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Abstract

The presence of foreign cells within the tissue/circulation of an individual is described as microchimerism. The
main purpose of the present investigation was to study if microchimerism occurs in healthy sows/fetuses and if
porcine reproductive and respiratory syndrome virus (PRRSV) infection influences this phenomenon. Six dams were
inoculated intranasally with PRRSV and three non-inoculated dams served as controls. Male DNA was detected in
female fetal sera of all dams via PCR. Male DNA was also detected in the maternal circulation. Sex-typing FISH
showed the presence of male cells in the female fetal organs and vice versa. PRRSV infection did not influence
microchimerism, but might misuse maternal and sibling microchimeric cells to enter fetuses.

Introduction, methods and results

The presence of small numbers of foreign cells within
tissues or circulation of an individual is described as
microchimerism [1]. Naturally acquired microchimerism
refers to sibling (exchange of fetal cells in between sib-
lings), maternal (presence of maternal cells within fetus)
and fetal microchimerism (presence of fetal cells within
mother) [2-16]. Fetal and maternal cell exchange is
common in human and rodent pregnancy [1]. Both fetal
and maternal microchimerism has been associated with
different autoimmune disorders, pregnancy pathology
and transplantation complications [1,17-19]. Otherwise,
fetal cell differentiation in maternal tissues is presum-
ably involved in tissue repair and protection against can-
cer [1]. Microchimerism may also play an important role
in the physiology and pathology of pregnancy. However,
at present no information is available on this phenom-
enon in swine.

Porcine reproductive and respiratory syndrome virus
(PRRSV) is the cause of severe reproductive problems in
sows [20]. The means by which PRRSV crosses the pla-
cental barrier remain unknown. Prior to fetal infection,
PRRSV replicates in the endometrium and shows a very
restricted tropism for Sn+/CD163+ macrophages
[21,22]. Therefore, PRRSV might use susceptible cells as
a vehicle to cross the uterine epithelium/trophoblast
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layers. Some pathological conditions during pregnancy,
especially diseases that affect the placental environment,
might influence fetal and maternal cell exchange. For
instance, it has been observed that a mild inflammation
caused by Pertussis toxin enhances cell migration
through the murine placenta [23]. During replication in
the endometrium, PRRSV causes apoptosis of infected
and surrounding cells [22] and changes the expression
of cellular receptors (increased Sn expression and
change in the MHC class I and II expression) (not pub-
lished results). Potentially, PRRSV-mediated changes in
endometrial macrophages and/or in uterine epithelial/
trophoblast layers may trigger events which influence
the cell transmigration process. If a physiological cell
exchange between mother and fetuses occurs in swine,
it is interesting to examine if PRRSV infection influences
it. By facilitating transplacental cell migration, PRRSV
infection may favor cell-mediated PRRSV transfer from
mother to fetuses. In contrast, PRRSV-mediated changes
in maternal tissues may also inhibit transmigration pro-
cesses, resulting in the protection of fetuses. Therefore,
the main purpose of the present investigation was to
study if microchimerism occurs in healthy sows/fetuses
and if PRRSV infection influences this phenomenon.
Nine dams from a PRRSV-free herd were kept in iso-
lation rooms. The experimental design is summarized in
Table 1. Six dams were inoculated intranasally with 10°
TCIDso type 1 PRRSV 07 V063 (GenBank No:
GU737264) at 70 (dam o) or 90 (Iog-1, Ioo-2, Tog-3, Log-
4, I9p-5) days of gestation in 4 mL of phosphate buffered
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Table 1 Experimental design.
Dam Parity PRRSV inoculation at... gd* Euthanized at... gd Number of fetuses

Total Female Male
l70 4 70 80 11 7 4
loo~1 5 90 100 14 9 5
log=2 1 90 100 14 5 9
log-3 1 90 100 17 9 8
log-4 1 90 110 12 8 2
loo=5 1 90 110 16* 9 6
Con-1 1 100 13 7 6
Con-2 10 100 16 11 5
Con-3 6 100 15 7 8

gd: gestation day; -: not inoculated. *Due to mummification, the gender determination in two and one fetus from dams lgy-4 and lso-5, respectively, was not

possible.

saline (PBS) (2 mL in each nostril). Three non-inocu-
lated dams were included in the study (Table 1). Blood
was collected from all dams before and after PRRSV
inoculation. The control animals were euthanized at 100
days of gestation. PRRSV-inoculated dams were eutha-
nized at 10 days post-inoculation (I7g, Igp-1, Igo-2, Ig-3)
or at 20 days post-inoculation (Igo-4, I9o-5) and uteri
were removed. The uterine wall adjacent to every fetus
was incised and fetal blood was collected from the
umbilical cords. Blood was collected with individual dis-
posable syringes and gloves were changed prior to every
sampling. The gender of individual fetuses was recorded
and lungs and liver of each fetus were collected and
snap frozen. To confirm PRRSV infection, virus isolation
and titration from maternal and fetal sera and PRRSV-
specific immunofluorescence (IF) staining on frozen tis-
sue sections were performed [22,24].

DNA was isolated from sera (200 pL) of fetuses and
dams using a QIAmp DNA Blood Mini Kit (Qiagen,
USA). The final volume of DNA solution after each
extraction was 50 pL. A real time PCR assay was set up
in a volume of 30 pL. The following components were
added to a PCR tube: 15 pL of 2x SensiMix™ Probe
Master mix (Bioline, UK), 1.25 uL sense primer (420
nM), 1.25 pL antisense primer (420 nM), 0.625 pL Uni-
versal ProbeLibrary Probe # 162 (210 nM) (Roche, USA)
and water to make up a total volume of 25 pl. Finally, 5
pL of the extracted serum DNA was added. Primers
(sense 5-tcaaacgatggacgtgaaac-3; antisense 5-
ttcatgggtcgettgacac-3; 71 bp) and a probe specific for a
porcine male sex-determining region Y (SRY) were gen-
erated with Probe Finder software (Roche, USA). As an
amplification control, we used a PCR specific for por-
cine zinc finger X-chromosomal gene (ZFX), which is
present in both male and female samples. Primers
(sense 5-tgagttggtttgtgaacatgaat-3; antisense 5-ccctta-
cagtgtactggtatttcaga-3; 91 bp) and probe #114 specific to
ZFX were generated with Probe Finder software (Roche,

USA). The ZFX PCR protocol was identical to the SRY
PCR protocol; only 2 pL (700 nM) of each primer was
used. The real time PCR was performed using a Step-
One™ Real-Time PCR system (AppliedBiosystems,
USA). Identical thermal profiles were used for both the
SRY and the ZFX reactions: denaturation for 15 min at
95°C, followed by 45 cycles of 95°C for 15 s (denatura-
tion) and 60°C for 1 min (annealing and elongation).

For PCR validation, DNA from randomly selected
male and female fetal sera was tested with SRY and ZFX
PCRs. Afterwards, PCR products were subjected to gel
electrophoresis to ensure the correct size of the ampli-
cons (Additional file 1). The specificity of the SRY PCR
was validated by testing genomic DNA extracted from
male or female swine ear skin; only porcine male DNA
was amplifiable (Additional file 1).

Following validation of PCR analyses, female fetal and
dam samples were analyzed. Each sample was analyzed
in five and two-three replicates for SRY and ZFX,
respectively, in the same plate. Positive and negative
controls (DNA extracted from male sera and multiple
negative water blanks, respectively) were included in
every PCR run. Fluorescence data calculated by the
Step-One™ Real-Time PCR system were collected for
each well and a sample was considered positive for SRY
or ZFX when there was an exponential increase in fluor-
escence during the PCR amplification. Randomly
selected samples were also subjected to gel electrophor-
esis during the experiment, to ensure the correct size of
the amplicons.

Strict precautions were taken to prevent PCR contam-
ination. Separate DNA isolation kits were used for
female and male samples. DNA extractions and set up
of PCR assays were performed under ultraviolet (UV)
light-equipped safety hoods, with UV run for 1 h
between experiments. Aerosol-resistant pipette tips and
disposable gloves were always used. Reagent controls,
with water instead of serum were included in every
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DNA isolation run. Controls were consistently negative
in all experiments. Isolation of DNA, setup of PCR reac-
tions, PCR assays and gel electrophoresis of PCR pro-
ducts were performed in separate locations.

A probe mapping to the porcine Y chromosome (BAC
clone 428D8; SSCYpl.2 chromosome location) and a
probe mapping to the porcine X chromosome (BAC
clone 223 G10; SSCXq2. chromosome location) were
used in sex-typing fluorescence in situ hybridization
(FISH) [25-27]. Liver and lungs of five randomly
selected male and five female fetuses from all dams
were subjected to FISH analysis. From the 1,7 dam, liver
and lungs of three and five randomly selected male and
female fetuses, respectively, were subjected to FISH ana-
lysis. Three 5-7 pm-thick cryosections were made from
each sample. These sections were cut 100 pm apart
from each other in the tissue block. All sections were
examined using a Zeiss Axioplan 2 fluorescence micro-
scope (in 50 fields, 100x objective for a total magnifica-
tion of x 1000).

All data for statistical analyses were obtained only
from dams euthanized at 100 days of gestation (Table
1). PRRSV-inoculated dams, which were euthanized at
80 and 110 days of gestation, were excluded from statis-
tical analyses because the gestation stage influences
transplacental cell exchange [1]. All statistical tests were
performed with the SigmaPlotl1 software. A 95% confi-
dence interval (p < 0.05) was applied for the statistical
significance.

All non-inoculated dams and their fetuses remained
PRRSV-negative throughout the entire experiment. All
inoculated dams became viremic (10***® TCIDs,/mL)
and transplacental infection occurred in the five dams
inoculated with PRRSV at 90 days of gestation (Table
2). Twelve to one hundred percent of the fetuses from
these dams were viremic with titres ranging between
10*? -10”? TCIDso/mL (Additional file 2 and 3). Virus-
positive cells were observed in the internal organs of
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viremic fetuses by PRRSV-specific IF staining. In con-
trast, dam I, inoculated at 70 days of gestation, was
viremic (10>® TCID5o/mL), but no viremia or PRRSV-
positive cells were detected in her fetuses.

A PCR assay to determine the gender of pigs has been
previously described [28]. However, this test amplifies
human DNA too, which increases the chance of false-
positive results due to contamination during processing
the samples. In the present study, probe-based PCR
assays that specifically detect porcine SRY and ZFX
were designed.

In total, 66 sera from female fetuses were tested in the
SRY and ZFX PCRs. The results are summarized in Fig-
ure 1 and Additional file 2. SRY was detected in female
fetal sera from both non-inoculated and PRRSV-inocu-
lated dams. Non-inoculated and PRRSV-inoculated
dams, had 20-43% and 20-100% of SRY-positive female
fetuses, respectively. Male DNA was also detected in the
maternal circulation of pregnant dams before and after
infection (Table 2). All female fetal and maternal sam-
ples were amplifiable by the ZFX assay.

Microchimeric cells were detected via FISH in organs
of fetuses from all nine dams (Figure 1, Additional file 2
and 3). Non-inoculated dams and dams with congenital
PRRSV infection had 40-80% and 0-80% of female
fetuses with male microchimeric cells and 80-100% and
0-100% of male fetuses with female microchimeric cells,
respectively. In both cases, the number of fetuses which
homed foreign cells did not differ significantly between
the two dam groups (p > 0.05, tested with the Chi-
square test and Fisher exact test, Additional file 4).
Transplacental infection did not also influence the num-
ber of microchimeric cells within fetuses of both gen-
ders (p > 0.05, tested with the Mann-Whitney rank sum
test).

Male (XY) cells were detected in 12 out of 30 tested
female fetuses; 25 out of 30 male fetuses harbored
female cells (p < 0.05, tested with the Chi-square test,

Table 2 Results of PRRSV titration, SRY and ZFX PCR in dam sera.

Dam PRRSV titre log10 TCIDso/ml of sera at the day of.. SRY PCR results at the day of.. ZFX PCR results at the day of..
inoculation euthanasia inoculation euthanasia inoculation euthanasia
170 - 23 + - + +
log-1 - 48 - + + +
log-2 - 33 + +
log-3 - 33 + +
log-4 - 23 + +
lo-5" - - + + + +
Con-1 - - - - + +
Con-2 - - + +
Con3 - + +

PRRSV titres < 1.0 (detection limit) were considered to be negative. fSerum from dam lgo-5 was also tested at 100 days of gestation and was PRRSV-positive with

a PRRSV titre of 2.6 log10 TCIDso/mL.
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Figure 1 Diagrams schematically represent the porcine uteri of the nine dams included in the study. Fetuses were numbered starting
with the fetus located next to the ovarian tip of the left uterine hom. L and R: left and right uterine horn, respectively. Each circle represents an
individual fetus. F: female and M: male fetuses. “+" and “-" within the circles represent PRRSV-positive and -negative fetuses. Filled circles are
female fetuses that were tested for the presence of male sex-determining region Y (SRY) in serum via PCR. Red and green circles are SRY-
positive or -negative fetuses, respectively. Female fetuses with non-filled circles were not tested due to the lack of serum 4: in these fetuses
microchimeric cells were found. na: not available; due to mummification the determination of fetal gender and PRRSV infection status was not
possible.
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Additional file 4). Female cells were found at higher
numbers within organs of male fetuses versus the num-
ber of male cells within organs of female fetuses (p <
0.05, tested with the Mann-Whitney rank sum test).
Representative images of microchimeric cells found in
female and male samples are shown in Figure 2.

Discussion

To the authors’ knowledge, this is the first report of
porcine transplacental DNA and/or nucleated cell traf-
ficking in healthy as well as in PRRSV-infected dams
and their fetuses. Only in one recent study, released
during the preparation of this manuscript, human cells
injected into porcine fetuses were detected in unmani-
pulated siblings [29].

In the present study, female cells were observed
within tissues of male fetuses. These cells can be of
female sibling and/or maternal origin. Concurrent
invasion from female siblings and mother is also possi-
ble. The observations that the number of male micro-
chimeric fetuses is significantly higher than the
number of female microchimeric fetuses and that the
number of female microchimeric cells within male tis-
sues is significantly higher than the number of male
microchimeric cells within female tissues is in agree-
ment with the scenario of a double origin (sibling and
maternal). Since PRRSV replication in the fetal implan-
tation sites is restricted to Sn+/CD163+ macrophages
[21,22] and as shown in the present study, porcine
nucleated cells can migrate transplacentally, it is possi-
ble that PRRSV uses maternal susceptible macrophages
as a vehicle to cross the uterine epithelium/trophoblast
layers and reach fetal tissues. To further support this
theory, the maternal/fetal origin of female macro-
phages within male fetuses should be demonstrated.
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The present experimental design did not allow to type
microchimeric cells and to distinguish maternal from
female fetal cells.

Male DNA and cells within sera and organs of female
fetuses are most probably of male sibling origin. Porcine
fetuses have individual fetal membranes and starting
from 39-55 days of gestation, large central placental
zones of the individual conceptuses are terminated by
two extremities of the fetal sacs which include parapla-
cental and ischemic zones (necrotic tips) [30]. During
pregnancy, adherence seems to occur between adjacent
extremities of the fetal sacs [30]. Fetal cells may migrate
between siblings through these extremities. After invad-
ing the neighboring sibling, fetal cells can degrade and
release DNA and/or survive and engraft into tissues.
From 60 days of gestation there are different degrees of
adherences between fetal sac extremities within the
uterus [30]. This may explain the difference in number
of SRY-positive female fetuses between dams and in
number of microchimeric cells within fetuses from the
same dam. Some female fetuses that did not have in
utero contacts with male fetuses also had SRY in sera
and microchimeric cells within their tissues (Figure 1,
Additional file 2). It looks like cells may pass from a
male fetus through adjacent female siblings to more dis-
tant female fetuses.

In a study of Lager et al., selected porcine fetuses were
inoculated in utero with PRRSV [31]. Afterwards, the
virus could be isolated from inoculated as well as non-
inoculated neighboring and more distant fetuses. It is
very well possible that PRRSV is using sibling microchi-
meric cells to cross over the fetuses within the uterus.
The proposed way of virus spread between mother and
fetuses and in between siblings may not be only applied
to PRRSV, but also to other porcine pathogens.

Female lungs

MetaSystems, Germany).

Male liver

Figure 2 Microchimeric cells found in female and male samples. Red-dUTP and Green-dUTP (Abbott Molecular, USA) were used as
fluorophores for the Y and X probes, respectively. FISH analysis on female lungs and male liver using probes for the X (green signal) and Y (red
signal) chromosomes. Cell nuclei were counterstained with DAPI (blue). Arrows indicate microchimeric cells. FISH images of male and female
cells were recorded using a Zeiss Axioplan 2 fluorescence microscope, a high-sensitivity integrated CCD camera and dedicated software (ISIS,
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Interestingly, the percentage of PRRSV-positive ani-
mals was higher among female fetuses (50%) than
among male fetuses (33%). This might suggest that the
fetal gender is linked with the susceptibility of porcine
fetuses to PRRSV infection. In line with this, previous
observations in humans suggest that girls are at higher
risk of in utero HIV infection than boys [32]. However,
further research is necessary to determine if there is an
actual direct connection between porcine fetal gender
and susceptibility to PRRSV.

Microchimerism may benefit or compromise maternal
and fetal health in humans [1,17-19]. Swine are recog-
nized as a suitable animal model for human diseases
based upon their comparative anatomy and physiology
[33-35]. Further elaboration of microchimerism in swine
will open new perspectives to design functional investi-
gations to study the subject.

In the present study, it was demonstrated that
PRRSV infection does not influence microchimerism.
However, it is very well possible that PRRSV misuses
maternal and sibling microchimeric cells during preg-
nancy to spread from mother to fetus and in between
the fetuses. Further studies are needed to validate that
maternal/fetal macrophages are spreading from dam to
the fetuses and in between the fetuses, and that
PRRSV misuses these cells to establish congenital
infection.

Additional material

Additional file 1: SRY and ZFX PCR assay validation. During SRY and
ZFX PCR assay validation, amplification products were subjected to gel
electrophoresis to ensure the correct size of amplicons. SRY (amplicon
size is 71 bp): (1) ladder; (2) fetal male serum DNA; (3 and 4) SRY-positive
female fetal serum DNA; (5 and 6) SRY-positive dam serum DNA; (7) SRY-
negative female fetal serum DNA; (8) SRY-negative dam serum DNA; (9)
DNA from skin of male pig; (10) DNA from skin of female pig; (11)
human serum DNA (a weak band of approximately 500 bp was observed
in the human serum sample, but no positive signal was detected in the
SRY real time PCR assay); (12) non template control. ZFX (amplicon size is
91 bp): (1) ladder; (2) male fetal serum DNA; (3) female fetal serum DNA;
(4) dam serum DNA; (5) DNA form skin of male pig; (6) DNA from skin of
female pig; (7) human serum DNA; (7) non template control.

Additional file 2: Virological, PCR and FISH findings in female
fetuses.

Additional file 3: Virological, PCR and FISH findings in male fetuses.
Additional file 4: The statistical analyses of FISH data.
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