
VETERINARY RESEARCH
do Nascimento et al. Veterinary Research 2012, 43:66
http://www.veterinaryresearch.org/content/43/1/66
RESEARCH Open Access
Mycoplasma haemocanis – the canine
hemoplasma and its feline counterpart in the
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Abstract

Mycoplasma haemocanis is a hemotrophic mycoplasma (hemoplasma), blood pathogen that may cause acute
disease in immunosuppressed or splenectomized dogs. The genome of the strain Illinois, isolated from blood of a
naturally infected dog, has been entirely sequenced and annotated to gain a better understanding of the biology
of M. haemocanis. Its single circular chromosome has 919 992 bp and a low G+C content (35%), representing a
typical mycoplasmal genome. A gene-by-gene comparison against its feline counterpart, M. haemofelis, reveals a
very similar composition and architecture with most of the genes having conserved synteny extending over their
entire chromosomes and differing only by a small set of unique protein coding sequences. As in M. haemofelis,
M. haemocanis metabolic pathways are reduced and apparently rely heavily on the nutrients afforded by its host
environment. The presence of a major percentage of its genome dedicated to paralogous genes (63.7%) suggests
that this bacterium might use antigenic variation as a mechanism to evade the host’s immune system as also
observed in M. haemofelis genome. Phylogenomic comparisons based on average nucleotide identity (ANI)
and tetranucleotide signature suggest that these two pathogens are different species of mycoplasmas, with
M. haemocanis infecting dogs and M. haemofelis infecting cats.
Introduction
Hemotrophic mycoplasmas (hemoplasmas) are uncultiv-
able cell-wall less bacteria, formerly classified as Haemo-
bartonella and Eperythrozoon species, that adhere to the
surface of the erythrocytes of their vertebrate hosts.
These bacteria form a new clade within the Mycoplasma
genus (class Mollicutes) and are phylogenetically related
to the pneumoniae group of the mycoplasmas [1-5].
Mycoplasma haemocanis [Haemobartonella canis] was

first described in Germany in 1928 in a splenectomized
dog [6]. The name Bartonella canis was proposed and
remained until 1939 when Tyzzer and Weinman created
the new genus Haemobartonella [7]. M. haemocanis,
proposed species name since 2002 [5], is a pleomorphic
bacterium with coccoid and ring forms that can be
visualized in the host’s peripheral blood smear either
singly or in chains that can resemble a “violin-bow”
form [8]. It may cause overt, hemolytic anemia in
* Correspondence: ncannes@purdue.edu; jmessic@purdue.edu
1Department of Veterinary Pathobiology, Purdue University, 725 Harrison
Street, West Lafayette, IN 47907, USA
Full list of author information is available at the end of the article

© 2012 do Nascimento et al.; licensee BioMed
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
immunosuppressed [5,9] or splenectomized dogs [5,10],
and has a worldwide distribution with prevalence of
infection varying from 0.5% to 40% [11-14].
Similarities with the feline hemoplasma M. haemofelis

[Haemobartonella felis], together with the fact that hemo-
plasmas are not species-specific as previously thought
[15,16], led some research groups to hypothesize that
these two bacteria could be the same species infecting
different hosts [17,18]. Moreover, there are some reports
in the old literature stating that M. haemocanis could
infect cats; however M. haemofelis did not cause infection
in dogs [19-21]. In 1961, Dr Lumb published the manu-
script “Canine haemobartonellosis and its feline counter-
part”, reporting cross-transmission experiments: it was
shown that when blood from cats infected withM. haemo-
canis was injected into susceptible splenectomized dogs,
organisms could be seen on their peripheral blood smears
[8]. It was concluded based on this evidence that the feline
might act as a reservoir for M. haemocanis. However, blood
from dogs previously injected with M. haemofelis inocu-
lated into susceptible cats failed to result in circulating
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organisms, leading to the conclusion that these two bacteria
were different species [8,22]. Forty years later, the sequences
of the 16S rRNA genes of these two bacteria were reported
to have 99% identity [17] raising the same question again.
In 2002, the sequences of the RNase P genes of these bac-
teria were reported having 94.3 to 95.5% identity [18].
While the results of the RNase P genes did not support the
hypothesis that M. haemocanis and M. haemofelis were
identical, this additional data was still considered insuffi-
cient to determine whether these organisms should be clas-
sified as different species, subspecies, or strains of the same
species [18].
Recently, three species of hemoplasmas, including

M. haemofelis, had their genomes completely sequenced
and annotated [23-27]. The aim of this study was to
sequence the whole genome of M. haemocanis in order to
better understand its biology and to perform a complete
genomic comparison with its counterpart, M. haemofelis.

Materials and methods
Bacterial strain and DNA isolation
M. haemocanis organisms were isolated from the blood
of a naturally infected dog at peak of bacteremia [17].
Written informed consent was obtained from the client
for publication of this report. Bacterial genomic DNA
was extracted using Quick-gDNA MiniPrep kit accord-
ing to the manufacturer’s instructions (Zymo Research,
Irvine, CA, USA).

M. haemocanis strain Illinois sequencing and assembly
Whole genome was sequenced from paired-end libraries
(TruSeq DNA sample preparation kit, Illumina, San
Diego, CA, USA) using 20% of an IlluminaW v3 chemis-
try lane (HiScanSQ). Sequencing resulted in 15.7 million
high-quality filtered read pairs with an average read
length of 2 × 100 nucleotides and a > 3400 X genome
equivalent coverage. Reads were assembled using
ABySS-PE v1.2.7 utilizing 20% of the reads with “kmer”
set to 95 bases [28]. Predicted scaffolds with significant
BLAST matches to canine DNA were excluded and the
remaining mycoplasma scaffolds were then organized
based on the orientation predicted in the assembly and
on the genome sequence of M. haemofelis strain Ohio2.
A total of 13 gaps were identified and closed using con-
ventional PCR followed by Sanger sequencing.

Genome annotation and analyses
First pass annotation was achieved using the NCBI an-
notation pipeline. Manual annotation/curation of each
gene was performed using the annotation tool Manatee,
provided by the Institute for Genome Sciences (IGS) at
the University of Maryland, School of Medicine. Com-
parative analyses with other bacterial genomes were
performed based on genomic data deposited in the
NCBI database (NCBI, Bethesda, MD, USA).
The assignment of paralogous gene families was per-

formed using BLASTclust tool provided by Max-Planck
Institute for Developmental Biology [29], with 70% cov-
ered length and 30% sequence identity thresholds. Sub-
cellular localization and protein sorting signals were
predicted for each unique protein coding sequence
(CDS) of M. haemocanis and M. haemofelis using
PSORTb v.3.0 [30,31]. Metabolic pathways were pre-
dicted based on the KEGG pathway database [32] and
the study reported by Yus et al. [33]. Presence of lipo-
proteins was predicted by LipoP version 1.0 software
[34]. In addition, the tandem repeats were identified
using the Tandem repeats finder program [35]. Com-
parative analyses of the whole genome of M. haemocanis
and M. haemofelis strain Ohio2 were performed using
the same tools mentioned above and all the CDSs from
both genomes were evaluated using BLASTp and/or
BLASTn in order to obtain a complete detailed compari-
son. CDSs were assigned using BLASTp and considered
unique to M. haemocanis or M. haemofelis when there
were no matching sequences in the aligned sequences
list with ≥ 90% coverage and ≥ 30% identity or ≥ 80%
coverage and ≥ 40% identity to the query sequence.
Extended similarity group method for automated protein
function prediction (ESG software) [36] was applied for
both sets of unique CDSs.

Species differentiation analyses
The average nucleotide identity (ANI; MUMmer algo-
rithm) and tetranucleotide signature correlation index
between genomes were calculated using JSpecies software
as previously described [37]. In addition to the genome of
M. haemocanis strain Illinois, the following genome
sequences were used in the analyses: M. haemofelis strain
Ohio2 (CP002808.1), M. haemofelis strain Langford
(FR773153.2), M. suis strain Illinois (CP002525.1), and M.
suis strain KI3806 (FQ790233.1). If two organisms had
ANIm and tetranucleotide coefficients greater than 94%
and 0.99, respectively, they were considered the same
species [37].

Results
Mycoplasma haemocanis strain Illinois genome features
The complete singular circular chromosome of M. hae-
mocanis strain Illinois has a size of 919 992 base pairs
(bp) and G+C content of 35%; these genomic features
are similar to other hemoplasmas species sequenced to
date [23,24,26,27] and within the range reported for
other members of the genus Mycoplasma (Table 1). As
described for all sequenced mycoplasmas (24 species to
date), M. haemocanis also uses the opal stop codon
(UGA) for tryptophan. The 16S, 23S and 5S rRNA genes



able 1 General genomic characteristics of Mycoplasma haemocanis strain Illinois compared to members of pneumoniae group of mycoplasmas

haracteristic Pneumoniae Group

Hemoplasmas M. pneumoniae M. gallisepticum M. genitalium M. penetrans

M. haemocanis
strain Illinois

M. haemofelis
strain Ohio2

'Candidatus M. haemominutum'
strain Birmingham 1

M. suis
strain Illinois

enome size (base pairs) 919 992 1 155 937 513 880 742 431 816 394 1 012 800 580 076 1 358 633

of G +C 35.3 38.8 35.5 31.1 40 31 31.7 25.7

otal of genes 1207 1584 582 883 733 817 524 1069

oding sequences (CDSs) 1173 1549 547 844 689 763 475 1037

DSs with predicted function 286 (24.3%) 299 (19.3%) 219 (40%) 293 (34.7%) 333 (48.3%) 469 (61.46%) 323 (68%) 585 (56.4%)

o. of tRNAs 31 31 32 32 37 32 36 29

o. of rRNAs

16S 1 1 1 1 1 2 1 1

23S 1 1 1 1 1 2 1 1

5S 1 1 1 1 1 3 1 1

enes in paralogous families 748 (63.76%) 1103 (71.2%) 134 (24.5%) 361 (42.8%) 132 (19.1%) 110 (14.4%) 25 (5.2%) 245 (23.6%)

ata was obtained from GenBank database using the following accession numbers: M. haemocanis strain Illinois (CP003199.1), M. haemofelis strain Ohio2 (CP002808), ‘Candidatus Mycoplasma haemominutum’ strain
irmingham 1 (HE613254.1), M. suis strain Illinois (CP002525), M. pneumoniae (U00089), M. gallisepticum (AE015450), M. genitalium (L43967), M. penetrans (BA000026). Paralogous gene families were assigned using
LASTclust, with 70% coverage and 30% sequence identity thresholds.
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Table 2 Comparison of the total number of protein coding sequences (CDSs) of M. haemocanis strain Illinois and M.
haemofelis strain Ohio2 genomes classified by role according to TIGR microbial role categories

Role Category Number of CDSs (%)

M. haemocanis str. Illinois M. haemofelis str. Ohio2

Purines, pyrimidines, nucleosides, and nucleotides 33 (2.81%) 29 (1.85%)

Fatty acid and phospholipid metabolism 6 (0.51%) 6 (0.38%)

Biosynthesis of co-factors, prosthetic groups, and carriers 8 (0.68%) 7 (0.45%)

Central intermediary metabolism 1 (0.09%) 1 (0.06%)

Energy metabolism 25 (2.13%) 22 (1.41%)

Transport and binding proteins 35 (2.98%) 32 (2.04%)

DNA metabolism 44 (3.75%) 52 (3.32%)

Transcription 21 (1.79%) 18 (1.15%)

Protein synthesis 96 (8.18%) 97 (6.2%)

Protein fate 21 (1.79%) 19 (1.21%)

Regulatory functions 4 (0.34%) 3 (0.19%)

Signal transduction 3 (0.26%) 2 (0.13%)

Cell envelope 3 (0.26%) 7 (0.45%)

Cellular processes 14 (1.19%) 10 (0.64%)

Unknown functions 8 (0.68%) 8 (0.51%)

Hypothetical proteins 887 (75.62%) 1253 (80.06%)

Total* 1209 1566

*Some of the CDSs are in more than one category.
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are represented as single copies and share the same
operon. The manual genome annotation suggests the
presence of 1173 CDSs and 31 tRNAs, covering all
amino-acids. Putative functions of most of the CDSs are
represented as hypothetical proteins (75.62%), which are
mostly due to its large repertoire of paralogous genes
(63.76%) (Additional file 1: Table S1). These and other
genome features were compared with other hemoplas-
mas and mycoplasmas members of the pneumoniae
group (Table 1). The total number of CDSs of M. hae-
mocanis classified by role (according to TIGR microbial
role categories) was compared to those found in the
M. haemofelis genome (Table 2).

Metabolic pathways predictions suggest similar growth
requirements for M. haemocanis and M. haemofelis
Prediction of M. haemocanis metabolic pathways based
on the KEGG pathway database [32] and Yus’s report
[33] revealed that they are identical to those predicted
for M. haemofelis [24]. As shown for M. haemofelis,
metabolic pathways in M. haemocanis are reduced with
many of the nutrients and metabolic precursors
imported from the blood environment [24]. ATP and
DNA/RNA biosynthesis depend on the transport from
the environment of glucose and ribose/base derivates,
respectively. Imported bases include: hypoxanthine,
adenine, guanine, uracil and cytidine 5’-monophosphate
(CMP). Furthermore, amino acids, nicotinamide and any
vitamins required for growth must be acquired from
blood environment.

Comparative analyses of M. haemocanis and M.
haemofelis genomes
M. haemocanis genome was compared in its entirety to
M. haemofelis strain Ohio2 (Figure 1): M. haemofelis has
376 CDSs more than M. haemocanis, however the ma-
jority of these CDSs are members of paralogous gene
families also present in M. haemocanis; a set of only
67 CDSs was found to be different between these hemo-
plasmas. The canine hemoplasma possesses only 20
CDSs not identified in M. haemofelis genome, while 47
CDSs were unique to M. haemofelis. Most of these CDSs
are hypothetical proteins, including one family of paralo-
gous genes from M. haemocanis and four paralogous
gene families from M. haemofelis (Additional file 2:
Table S2). Predicted functions based on protein se-
quence similarity for these particular sets of CDSs were
assigned using ESG software [36] (Additional file 2:
Table S2). Analyses based on PSORTb parameters show
that 35% of the unique CDSs of M. haemocanis are asso-
ciated with the cytoplasmic membrane, while 17% of
M. haemofelis CDSs are predicted to be associated with
the membrane and 6.4% with extracellular (signal pep-
tide detected) localization. For most of the unique CDSs,
an unknown subcellular localization was predicted, cor-
responding to 60% and 51% in M. haemocanis and



Figure 1 Circular representation of the genomes of Mycoplasma haemocanis strain Illinois and Mycoplasma haemofelis strain Ohio2
showing a similar content and organization of the coding sequences. The dnaA gene is at position zero in both genome plots, and the
rRNAs (16S, 23S and 5S) are represented in black on the outermost circle. Outer to inner circles correspond to: circle 1: predicted coding
sequences (CDSs) on the positive strand; circle 2: predicted CDSs on the negative strand. Each CDS is classified by TIGR role category according
to the color designation in the legend below the plots; circle 3: CDSs in paralogous gene families (larger than 5 CDSs) with each family
represented by a different color in each genome and homologous families by the same corresponding color in both genomes; circle 4: unique
CDSs of each genome with colors corresponding to their role or paralogous family if applicable; circle 5: GC skew. Paralogous families with less
than 5 CDSs are represented in light blue. The diagrams were generated using Artemis 12.0 - DNAPlotter version 1.4, Sanger Institute.
(M. haemofelis plot was modified from Santos et al. [24]).
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M. haemofelis genomes, respectively (Table 3). Thirteen
out of the 20 (65%) unique CDSs of M. haemocanis and
35 out of 47 (74.5%) of M. haemofelis have at least one
internal helix predicted. The number of predicted helices
is also shown in the Additional file 2: Table S2. Fifteen
lipoproteins were predicted in M. haemocanis compared
Table 3 Subcellular localization of the unique protein coding
M. haemofelis strain Ohio2 genomes

Subcellular Localizationa

M. haemocanis strain Illinois

CDSs in
paralogous
families

CDSs not in
paralogous
families

Cytoplasmic membrane 3 3

Cytoplasmic 0 0

Extracellular 0 0

Unknown 5 6

Total 8 9
a prediction using PSORTb version 3 software.
* Unique CDSs were assigned using BLASTp when there were no matching sequen
identity to the query sequence.
with 17 for M. haemofelis genome, 13 of them are con-
served between the two species. In addition, we identi-
fied 33 variable number tandem repeats (VNTRs) in the
genome of M. haemocanis genome (Additional file 3:
Table S3), while 61 were reported for M. haemofelis [24].
As in M. haemofelis genome, most of the VNTRs of
sequences (CDSs) of M. haemocanis strain Illinois and

Number of unique CDSs*

M. haemofelis strain Ohio2

CDSs with
predicted
function

CDSs in
paralogous
families

CDSs not in
paralogous
families

CDSs with
predicted
function

1 0 8 0

1 3 7 2

0 3 0 0

1 18 5 1

3 24 20 3

ces with≥ 90% coverage and≥ 30% identity or≥ 80% coverage and≥ 40%



Table 4 Average nucleotide identity* (ANI) and tetranucleotides signature correlation indexes (Tetra) of selected
hemotrophic mycoplasmas

M. haemofelis Ohio2 M. haemofelis Langford M. suis illinois M. suis KI3806

ANI Tetra ANI Tetra ANI Tetra ANI Tetra

M. haemocanis Illinois 85.11 0.959 85.21 0.962 85.59 0.452 85.5 0.453

M. haemofelis Ohio2 97.3 0.999 85.41 0.365 85.3 0.372

M. haemofelis Langford 84.83 0.366 87.74 0.372

M. suis illinois 97.74 0.997

* = ANI was calculated using MUMmer algorithm in JSpecies software.
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M. haemocanis were localized within intergenic regions
of hypothetical proteins. Five VNTRs were identified within
the Type I restriction system operon; the presence of
VNTRs in this operon was also described for M. haemofelis
[24]. Other M. haemocanis VNTRs were identified
within CDSs for SecD protein, efflux ABC transporter
permease protein, PtsG protein, enolase, PotD protein,
and for some of the hypothetical proteins.
Only 3 CDSs with known function are exclusive to

M. haemocanis genome when compared to M. haemofe-
lis strain Ohio2; however phosphotransferase system
glucose-specific IIBC component (MHC_04460) is only
present in the genome of M. haemofelis strain Langford,
while two ribosomal proteins (MHC_00995 and
MHC_05355) are in neither of the feline hemoplasma
strains (Additional file 2: Table S2). Another 3 CDSs with
known function were identified only in the genome of
M. haemofelis: two of these proteins are C-5 cytosine-
specific DNA methylases (MHF_1273 and MHF_1319),
and the other protein is a type II site-specific deoxyribo-
nuclease (MHF_1274) (Additional file 2: Table S2). Small
CDSs (corresponding to 30–100 amino acids) character-
ized as fragments of paralogous genes were excluded from
these analyses since they presented a coverage and/or
identity below the cutoff to be considered as a member of
a paralogous gene family (70% coverage and 30% identity
threshold).

Phylogenomic comparison of M. haemocanis to other
hemoplasmas
ANI and tetranucleotide signature correlation indexes
are shown in Table 4. As indicated, M. haemocanis had
an ANI of approximately 85% in comparison to all other
hemoplasma genomes, including M. haemofelis. This is
below the cutoff value of 94% for species circumscrip-
tion. The tetranucleotide correlation indexes of M. hae-
mocanis with other genomes were also below the 0.99
cutoff limit, being approximately 0.95 for M. haemofelis
strains and 0.45 for M. suis strains. Based on these ana-
lyses, M. haemocanis is indeed a distinct species infect-
ing the dog.
As expected, strains of the same species (M. suis Illinois

and KI3806; M. haemofelis Ohio2 and Langford1) showed
high ANI and tetranucleotide correlation indexes, which
were above the proposed thresholds for species definition.
In contrast, ANI and tetranucleotide correlation indexes
between M. suis and M. haemofelis were approximately
85% and 0.37, respectively, correctly separating these
organisms as two different species of mycoplasmas.

Discussion
The complete genome sequence and annotation of
M. haemocanis extends our understanding of the biology
of hemoplasmas and provides clues about the growth
requirements for in vitro cultivation of these bacteria.
Based on the metabolic pathway predictions and specific
metabolic deficiencies, a more comprehensive medium
can be designed [33]. To date, only three other species
of hemoplasmas have been entirely sequenced [23-27].
The genome features of M. haemocanis, including its
small size, low G+C content and use of UGA codon to
encode tryptophan, are similar to those of other
hemoplasmas and are typical of members of the genus
Mycoplasma. It is believed that the reduced metabolic
pathways of hemoplasmas are probably a consequence
of the adaptation to the nutrient-rich blood environment
[23,24]. The predicted metabolic pathways of M. haemo-
canis are very similar to those of M. haemofelis having
orthologs for all the CDSs identified in the genome of
this feline hemoplasma [24]; this is not surprising since
both species are obligate red cell pathogens that reside
in the blood of their hosts. As suggested for other hemo-
plasmas, it is likely that M. haemocanis takes advantage
of the erythrocyte’s metabolism, scavenging nutrients,
which leads to diminished erythrocyte life-span and
exacerbation of anemia during acute disease.
Additional primary virulence factors were not identi-

fied in the genome of M. haemocanis. The o-sialoglyco-
protein endopeptidase, related to the cleavage of
glycophorin A, is conserved among hemoplasmas; the
superoxide dismutase (SOD), identified in M. haemofelis
[24,26] is also present in M. haemocanis, but not found
in any other sequenced mycoplasma. Although SOD
may protect these bacteria from superoxide anion tox-
icity faced in the blood environment, it is unlikely that
this enzyme plays a determinant role in the primary
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pathogenicity associated with M. haemofelis infection or
in the opportunistic infection caused by M. haemocanis.
As with other hemoplasmas, M. haemocanis contains

an abundance of paralogous gene families (63.7% of all
its CDSs) and the presence of strategically located tan-
dem repeats. Although there is evidence supporting the
role of paralog genes and the presence of tandem repeats
in the development of antigenic diversity in Mycoplasma
species [38,39], additional studies are needed to verify
the ability of hemoplasmas to undergo antigenic vari-
ation. The presence of irregular cyclic episodes of
bacteremia in splenectomized dogs reported following
experimental infection with M. haemocanis [40], and the
possibility that such cycles are due to phase variation is
also an area of active investigation in our laboratory.
Comparison of the genomes of M. haemocanis and

M. haemofelis revealed remarkable genetic similarities.
Most of the coding and non-coding sequences were con-
served and topography of genes within their chromo-
somes was similar. Even the paralogous gene families
were conserved between the two species; the only excep-
tions were one family with 8 members in M. haemoca-
nis, and four small families of M. haemofelis with 8, 5, 4
and 3 members, and two with 2 members. The major
difference in the paralogous families is the number of
duplicate genes inside each of the common families.
Thus, as with other bacteria that cannot survive without
their host, it appears that maintaining paralogous gene
families to generate antigenic variants is a high priority
for the hemoplasmas too [41]. On the other hand, CDSs
that are unique to M. haemocanis or M. haemofelis
might represent a set of proteins related to differences
in virulence and/or related to host specificity. Most of
these unique proteins are hypothetical. Although we
attempted to improve the function prediction accuracy
using the ESG software [36], most of the probabilities
assigned were less than 50% and results remained incon-
clusive (Additional file 2: Table S2). Regarding the sub-
cellular localization of the unique CDSs, it is important
to mention that the PSORTb software only predicts
cytoplasmic membrane localizations when 3 or more
transmembrane helices are present within the sequence,
otherwise unknown localization is returned. Therefore,
these predictions based on strict criteria might have
underestimated the potential for membrane localization
of these CDSs.
CDSs with known function that are unique to M. hae-

mocanis do not appear to have a significant impact on
its pathogenicity since they code for an enzyme involved
in sugar transport and for ribosomal proteins. On the
other hand, M. haemofelis possesses a type II restriction
enzyme and two C-5 cytosine-specific DNA methylases
(C5 Mtase); the restriction endonuclease is located in
the same operon as one of the C5 Mtase, indicating that
this operon is functional [42]. Moreover, this endonucle-
ase/methyltranferase pair is not present in any of the
other hemoplasmas and the restriction enzyme is absent
in the strain Langford 1 of M. haemofelis. DNA methyla-
tion has been associated with virulence in other bacteria
[43]; however, the function of these pair in M. haemofelis
Ohio2 is unknown.
As mentioned previously, the hemoplasmas cannot be

cultivated in vitro. This has resulted in a lack of detailed
phenotypic and genotypic characterization, which has
hampered our ability to correctly classify these organ-
isms within the Mycoplasmataceae family. In addition,
the 16S rRNA gene failed to provide sufficient resolution
to separate M. haemocanis and M. haemofelis as differ-
ent species of Mycoplasma [5,17]. To date, the genotypic
evidence for species differentiation of these two hemo-
plasmas is solely based on phylogenetic studies using a
177 bp fragment of their RNase P genes [18,44]. Herein,
we performed a phylogenomic comparison between
M. haemocanis and strains of M. haemofelis to resolve
this long lasting controversy. In recent years, the se-
quencing of entire genomes has allowed the in silico
evaluation of genomic similarities between different
organisms. ANI and tetranucleotide signatures have
been used as surrogates to previous methods of species
circumscription, such as 16S rRNA gene phylogeny and
DNA-DNA hybridization [37]. With both ANI and tetra-
nucleotide indexes below the proposed thresholds for spe-
cies definition, our results show that the M. haemocanis
strain Illinois and M. haemofelis (strains Langford and
Ohio2) are different species of mycoplasmas infecting two
distinct animal species. This conclusion is also supported
by the transmission studies done more than 50 years
ago [8].
Taken together our results suggest that, although

sharing very similar genomes, M. haemocanis and
M. haemofelis are different mycoplasmal species infecting
dogs and cats, respectively. The set of unique proteins
may be a target for vaccine development against these
hemoplasmas, especially for the feline hemoplasmosis that
can cause acute disease in immunocompetent hosts.
Nucleotide sequence accession number
The genome of M. haemocanis strain Illinois was depos-
ited in GenBank under the accession number CP003199.1.
Additional files

Additional file 1: Table S1. List of paralogous gene families* in the
genome of Mycoplasma haemocanis strain Illinois. Complete list of
paralogous gene families in Mycoplasma haemocanis strain Illinois
genome assigned by BLASTclust tool provided by Max-Planck Institute for
Developmental Biology, with 70% covered length and 30% sequence
identity thresholds. GenBank accession numbers are provided.

http://www.biomedcentral.com/content/supplementary/1297-9716-43-66-S1.pdf
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Additional file 2: Table S2. Analyses of the unique protein coding
sequences (CDSs) of Mycoplasma haemocanis strain Illinois and
M. haemofelis strain Ohio2. Analyses of all the unique CDSs of
M. haemocanis strain Illinois and M. haemofelis strain Ohio2 were
performed using ESG software, which predicts protein functions based
on sequence similarity, and PSORTb version 3 software, which predicts
subcellular localization. GenBank accession numbers of proteins
corresponding to each CDS are also provided.

Additional file 3: Table S3. Tandem repeats* identified in the genome
of Mycoplasma haemocanis strain Illinois. Complete list of variable
tandem repeats, identified using Tandem repeats finder program,
indicating their sequences and position in the genome of M. haemocanis.
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