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Abstract 

The recent emergence of chronic wasting disease (CWD) in Europe has become a new public health risk for monitor‑
ing of wild and farmed cervids. This disease, due to prions, has proliferated in North America in a contagious manner. 
In several mammalian species, polymorphisms in the prion protein gene (PRNP) play a crucial role in the susceptibil‑
ity to prions and their spread. To obtain a reliable picture of the distribution of PRNP polymorphisms in the two most 
common cervid species in France, we sequenced the open reading frame (ORF) of this gene in 2114 animals, 1116 roe 
deer (Capreolus capreolus) and 998 red deer (Cervus elaphus). Selection criteria such as historical origin, spatial distri‑
bution and sex ratio have been integrated to establish this sample collection. Except for one heterozygous animal 
with a non‑synonymous mutation at codon 37 (G37A), all the 1116 French roe deer were monomorphic. Red deer 
showed greater variation with two non‑synonymous substitutions (T98A; Q226E), three synonymous substitutions 
(codons 21, 78 and 136) and a new 24pb deletion (Δ69‑77). We found significant regional variations between French 
regions in the frequency of the identified substitutions. After cloning of the PRNP ORF from animals presenting 
multiple non‑synonymous polymorphisms, we identified six haplotypes and obtained a total of twelve genotypes. As 
in other European countries, we highlighted the apparent homogeneity of PRNP in the French roe deer and the exist‑
ence of a greater diversity in the red deer. These results were in line with European phylogeographic studies on these 
two species.
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Introduction
Chronic wasting disease (CWD) is a fatal transmissible 
spongiform encephalopathy (TSE) that affects captive 
and wild Cervidae. CWD has the widest potential species 
range among prion diseases and is the only one of great-
est concern affecting wildlife populations. As such, it is 
recognised as a major emerging threat to wildlife. As for 
other TSE, CWD is caused by misfolding of the cellular 
prion protein  (PrPC) to a pathogenic conformer  (PrPSc). 
CWD prions are often lymphotropic, at least in North 
American cervid species, and infected cervids likely 
shed prions replicated in lymphoid organs. Thus, CWD 
is mainly transmitted horizontally, through either direct 
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contact or prion-contaminated environmental sources 
(e.g. remains of infectious carcasses, body fluids, feed, 
water, soil, fomites). Infection of naïve deer introduced 
to highly contaminated pens indicates that infectivity is 
retained for at least five years [1]. The species host range 
and thus zoonotic risks associated with CWD remains to 
be clearly established [2–7]. At the same time, it has been 
estimated that up to 15  000 CWD-infected cervids are 
consumed by people each year in the United States [2].

The disease’s range extends across North America and 
Northern Europe. It was first described in a mule deer 
(Odocoileus hemionus) at a research centre in Colorado 
in 1967 and in wild deer in 1981 but recent studies have 
suggested that CWD had already been present for ten to 
20 years prior to its initial identification [8]. The disease is 
now geographically widespread in North America, being 
detected in 34 US states and five Canadian provinces in 
free-ranging cervids and/or commercial captive cer-
vid facilities (United States Geological survey, National 
Wildlife Health Center, Updated June 2024). In heavily 
affected areas of Wyoming, Colorado and Wisconsin, 
more than 40% of free-ranging cervids are infected and 
population declines associated with CWD in white-tailed 
deer (Odocoileus virginianus), mule deer and elk (Cervus 
elaphus nelsoni) are documented [9–11].

In Europe, the first cases of infected wild reindeer 
(Rangifer tarandus tarandus) were detected in the moun-
tainous region of Nordfjella in Norway in 2016 leading to 
the eradication of the entire population of around 2000 
reindeer in the area [12]. Since then and up to December 
2023, a total of 43 CWD cases were confirmed in Nor-
way, Sweden and Finland, including moose (Alces alces), 
reindeer as well as red deer (Cervus elaphus) [8, 13]. In 
Sweden and Finland, four and three affected moose 
were identified, respectively. In Norway, twelve infected 
moose, 21 reindeer and three red deer were observed. 
Where cases were detected the prevalence was below 1% 
[8]. The affected reindeer in Norway were geographically 
clustered, with 19 cases coming from Nordfjella man-
agement zone one. The other two cases were detected in 
2020 and 2022 in the Hardangervidda area. In compari-
son, cases reported in moose and red deer were more 
geographically scattered [14].

Two main pathological phenotypes can be distin-
guished in European cervids: the Ly + phenotype charac-
terized by the presence of detectable  PrPSc accumulations 
in lymphoid tissues, with or without deposits in brain 
tissue, and the Ly- or sCWD (sporadic CWD) pheno-
type, with detectable  PrPSc accumulation in the Central 
Nervous System (CNS), but not in lymphoid tissues [8, 
14]. Until now, the Ly + phenotype has been observed 
in wild reindeer, resembling the patterns described in 
CWD of North American cervid species. Abundant 

lymphoreticular involvement reflects the dissemination 
of prions in the body and natural shedding, which could 
be associated with a greater probability of natural trans-
mission between live animals [8]. The Ly- or sCWD phe-
notype has only been observed in old aged moose and 
red deer. So far, five physio-pathological and biochemical 
distinct types of cervid TSE, potentially representing dif-
ferent strains, have been identified out of eight European 
isolates (three reindeer, four moose, one red deer). These 
putative strains would differ from the North American 
ones [15–19].

Effective measures to prevent transmission of the dis-
ease in cervids are limited. In North America, depopula-
tion of infected farms, double fencing and restrictions on 
the transport of farmed cervids have not been effective to 
date [20]. Polymorphisms in the gene encoding the prion 
protein (PRNP) influence susceptibility or resistance to 
the progression of prion diseases in humans and animals. 
For example, the selection of PRNP alleles associated with 
resistance to classical scrapie successfully helped control-
ling TSEs in small ruminant species in several European 
countries. In North America, the PRNP sequence of a 
dense sampling (i.e. more than 1400 samples) on white-
tailed deer showed some protective influence of 95H, 
96S, 116G and 226  K [21–23] and 225F for mule deer 
[24]. For example, in order to reduce the risk of infection, 
a selective breeding program for farmed white-tailed 
deer in high-prevalence CWD endemic area, focusing 
on the elimination of the 96G variant has recently been 
developed [25]. Increased knowledge of PRNP variability 
in the main European cervid species will make it possi-
ble to map frequencies of known PRNP alleles and, in the 
best-case scenario, will allow identification of new alleles 
that can serve as leverage to combat the spread of CWD. 
In France, the roe deer (Capreolus capreolus) and the 
red deer are the two most common cervid species. Cur-
rently, for these two species, each year the French Biodi-
versity Agency (OFB) in partnership with the Fédération 
Nationale des chasseurs (national hunters’ federation) 
and Fédérations départementales des chasseurs (depart-
mental hunters’ federations), monitors the hunting tables 
to estimate the distribution of all wild ungulates present 
on French territory. These data are based on a system of 
systematic national surveys centralised and analysed, and 
serve as a national benchmark. On a national scale, there 
is no reliable method for correctly estimating the density 
and/or abundance of free-ranging animals living in the 
wild in an open area. Depending on the circumstances 
and the species under consideration, certain methods are 
preferred to obtain indices and trends on the distribu-
tion of animals. However, over long-time scales, knowl-
edge gained from hunting data allows us to assess trends 
in the abundance and distribution of these animals. For 
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example, in 42  years, hunting quotas have increased by 
a factor of 8.7 for roe deer and 8.3 for red deer. Roe deer 
are present in 93 of the 96 departments (all 13 regions) 
of mainland France, occupying 92% of the territory with 
one point five to four million individuals. In 2020, red 
deer were present in 87 departments, occupying an area 
of 218 177  km2, covering almost 40% of the national ter-
ritory. In 2023, the population was estimated to be in the 
150 000 and 400 000 range [26, 27].

The aim of this study was to obtain a reliable picture of 
the distribution of PRNP polymorphisms among red deer 
and roe deer populations in France. This genetic informa-
tion will be crucial in estimating the potential susceptibil-
ity of these populations to the emergence of CWD.

Materials and methods
Animal sampling
For the purpose of this study, a total of 2143 samples 
belonging to 1134 roe deer and 1009 red deer were col-
lected. This collection of French cervids was obtained 
thanks to two complementary sampling campaigns refer-
enced as the OFB (French Biodiversity Agency) collection 
and the INRAE-CEFS (Wildlife Behaviour and Ecology) 
laboratory collection. In order to obtain a relatively rep-
resentative sample collection, we tried not to take more 
than two samples per day from the same hunting area.

OFB collection
A national sampling of red deer and roe deer populations 
was carried out during the 2020–2021 and 2021–2022 
hunting seasons by the OFB. The sampling plan was for-
warded to the departmental hunting federations, which 
supervised the local hunting societies. In addition, four 
OFB study areas took part in the sampling. A total of 614 
samples of roe deer and 687 samples of red deer were 
provided. All tissue samples in this collection were sent 
in a 70% ethanol solution.

INRAE‑CEFS collection
For the regions of France partially or not covered by the 
OFB programme, additional DNA samples from 520 roe 
deer and 322 red deer were provided by the INRAE-
CEFS laboratory. These were samples collected on live 
animal as part of a long-term population monitoring 
programme, or samples collected with the collaboration 
of national hunting federation and the ELIZ institution 
(an interdepartmental institution focussed on zoonosis 
control).

Overall, samples from the French cervid collection 
mainly came from hunting (1010 roe deer, 971 red deer). 
Other samples came from live biopsies (109 roe deer, 
38 red deer) or road-kill or slaughtered animals (15 roe 
deer). Roe deer samples consisted of small sections of 

muscles (581), spleen (399), skin (118), cartilage (32) and 
liver (one) and three unspecified. Most were collected 
between 2020 and 2022 (920) and some (214) between 
2004 and 2019. Red deer samples consisted of small 
sections of muscle (661), skin (229), spleen  (93) and 
cheek (26). Most were collected between 2020 and 2022 
(865) and some (144) between 2004 and 2019. For each 
sample, further information including sex, age class 
(juvenile, yearling, adult) and coordinates of the munici-
pality of hunting, was collected. The distribution of sam-
pling sites for each species is shown in Figure 1.

To enable a secure sample management and distribu-
tion, all the red deer samples (1009) and 75% of the roe 
deer samples (850) are stored since spring 2024 under the 
project name CerviFrance at the @BRIDGe Biological 
Resource Center of the CRB-Anim infrastructure [28].

Extraction and purification of genomic DNA
A small section of tissue (< 10  mg) was added to 1  mL 
of lysis buffer (Tris 100 mM pH 7.4, EDTA 5 mM, SDS 
0.2%, NaCl 0.2 M) and digested with 12 µL of Proteinase 
K (20 mg/mL) by incubation for 3 h at 55 °C. After cen-
trifugation for 10  min at 15 000  g, the supernatant was 
transferred to a new tube and precipitated with 1 mL of 
isopropanol following a standard precipitation proto-
col [29]. The DNA was dissolved in 50 or 100 µL of Tris 
10  mM pH 7.4 EDTA 0.1  mM buffer at 65  °C during 
45 min and stored at −20 °C until use.

For samples (64) not yielding sufficient DNA quality 
using the above method, an alternative DNA extraction 
method using Puregene core kit A (158667, Qiagen, Oslo, 
Norway) was used according to manufacturer’s instruc-
tions. The 842 samples from the INRAE-CEFS collection 
were extracted using the Macherey–Nagel Nucleospin 
Tissue kit (Cat. # 740952.250) as per manufacturer’s 
instructions.

PRNP gene amplification and sequencing
The open reading frame (ORF) of cervid PRNP (771 bp) 
was amplified using Go Taq G2 flexi-PROMEGA poly-
merase and buffers, in a 50  µL of reaction volume con-
taining 100  µM of each dNTP (Promega), 3  mM of 
MgCl2, 10 µmol of each oligonucleotide primer (Eurofins 
Genomics, Ebersberg, Germany), 1.5 U of Taq polymer-
ase and 100 to 150  ng of genomic DNA. The PCR for-
ward primer was ACA CCC TCT TTA TTT TGC AG 
(Ce-08-F) and the reverse primer was AGA AGA TAA 
TGA AAA CAG GAA G (Ce-778-R). PCR conditions 
were at 94 °C for 5 min, followed by 40 cycles of 94 °C for 
30 s, 58 °C 30 s and 72 °C for 1 min, and a final extension 
at 72 °C for 3 min.
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PCR products (830  pb) were visualized electropho-
retically on a 1.5% agarose gel before being sent for a 

double strand sequencing with Primers Ce-08-F and 
Ce-778-R to Eurofins Genomics (Ebersberg, Germany). 

Figure 1 Geographical distribution of sampling sites in the French regions obtained by the OFB and INRAE‑CEFS sampling campaigns. 
Each point represents one animal, roe deer (blue circle), red deer (brown triangle).
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Chromatographs were checked and analysed using 
CodonCode Aligner [30].

Cloning
PRNP coding sequences were amplified as described in 
the PRNP gene amplification and sequencing section, but 
with a final extension at 72 °C for 7 min. The amplicons 
were purified using PURELINK Quick PCR purification 
Kit (K31001, Invitrogen, Vilnius, Lithuania) according to 
manufacturer’s instructions. Purified products were then 
cloned using TOPO TA cloning Kit (K450040, Invitro-
gen, Vilnius, Lithuania) following the procedure provided 
by the manufacturer. For each cloned sample, two to 
four clones were selected and sent to Eurofins Genomics 
(Ebersberg, Germany) for both strand sequencing with 
primers Ce-08-F and Ce-778-R. Chromatographs were 
checked and analysed using CodonCode Aligner [30].

Species verification
To control the correct assignment of the species indi-
cated in our database with each DNA sequenced, we 
checked all the positions which were different between 
roe deer and red deer sequences, namely positions 63 
(codon 21 g\c), 221 (codon 74 a\t), 384 (codon 128, t\c), 
408 (codon 136, c\t), 438 (codon 146, c\t), 618 (codon 
206, t\c) and 741 (codon 247, a\c).

Maps and statistical analysis
The map with the geographical distribution of roe deer 
and red deer genotyped samples (Figure 1) was generated 
using QGIS [31].

The linkage disequilibrium (LD) between pairs of posi-
tions was measured by the so-called r2 coefficient [32]. 
This measure is simply the square of the conventional 
correlation of gene frequencies in the sample (Table 5).

Independence between pairs of positions was tested 
with the Fisher’s exact test (Table 5) [33].

Residual-based shading plots, or mosaic plots were 
used to visualize contingency tables [34]. In these plots, 
the area of the cell represents the counts, the cell’s width 
represents the marginal probability within the row, 
while the cell’s height represents the marginal prob-
ability within the column. Under the null hypothesis of 
independence, all the cells are grey. The colour code in 
the legend represents the standardized Pearson’s residu-
als from independence  and shows whether the number 
of observed individuals is greater (blue) or smaller (red) 
than that theoretically expected.

Statistical analyses (Tables 2, 3, 4) and plots were real-
ized with the R package (R Core Team, 2003). Mosaic 
plots were realized with the vcd package (Figures 2 and 4) 
[35]. The Map corresponding to Δ69-77 allelic frequencies 

was done with the geodata [36] and terra [37] packages 
(Figure 3).

Accession numbers
Seven sequences were deposited in GenBank with the fol-
lowing accession numbers: PP512526 (red deer with  A98 
haplotype), PP512527 (red deer with  A98E226 haplotype), 
PP512529 (red deer with Δ69-77A98 haplotype), PP512532 
(red deer with  E226 haplotype and synonymous mutation 
at codon 136), PP512533 (red deer with haplotype  E226 
haplotype and synonymous mutations at codons 21 and 
136), PP512535 (wildtype red deer) and PP512539 (roe 
deer  A37 haplotype).

Results
Sampling
After extraction of genomic DNA, amplification, 
sequencing and analysis of the cervid PRNP ORF, we 
obtained sufficient readable sequences for 1116 roe deer 
out of the 1134 animals collected and 998 red deer out 
of the 1009 animals collected (i.e. an efficiency of 98%). 
The geographical location of these animals is shown in 
Figure  1. The number of samples per species and per 
region is shown in Table 1. 53% and 45% of the samples 
were females for red deer and roe deer, respectively. This 
collection met with a certain number of criteria such as 
historical origin, spatial distribution, sex ratio and geo-
graphical distance between animals.

Identified non-synonymous polymorphisms were 
reported as variations from a consensus or wild type 
sequence (wt, roe deer and red deer  T98P168Q226). We fol-
lowed the EFSA (2023) suggestions on naming alleles by 
codon position and a one letter amino acid abbreviation 
for all positions that deviate from wt.

Roe deer
All analysed French roe deer (n = 1116) were homozy-
gous wt at the PRNP locus, except one heterozygous ani-
mal with a non-synonymous mutation at codon 37 (g/c 
position 110) resulting in a glycine to alanine amino acid 
change (G37A). The presence of this substitution was 
confirmed by three independent PCR amplifications of 
the ORF and subsequent sequencing in both strands. The 
amino acid sequence of all other animals showed 100% 
identity with the cervid consensus sequence. Except for 
one animal, this gene appears to be fixed.

Red deer
In red deer samples (n = 998), we detected polymor-
phisms at five nucleotide positions (SNPs) and one novel 
deletion of 24 bp. Three synonymous substitutions were 
identified at codon 21 (c/t, nucleotide position 63), 78 
(g/a nucleotide position 234) and 136 (t/c nucleotide 
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position 408). The substitution at codon 78 was only 
present in three individuals among the 998 studied. The 
substitutions at codon 21 and 136 were present at fre-
quencies of 2% and 45%, respectively (Table  2). Two 
non-synonymous substitutions were observed at codon 
98 (a/g nucleotide position 292) and 226 (c/g, nucleotide 
position 676), giving rise to threonine to alanine (T98A) 
and glutamine to glutamic acid (Q226E) amino acid 
changes, respectively. At codon 98, the wt allele was the 
most common with a frequency of 68%, whereas at codon 
226, the two alleles had more balanced frequencies (45% 
for Q, 55% for E). A new 24  bp deletion was identified 
within the octa-peptide repeat region with a frequency of 
3%. This ccaacctcatggaggtggctgggg deletion corresponds 
to the deletion of codons 69 to 77, QPHGGGWG (Δ69-

77, position 207 to 230). Except for the deletion Δ69-77, 
observed polymorphisms have been previously docu-
mented in European red deer.

We found significative variations between French 
regions in the frequency of the substitutions identified 
(Figure  2, Table  3). The frequency of the  A98 allele was 

significantly lower in the Centre Val-de-Loire region 
(15%) and in the Grand-Est (22%), whereas it was higher 
than expected in Occitanie (48%). Furthermore, five 
regions-Bretagne, Centre Val-de-Loire, Corse, Grand-Est 
and Occitanie-differed significantly in terms of frequen-
cies of alleles at positions 136 and 226. The  E226 allele 
was significantly more frequent in the Centre Val-de-
Loire and Corse regions, with frequencies of 80% and 
74%, respectively, whereas it was below the expected 
value in the Grand-Est and Occitanie regions (42% and 
46%, respectively). The Δ69-77 deletion was detected in 
the regions of Normandie, Hauts-de-France, Grand-
Est, Bourgogne-France-Comté and Nouvelle Aquitaine 
(Figure  3). This deletion was mainly found in regions 
bordering Germany, Belgium and Luxembourg, with fre-
quencies of 9% and 14% for the Grand-Est and Hauts-de-
France regions, respectively.

Haplotype and genotype frequencies in red deer
Of the 998 red deer sequenced, 315 had multiple 
polymorphisms at non-synonymous substitutions 

Figure 2 Mosaic diagram showing the contingency tables for each SNP‑region combination. The area of the cell (rectangle) represents 
the quantities (numbers), the width of the cell represents the marginal probability in the row (region), the height of the cell represents the marginal 
probability in the column (number of animals per SNP within a region) and the colour of the cell represents the Pearson standardised residual 
with respect to independence (blue numbers higher than expected and red numbers lower than expected). The graphs were coloured on the basis 
of the Pearson residuals.
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(Δ69-77, codons 98 or 226). To determine the haplotype 
of these animals, their amplified ORFs were cloned 
and sequenced and three of them were excluded due 
to inconclusive sequence results. Haplotype frequen-
cies were therefore calculated on a total of 995 animals 
(Table 4). Among the eight possible haplotypes we have 
detected six haplotypes namely wt  (T98Q226),  E226,  A98, 
 A98E226, Δ69-77A98 and Δ69-77E226. The deletion carried by 
55 animals appeared, with the exception of one animal, 
associated with  A98.

Haplotype frequencies revealed that the most preva-
lent haplotype was  E226 with a frequency of 55.2% while 
the wt haplotype was present at a frequency of 12.75% 
(Table 4). The two newly identified novel haplotypes car-
rying the deletion were relatively rare (3% for Δ69-77  A98 
and 0.05% for Δ69-77  E226).

Pairwise analysis of linkage disequilibrium (LD) 
between positions 63, 292, 408, 676 and Δ69-77 (codons 
21, 98, 136, 226 and Δ69-77) indicated that these posi-
tions were almost all genetically linked (Table  5). 

Grand-Est

Bourgogne-Franche-Comté

Nouvelle-Aquitaine

Hauts-de-France

Normandie

Figure 3 Geographical localisation ∆69‑77 allelic frequencies obtained in red deer in France. The map has been coloured according 
to the frequencies. NA: Not Applicable.
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However, at positions 63 (codon 21) no genetic associa-
tion was found with the position 292 (codon 98) neither 
with the deletion (r2 = 0 and P-value = 0.025 and 0.61 
respectively, Table 5). These analyses involved only 889 
samples as 106 animals with multiple polymorphisms 
at synonymous substitutions were not cloned.

We obtained a total of twelve genotypes. Four were 
rare, having a frequency of less than 1%. The most fre-
quent genotypes were  E226\E226 and  A98\E226 respec-
tively (Table  6). Overall, similar frequencies were 
observed between heterozygous (48%) and homozygous 
(52%) animals in the French population, although the 
deletion was more frequent at heterozygous state (89%).

We performed a mosaic plot based on genotypes 
obtained from 995 animals to provide a regional scale 
characterization of their frequencies (Figure 4). The num-
ber of genotypes observed per region varied from four in 
the Corse region to eleven in the Hauts-de-France region. 
Although each region had its own particularities, it can 
be seen that the Grand-Est region differed the most, with 
eight genotypes having a frequency significantly differ-
ent from those observed on average in France. In this 
region, genotypes wt\wt,  wt\E226,  wt\A98, wt\Δ69-77-A98 
and  E226\Δ69-77-A98 were significantly more frequent than 
expected while  E226\  E226,  A98\A98 and  A98\E226 were sig-
nificantly less. The difference observed in the Hauts-de-
France region was mainly due to the genotype associated 
with the deletion.

Discussion
This study is the first investigating the diversity of the 
PRNP gene ORF in the two most common cervid spe-
cies in France. A total of 2114 animals were studied, 1116 
roe deer and 998 red deer. The nature of this sampling 
makes it as representative as possible of these two spe-
cies in France. As such, this collection will be preserved 
for future genetic studies by the @BRIDGe Biological 
Resource Center of the CRB-Anim infrastructure. This 
study represents the largest survey of PRNP genetic vari-
ation in roe deer and red deer population of any Euro-
pean country to date.

Except for one animal, all the 1116 French roe deer 
were monomorphic in PRNP sequence, with 100% 
amino acid sequence identity with the cervid wt PrP. 
Similar observations were reported in roe deer from 
Great Britain (N = 297), Alpine arc of Italy (N = 189), 

Table 1 Distribution by region and sex of roe deer and red deer sequenced for  PRNP in the present study 

Roe deer Red deer

Number of 
individuals

Male Female Not specified Number of 
individuals

Male Female Not specified

Auvergne‑Rhône‑Alpes 83 42 39 2 138 69 69

Bourgogne‑Franche‑Comté 65 35 30 0 74 42 32

Bretagne 84 46 38 79 39 40

Centre‑Val‑de‑Loire 40 23 17 101 42 54 5

Corse / / / 38 20 18

Grand‑Est 283 129 99 55 129 54 74 1

Hauts‑de‑France 118 61 57 109 40 69

Ile‑de‑France 100 56 44 / / /

Normandie 51 24 27 26 16 10

Nouvelle‑Aquitaine 173 95 74 4 135 65 68

Occitanie 119 61 53 5 169 79 90 2

Total 1116 572 478 66 998 466 524 8

Table 2 Allele frequencies of the  PRNP polymorphisms in 
red deer from France (n = 998) 

For each codon, the wildtype sequence is shown at the top and the mutated 
sequence at the bottom.

Codon Amino acid 
variation

Nucleotide sequence Frequency (%)

21 V GTC 98

V GTT 2

98 T ACC 68

A GCC 32

136 A GCT 45

A GCC 55

226 Q CAG 45

E GAG 55

Δ69‑77 Not present 97

Δ69‑77 Present 3



Page 9 of 14Laubier et al. Veterinary Research          (2024) 55:105  

Northeast of Spain (N = 44), Sweden (N = 11) or Nor-
way (N = 46) [38–41]. These results are consistent with 
the history of colonization of Europe by roe deer. The 
European roe deer is one of the most common ungu-
lates in Europe. It is distributed from the Mediter-
ranean zone to Scandinavia and the eastern border of 
its range reaches western Russia [42, 43]. This species 

experienced dramatic fluctuations due to climatic fac-
tors and anthropogenic influences. It was forced into 
refugia to the Mediterranean peninsulas with the 
exception of south-western France and the surround-
ings of the Carpathian during the Last Glacial Maxi-
mum (LGM, 21.0–14) [44]. During postglacial periods 
the species distribution extended further north and 
on western, central and northern Europe around 
9600  years ago. More recently between the 17th and 
early twentieth century, extensive deforestation, poach-
ing and excessive hunting caused a dramatic decline of 
the species throughout Europe with even local eradi-
cation in central and south Iberia, in western Italian 
alps and Apennines and in Greece [45]. After the Sec-
ond World War, for example, concerted management 

Table 3 Percentage of allele frequencies of  PRNP polymorphisms in French red deer in 10 regions of France ( n = 998) 

The p values are based on the Fisher’s exact tests performed on the corresponding contingency tables.

Codon 21 98 136 226 Δ69‑77

Amino acid variation V V T A A A Q E

Nucleotide sequence GTC GTT ACC GCC GCT GCC CAG GAG Not present present

Auvergne‑Rhône‑Alpes 99 1 62 38 46 54 46 54 100 0

Bourgogne‑Franche‑Comté 97 3 76 24 49 51 49 51 98 2

Bretagne 100 0 73 27 34 66 34 66 100 0

Centre‑Val‑de‑Loire 100 0 85 15 20 80 20 80 100 0

Corse 100 0 75 25 26 74 26 74 100 0

Grand‑Est 95 5 78 22 58 42 58 42 91 9

Hauts‑de‑France 96 4 67 33 47 53 48 52 86 14

Normandie 92 8 75 25 50 50 50 50 96 4

Nouvelle‑Aquitaine 99 1 61 39 44 56 44 56 99 1

Occitanie 100 0 52 48 54 46 54 46 100 0

p‑value 0.0001 0.0001 0.0001 0.0001 0.0001

Table 4 Haplotype frequencies of PRNP non‑synonymous 
polymorphisms and Δ69‑77 deletion in French red deer 
populations (n = 995) 

Haplotype Frequency (%)

wt 12.75

E226 55.2

A98 28.9

A98E226 0.1

Δ69‑77‑A98 3

Δ69‑77‑E226 0.05

Table 5 Linkage disequilibrium (LD) between position pairs 
of  PRNP variant and dependence between  PRNP position 
pairs 

The r2 Coefficients appear above the diagonal and the p-values based on 
Fisher’s exact tests are below the diagonal.

Table 6 Genotype frequencies of  PRNP polymorphisms in 
French red deer populations (n = 995) 

Genotype Frequency (%)

wt\wt 4

wt\E226 11.2

wt\A98 4.6

wt\A98E226 0.2

E226\E226 35

A98\A98 12.9

A98\E226 26.6

wt\Δ69‑77‑A98 1.4

E226\Δ69‑77‑A98 2.7

A98\Δ69‑77‑A98 0.7

A98\Δ69‑77‑E226 0.1

Δ69‑77‑A98\Δ69‑77‑A98 0.6
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structures or conservative harvesting rules were set up 
at national levels and helped to increase the number of 
individuals of this species.

Recently a phylogeographic study based on the analy-
sis of 3010 control mitochondrial DNA sequences from 
European roe deer have showed a strong geographi-
cal pattern with a clear division into three major clades: 
Eastern, Western and Central. This latest clade covered 
large parts of the continent. In addition, these data sug-
gested that the refugial population of southern France 
might have spread to cover the whole western and north-
western Europe, possibly reaching the central and eastern 
parts of the continent [43].

In our study, red deer showed greater PRNP sequence 
variation with two non-synonymous substitutions 
(T98A; Q226E), three synonymous substitutions (codons 
21, 78 and 136) and one novel deletion of 24pb (Δ69-77). 
These substitutions have been previously documented in 
European red deer and the deletion Δ69-77 has also been 
recently detected in Germany [46]. After cloning PRNP 
sequences from animals presenting multiple non-syn-
onymous polymorphisms, we found a significant link-
age between SNPs resulting in substitutions at positions 
98, 136, 226 and the deletion. We identified six haplo-
types, three of which are more frequent and correspond 
to those found mainly in Europe. However, it should be 
noted that the number of European red deer studied in 
different countries at the level of PRNP is uneven and 

represents a different power of resolution. Overall, less 
than 1200 animals have been previously surveyed: 627 
in Great Britain, 209 in north-eastern Spain, 191 in Italy, 
106 in 40 Norwegian municipalities and 55 in central-
eastern Portugal [38, 40, 41, 47–49]. In the present study, 
the wt haplotype was relatively rare as reported in Nor-
way (11%), whereas it was observed across Europe at fre-
quencies ranging from almost 30% (England, Scotland) to 
71% (Portugal). Haplotype  E226 had a frequency similar to 
that observed in Scotland (50%), whereas it was found to 
be very common in England and Norway and only mod-
erately in the other European countries analysed. Hap-
lotype  A98 (28.9%) was present at similar frequencies to 
those of Spain and Czechoslovakia, whereas it was not 
detected in England.

Although based only on a single gene, these results 
were consistent with broad European red deer phylogeo-
graphic studies which classified extant European red deer 
into five mitochondrial lineages. Among these lineages, 
the western haplogroup (designated A) was distributed 
along a south-north axis from Iberia through France and 
the British Isles, to Scandinavia and Central Europe [50–
53]. An eastern haplogroup (designated C) was found 
in the Balkans and parts of Eastern and Central Europe. 
These are the two major lineages. They co-occur in, for 
example, Czechoslovakia, Austria and Poland [53, 54].

In France, red deer was historically abundant until 
the early 18th  century, then declined sharply with the 

Figure 4 Mosaic diagram showing the contingency tables for each Genotype‑region combination. The area of the cell (rectangle) 
represents the quantities (numbers), the width of the cell represents the marginal probability in the row (region), the height of the cell represents 
the marginal probability in the column (number of genotypes in a region) and the colour of the cell represents the Pearson standardised residual 
with respect to independence (blue numbers higher than expected and red numbers lower than expected). The graphs were coloured on the basis 
of the Pearson residuals.
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democratisation of hunting rights during the French 
Revolution and poaching, which was accelerated by the 
proliferation of weapons during and after the wars of 
1914–1918 and 1939–1945, and the need of food during 
the wars. After this period, the red deer slowly recovered, 
thanks to protection laws, hunting reserves and restock-
ing. It has been estimated that around a third of all popu-
lations were artificially established between the 1950s 
and 1970s with the release of red deer mainly from the 
Domaine National de Chambord enclosure and with ani-
mals from the Petite-Pierre National hunting and wildlife 
Reserve. In 2000, it was estimated that the proportion 
of red deer resulting from these artificial reintroduc-
tions reached 50% of the national population [55]. This 
repopulation was also accompanied by concerted man-
agement structures, conservative harvesting rules (gener-
alisation of hunting plans in 1979), the abandonment of 
agricultural land to fallow but also the increase of forest 
areas and the extinction of natural predators. However, 
this expansion has been highly variable, fluctuating in 
response to the local hunting laws or forestry demands 
[55–57]. A parallel could be drawn between the origin of 
the deer populations present in France and the distribu-
tion pattern of PRNP haplotypes. For example, the most 
frequent haplotype in France,  E226, corresponded to the 
genotype in excess in the Centre-Val-de-Loire region, of 
which the Domaine of Chambord is a part. In addition, 
Corse red deer, which are currently protected, showed a 
frequency of the  A98\E226 genotype that was significantly 
different from that expected in France, and this region 
and Bretagne both showed least PRNP diversity. These 
results were consistent with previous studies based on 
microsatellite data, where a reduced level of genetic vari-
ability had been observed in red deer from four forests in 
Bretagne [57]. It is plausible to explain this low genetic 
variability by a combination of geographic isolation and a 
small population size in the recent past. In fact, the origi-
nal Corse red deer population disappeared at the end of 
the 1960s due to a major opening up of its habitat, uncon-
trolled hunting and intensive poaching. This population 
was then re-established through releases of 300 Sardin-
ian animals considered to be of the same origin, but the 
effective population size in Sardinia populations has been 
estimated at 8, which is particularly low [26, 50, 58].

Finally, the region with the greatest number of differ-
ent PRNP genotypes was the region of Grand-Est which 
includes the Petite-Pierre reserve. Additionally, a recent 
study based on mitochondrial DNA highlighted that in 
north-eastern France red deer populations were built 
from a few hundred individuals that have subsisted in 
remote valleys of the Vosges mountains [56]. This par-
ticular history might explain the detection of the rare Δ69-

77 allele that is also found in Germany [46].

Our study has provided an analysis of sequence vari-
ation in the PRNP ORF in the two most common cer-
vid species in France, the roe deer and the red deer. As 
in other parts of Europe, we found genetic homogene-
ity in the French roe deer and greater diversity with 
regional differences in the red deer. To date, a total 
of 35 polymorphic codons have been reported in the 
PRNP ORF in cervid species, with the greatest num-
ber of polymorphisms observed in white-tailed deer, 
sika deer (Cervus nippon) and reindeer. For example, 
in a recent study of 221 wild Norwegian reindeer, the 
225Y allele was associated with reduced susceptibility 
to CWD compared with the wt and  del84-91 alleles, with 
wt/wt animals showing the highest susceptibility [38]. 
Thus, overall, the protective influence of the different 
alleles has been highlighted, but so far it appears that 
all PRNP genotypes reported in cervids are affected by 
CWD [59, 60]. One of the original findings of our study 
is the identification of a new allele presenting the dele-
tion of an octa-peptide repeat region (OR) in red deer. 
The physiological and pathological roles of this OR 
region on  PrPc are still understudied. The prion gene 
family derived from a subset of the ZIP family of metal 
ion transporters [61].  PrPc is involved in different func-
tions, which include among others critical roles in the 
maintenance of metal (copper, zinc, iron, manganese) 
homeostasis. Metals are essential for normal brain 
functions; their concentrations and chemical forms 
are strictly regulated and their dysregulation is linked 
to several neurodegenerative diseases [62]. Metals 
are known to crosslink proteins by binding to several 
amino acids such as histidine, arginine and phosphoryl-
ated amino acids.  PrPc is more selective for  Cu2+ com-
pared to other metals due to the metal chelating effects 
of histidine [63].  PrPc possesses six histidine residues, 
including one in each of its OR. This OR region could 
act as a conformational switch and be involved in prion 
infection [64]. Disruption of the integrity of this region 
by the insertion or deletion of the OR sequence have 
been shown to affect the characteristic of resulting oli-
gomers and fibrils as well as disease phenotypes, in dif-
ferent clinical, biophysical, in vitro or transgenic mouse 
studies [65]. For example, it has been shown that the 
number of ORs can be inversely associated with incu-
bation times after BSE prion inoculation into transgenic 
mice expressing a bovine PrP [66–68]. Furthermore, 
using OR deficient  PrPc mice, it has been recently sug-
gested that the OR region might be involved in prion 
pathogenesis in a strain dependent manner [69, 70]. 
Thus, investigations of the properties of the newly iden-
tified  PrPΔ69-77 using different panel of CWD isolates 
from Scandinavia and North America are worth under-
taking and are indeed currently being initiated.
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It remains that the first cases of cervids affected by 
CWD discovered in Scandinavia are a warning to 
other European countries which, on the basis of the 
genotypes observed to date, would appear to be rather 
susceptible to CWD. The appearance of TSE cases, par-
ticularly in geographical areas not currently sampled 
or tested, cannot be ruled out in European cervids and 
measures must be taken as soon as possible to avoid the 
spread of this disease in target populations, as it has 
unfortunately been observed in North America. There 
are many complex rules and procedures governing this 
wildlife disease, so future monitoring at a European-
wide level will require multidisciplinary approaches.
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