Figure 3b and c).

While no histopathological changes were found in the
skeletal muscle over the course of the experiment, there
was a steady increase in viral load from 2 to 8 wpi
(Figure 2a, p < 0.001; 2w versus 8w and 4w versus 8
wpi). In the skeletal muscles, IFN-a was not differen-
tially expressed at 2 and 4 wpi although both Mx and
ISG-15 were significantly up-regulated at these time
points (Figure 3b and c). At 8 wpi however, IFN-a ex-
pression was significantly up-regulated (p < 0.001), coin-
ciding with high expression levels of Mx and ISG-15
(Figure 3b and ¢; p < 0.001).

While there was a relatively high replication of virus
(1 logyp less than the target organs) in head kidney and

-

spleen (Figure 2a), no lesions were observed in these
organs throughout the study period.

Cohabitant fish
In these fish, the virus was detected in all organs at all
sampling times except at 2 wpi in the skeletal muscle
(Figure 2b). At 2 and 4 wpi, low viral loads (about 10” to
10° copy numbers/pg of total RNA) were detected in tis-
sues (Figure 2b). This translated to 2-3 log;, times
lower than the virus detected in the IM group and these
viral loads were associated with no pathology. At 8 wpi
however, the virus load had increased to above 10° copy
numbers/pg of total RNA in the pancreas and heart, co-
inciding with histopathological changes. The lesions in
these organs were similar to those observed in the IM
group at an earlier sampling time point (Figure 1).

The expression of IFNa in all organs sampled followed
a similar trend i.e. induced at 2 wpi followed by a slight
drop at 4 wpi and an increase again at 8 wpi (Figure 3d).

>

logsg copy/ug total RNA

Pancreas. Heart Muscle Kidney Spleen

Figure 2 Salmonid alphavirus subtype 3 replication in different tissues of Atlantic salmon. A) Viral replication in different organs in
intramuscularly-injected fish (average +SEM; n = 6 except for muscle where n = 3) (*p < 0.001). B) Viral replication in different organs of
cohabitant fish at indicated time points. (average +SEM; n = 2 to 5) (*p < 0.001). wpi = weeks post infection. The virus was measured by the
detection of copies of the E2 gene by real-time RT-PCR, expressed as log;, of total RNA.
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Figure 3 Expression of interferon alpha and ISG in different tissues of Atlantic salmon following injection and cohabitation challenge.
IFN-a (A), Mx (B) and ISG-15 (C) gene expression measured at different times post challenge in injected fish. Mean values + SEM relative to the
mean of the control group (n = 9-10, except for muscle n = 3). Similar responses are presented in cohabitant fish, IFN-a (D), Mx (E) and ISG-15
(F) in the pancreas, heart and muscle tissues. Mean values + SEM relative to the mean of the control group (n = 3-5). *p < 0.01, **p < 0.001.

This pattern was the same as that of IFN-induced genes
Mx and ISG-15 in the heart. In the pancreas and skeletal
muscles however, the expression of IFN-induced genes
increased with time from 2 to 8 wpi (Figure 3e and 3f).
It is noteworthy that the expression of IFNa, Mx and
ISG-15 increased in the presence of pathology, consist-
ent with the observations in the IM group.

Control fish

No mortalities were observed in any of the groups of fish
in this study. No viruses were detected from the control
fish, nor were any lesions observed.

Expression of immune-related genes of adaptive
immunity

The mRNA expression of IFN-y, TNF-a, IL-12, IL-10,
IL-8, CD3¢, CD4, CD8, TCR-a, MHC-I, and MHC-II
were examined in the spleen, head kidney, pancreas and
heart in addition to IFN-a and ISG described in the pre-
vious section.

The earliest immune response to the infection was
observed in the head kidney, with IFN-y, IL-10 and
MHC-I being significantly up-regulated at 2 wpi indicat-
ing a pro-inflammatory response (Table 2). At the same
time point, MHC-I was also up-regulated in the
pancreas.

By 4 weeks, the head kidney and spleen showed a
similar pattern with IFN-y, IL-10 and MHC-I being up-
regulated (Table 2). For the head kidney, MHC-II was
also found to be up-regulated, although moderately
while there was a down-regulation of CD8 and TCR-a
(Table 2), possibly as an indication of export of these

cells to the site of infection (pancreas and heart). Several
pro-inflammatory genes were up-regulated in the pan-
creas and heart at this time point including IFN-y (in
both organs), TNF-a (heart), and MHC-I in the heart. In
addition IL-10 was markedly up-regulated in the pan-
creas (Table 2).

At 8 wpi, fewer genes were differentially regulated in
the spleen and head kidney. In the former, the expres-
sion of IL-10 continued to be induced probably to
dampen the immune response while IL-8, a chemo-
attractant was up-regulated at this time point (Table 2).
In the head kidney, only MHC-I and IL-10 were induced
at 8 wpi. In contrast, more immune-related genes were
induced in the primary target organs (pancreas and
heart) at 8 wpi compared to earlier time points. In the
pancreas, there was a marked up-regulation of T cell
markers/T cell responses (CD3, CD4, CD8, TCR, MHC-
I) plus IL-10 while in the heart, all these genes as well as
pro-inflammatory markers (IFN-y, TCR-«, IL-12, IL-8
and MHC-II) were induced (Table 2).

Discussion

In this study we show that SAV-3 infection of Atlantic
salmon cause pathology in target organs alongside high
viral replication despite high expression levels of IFNa
mRNA and interferon-stimulated genes, ISG-15 and Mx,
at early time points post challenge. Type 1 interferons
are well known for the establishment of an antiviral state
in neighboring uninfected cells following viral invasion
in vertebrates [11,13]. This is most important during the
early stages of an infection, prior to the onset of the
adaptive immune response. The increase in viral loads



Table 2 Relative expression of immune related genes in different tissues of Atlantic salmon after SAV-3 infection

Tissues Spleen Head kidney Pancreas Heart
Genes Weeks

2 4 8 2 4 8 2 4 8 2 4 8
IFN-y 0.7+02 2.4 + 0.5% 08 £0.1 3.0 £ 0.7* 4.1 £ 1.1* 08 £ 0.1 34+£07 7.2 £ 0.9*% 1.5+ 04 1.1 £02 6.3 = 3.0% 89.3 + 23.2%
TNF-a 05+ 0.1 0.7 £0.1 14+£04 12+03 10+03 06 £0.2 13+03 14+02 12+0.1 22+09 2.5 +0.3*% 8.1 + 1.5%
IL-12 07 0. 16+02 08+02 08 + 0.1 1.0+ 0.1 1.0+ 0. 22+03 0.6 + 0.1** 17 +04 10+03 09+02 3.3 +0.7%
IL-10 09 £ 0.1 7.5 £ 1.4* 2.8 = 0.5% 10.0 = 1.6* 21.2 + 4.1* 4.7 £ 1.1* 3.1 £06 239 + 6.5*% 3.2 £ 0.8* 1.1£03 41 +15 373 £ 7.6*
IL-8 15+03 15+ 06 3.0 + 0.6* 10+ 04 23+£08 19+05 13+02 17+02 14+02 10£0.1 17 +03 5.7 +1.2*%
CD3-¢e 09 £ 0.1 09 £ 0.1 0.7 £0.1 06 £ 0.1 16 £02 1.7 £04 1.5+03 14 £ 0.1 1.7 £ 0.2* 10+02 13+02 104 = 1.9*
CD4 0.7 £0.1 1.3+£0.1 11 +02 0.7 £0.1 09 £ 0.1 1.1 £01 12+02 1.1 £02 1.9 + 0.3* 1.1£05 25+07 11.1 £ 1.8*
D8 12+02 13+03 12+03 10+03 0.5 + 0.1%* 0.7 £0. 0.4 + 0.0%* 0.7 £0. 2.1 £ 0.2% 10+02 08+03 51.6 £ 9.7*
TCR-a 15+02 1.0+ 0.1 1.0+02 0802 0.6 + 0.1** 0.7 £0.1 14 £ 0.1 14 +£02 2.0 £ 0.3* 05+0.1 08 +£02 16.4 + 2.5%
MHC | 1.7 £02 3.1 £ 0.2* 15+02 1.7 + 0.2* 24 £ 0.2% 1.5+ 0.1* 3.7 £ 0.7* 14 +£02 2.1 £ 0.2* 1.5+03 4.4 * 0.5* 8.2 + 0.8*
MHC I 1.1+£01 16+02 12+02 09+ 0.1 1.7 £ 02* 14+£02 18+03 14+£02 16 £03 0.5 + 0.1** 1.5+03 5.1 £ 0.8*

The results are shown as mean fold change + standard error of virus infected group relative to the mean of the control group. Key: *Significantly up-regulated; **Significantly down regulated, otherwise not
differentially induced (P > 0.05).
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over time in target organs (pancreas, heart and skeletal
muscles) and the progression of pathology in the pan-
creas and heart despite the up-regulation of IFN-a, Mx
and ISG-15 (Figure 3) suggest that the onset of the in-
nate response comes too late to limit virus replication.
This fits well with a previous report where treatment of
cells with IFN-a at the same time as SAV-3 infection
failed to protect the cells against CPE in an in-vitro
model [24].

All tissues examined in the present study contained
SAV-3 and the kinetics of viral loads were in general
consistent with the trends of expression of IFN-a, in
common with reports of previous studies done in Atlan-
tic salmon-derived cells [24] and also with other viruses
[35]. The anticipation is that SAV-3 was sensed by host
cells via pattern recognition receptors such as MDA-5
and LGP2 [36] leading to the expression and induction
of IFN-a and consequently ISG [28]. The trends of in-
duction of Mx and ISG-15 by IFN-a were, on average,
consistent with previous reports [24,25] while the rela-
tionship between the expression profiles was not always
proportional and for ISG-15, a somewhat different ex-
pression pattern was observed in some tissues of the IM
group. In one study using an in-vitro model to assess
the induction of ISG by IFN-«, similar inconsistencies
were observed [37]. These findings probably reflect the
complexity of the interferon signaling pathways or the
diversity in fish since most fish ISG are often duplicated
[13], as well as the effect of IFN-« independent stimula-
tion of ISG [38,39].

In higher vertebrates, down-stream effects of IFN-o/f3
induction include the increased expression of MHC I
molecules [40] and activation of NK cells [41,42]. From
the genes examined in the present study (Table 2), MHC
I was one of the earliest genes to be induced in each
organ following increased virus expression and up-
regulation of IFN-a. This was consistent with previous
reports where a strong association was found between
IFN induction and the transcription of MHC I gene [43].
MHC 1 is expressed in all nucleated cells and its tran-
scription is elevated during viral infections as a result of
IFN-a/f induction and more especially, IFN-y [44]. It is
noteworthy that in the present study, MHC I was also
induced in almost all tissues where IFN-y was up-
regulated (Table 2), suggesting an association between
the two genes in SAV infections in Atlantic salmon as
also reported by others [37].

IFN-y is a powerful pro-inflammatory cytokine pro-
duced by cells of the lymphocyte lineage and is required
for the control of intracellular pathogens [45]. Its target
cells are mainly those of the monocytic origin but CD4"
Th1 cells are also activated [46,47]. In the present study,
the expression of IFN-y at 2 and/or 4 wpi in all organs
analyzed suggests the involvement/activation of NK-like
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cells as part of the innate response since at these time
points, there was no accompanying expression of T cell-
related genes (CD4", CD8", TCR, CD3g) (Table 2). This
was consistent with the report that NK cells are the pri-
mary source of IFN-y during the innate immune re-
sponse [11,48]. However at 8 wpi, the expression of
different genes (MHC I, CD8, TCR, MHC II, IL-12,
CD4, TCR and CD3e genes as well as the augmentation
of IFN-y) in the heart suggests a combined cytotoxic
and Thl mediated response. The pathological changes
observed and the infiltration of inflammatory cells
(Figure 1) fit very well with the expression of TNF-a and
IL-8. It is noteworthy that the up-regulation of genes
suggestive of a Thl/cytotoxic response was associated
with inflammation/pathology at 8 weeks, with the reac-
tion in the pancreas being greatly down-scaled suggest-
ing a contraction phase. Even though IFN-y has been
shown to have a mild direct effect on SAV-3 [24], it
appears to play an important role in shaping the cell
mediated response or possibly contributes to the path-
ology seen in the target organs.

In conformity with the latter notion, it has been shown
from studies of higher vertebrates that the expression of
IFN-y requires tight control since it can lead to immu-
nopathology [49]. Furthermore, it has also been demon-
strated that IFN-y producing cells are suppressed by
IL-10. IL-10 on the other hand, is itself produced by a
large number of immune cells including regulatory and
IFN-y producing T cells [45,50,51]. In the present study
IL-10 was consistently induced alongside IFN-y, with the
two genes showing similar trends (Table 2) that also
rhymed with viral loads in individual tissues. These find-
ings suggest the conservation of the regulation of these
genes in vertebrates.

In the present study, no samples were collected prior
to day 14 in the IM group, therefore, data showing the
initial distribution of virus before this time is lacking.
However, the viral loads of cohabitants at 2 wpi repre-
sent infection at an earlier time point compared to 2 wpi
in the IM group. These results suggest that the pancreas,
heart, kidney and spleen are probably all infected about
the same time although the virus ultimately replicates to
different levels in the different organs, with the highest
load being reached in the pancreas and heart in the co-
habitant group (Figure 2b). In the IM group, the virus
was administered via skeletal muscle injection and it is
not unlikely that an initial replication of virus occurred
at the injection site, probably followed by the “draining”
of the virus to other organs. The association between
high viral loads and pathology in the pancreas and heart
(Figures 1 and 2) suggest that the virus threshold for
pathology in these organs is just above 10° virus RNA
copy numbers/ug of total RNA. The presence of SAV-3
in all tissues examined was consistent with previous
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reports that the virus has a wide range of tissue tropism
in Atlantic salmon [32]. The finding of the highest viral
load and pathology in the pancreas at 2 wpi in the IM
group compared to other tissues is interesting especially
since the viral loads culminated in all organs except the
skeletal muscle at 4 weeks. This suggests that the pan-
creas is the most preferred site of SAV-3 replication.
Several other reports allude to the pancreas as the first
organ in which pathology is observed following SAV in-
fection [3,33] and this fits with the definition of virus
tropism, that being the ability of a virus to infect or
cause damage to cells or tissues. On the contrary the
slow and protracted increase in viral load in the skeletal
muscles suggests that the organ is a site for viral persist-
ence, in agreement with previous studies that have
reported virus in this organ long after infection [32].

No lesions were observed in the skeletal muscles in
the present study, in contrast with previous reports
[3,7]. The viral load during the final sampling of the
study was on the increase suggesting that termination at
8 weeks was probably too early, which would explain the
lack of lesions. For mice infected with Sindbis virus fa-
talities occur when the virus invades the neurons [12].
For SAV-3 infections in Atlantic salmon, it is not clear
which organs or the degree of pathology correlate with
mortalities and should be a subject for further studies.

As already stated, a relationship exists between the
viral load and tissue pathology, i.e. a viral load threshold
has to be reached before pathology is caused. The delay
in this threshold and also in the appearance of patho-
logical changes in cohabitants in the present study com-
pared to the IM group is consistent with a previous
report where pathological changes in the former were
not observed until 3 weeks following challenge [34].
These findings demonstrate that SAV-3 can spread via
water, making the cohabitation challenge a possibility.
The IM route of infection for SAV-3 is not natural since
it is expected that fish get infected either through vec-
tors or the water itself. Challenge studies using the co-
habitation model have previously been described
although they have not performed according to expecta-
tions firstly because of the difficulty to induce mortalities
experimentally for SAV in general [32,34,52] and sec-
ondly because the strength of virus challenge seems to
be somewhat attenuated compared to IM challenge [53].
In the present study, the presence of virus at low titers
in cohabitants (Figure 2b, 2 and 4 wpi) probably allowed
the fish to mount a protective immune response result-
ing in the delay/down regulation of pathology. Cohabit-
ation challenge models for this virus should therefore
aim to produce high quantities of infectious virus by
shedders in order to enhance pathology in cohabitants
or increase the number of shedders and thereby raise
the infection pressure.
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Finally, the rational development of vaccines offering
protective immunity against pathogens relies on know-
ledge of basic immune responses to particular infections.
This is not known in detail for SAV-3 infections in At-
lantic salmon although a recent study performed by our
group points to antibody responses playing a role [54].
In the present study, we demonstrate that SAV-3 infec-
tions induce mRNA transcripts of genes including IFN-«
and its stimulated genes (ISG) at early time, followed by
IEN-y, TNF-a, IL-12, IL-10, IL-8, CD3e, CD4, CDS§,
TCR-a, MHC-I, and MHC-II as the infection progresses.
This is similar to what has been observed in other alpha-
virus infections in higher vertebrates [12,55], and sug-
gests that the protection of fish against SAV-3 should be
aimed at protocols that include eliciting both Thl polar-
ized and/or cytotoxic responses.
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