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Abstract 

Salmonellosis, one of the most common foodborne infections in Europe, is monitored by food safety surveil‑
lance programmes, resulting in the generation of extensive databases. By leveraging tree-based machine learn‑
ing (ML) algorithms, we exploited data from food safety audits to predict spatiotemporal patterns of salmonellosis 
in northwestern Italy. Data on human cases confirmed in 2015–2018 (n = 1969) and food surveillance data collected 
in 2014–2018 were used to develop ML algorithms. We integrated the monthly municipal human incidence with 27 
potential predictors, including the observed prevalence of Salmonella in food. We applied the tree regression, random 
forest and gradient boosting algorithms considering different scenarios and evaluated their predictivity in terms 
of the mean absolute percentage error (MAPE) and R2. Using a similar dataset from the year 2019, spatiotemporal 
predictions and their relative sensitivities and specificities were obtained. Random forest and gradient boosting 
(R2 = 0.55, MAPE = 7.5%) outperformed the tree regression algorithm (R2 = 0.42, MAPE = 8.8%). Salmonella prevalence 
in food; spatial features; and monitoring efforts in ready-to-eat milk, fruits and vegetables, and pig meat products 
contributed the most to the models’ predictivity, reducing the variance by 90.5%. Conversely, the number of positive 
samples obtained for specific food matrices minimally influenced the predictions (2.9%). Spatiotemporal predictions 
for 2019 showed sensitivity and specificity levels of 46.5% (due to the lack of some infection hotspots) and 78.5%, 
respectively. This study demonstrates the added value of integrating data from human and veterinary health services 
to develop predictive models of human salmonellosis occurrence, providing early warnings useful for mitigating 
foodborne disease impacts on public health.
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Introduction
The One Health concept has increasingly gained strength 
in recent years, stressing the need for a transdisciplinary 
approach to addressing public health concerns. Food-
borne pathogens are globally acknowledged as among 
the most important health priorities due to their direct 
impact on public health, the economy and society [1]. 
In 2021, European Union (EU) Member States reported 
4005 foodborne outbreaks, resulting in 32  543 cases of 
illness, 2495 hospitalisations and 31 deaths. Domes-
tic and public settings, including catering, restaurants 
and canteens, were the main point sources of exposure 
to contaminated food for most of the cases. Nontyphoi-
dal Salmonella was the second most important enteric 
pathogen involved in foodborne infections, accounting 
for 19.3% of all outbreaks. Eggs and egg products, mixed 
foods, bakery products, vegetables and juices and other 
products thereof were among the main food sources of 
Salmonella infection, although composite or multiingre-
dient foods were generally responsible for the greatest 
number of illnesses [2].

In Europe, Salmonella surveillance is governed by 
Directive 2003/99/EC [3], which obliges EU Member 
States to collect relevant information on pathogens, anti-
microbial resistance and foodborne outbreaks. In parallel, 
its surveillance in humans is performed by the network 
for the epidemiological surveillance and control of com-
municable diseases [4], to which EU Member States 
adhere. This feeds the metadata-driven platform (TESSy) 
of the European Centre for Disease Prevention and Con-
trol [5]. In Italy, disease surveillance benefits from stand-
ardised and functional communication channels that 
have been in place for a long time. The implemented ani-
mal health surveillance programmes are coordinated at 
the national level, ensuring an even distribution of activi-
ties throughout the territory. In northwestern Italy, a 
central laboratory (i.e., the Istituto Zooprofilattico Speri-
mentale del Piemonte, Liguria e Valle D’Aosta, IZSPLVA) 
manages the data generated by veterinary activities in 
the field and transmits them to competent regional and 
national authorities. As a result, the IZSPLVA maintains 
large databases, and the validity of these databases has 
been verified over the years. In parallel, human disease 
surveillance data are collected and collated by the Pied-
mont Regional Service for the Epidemiology of Infectious 
Diseases (SeREMI). Surveillance activities for certain 
zoonoses, including salmonellosis, are coordinated at 
the regional level for both animals and humans. How-
ever, current data on zoonoses generated by laboratories 
or medical and veterinary health services often result in 
very large and heterogeneous databases that rarely com-
municate with each other or have minimal opportuni-
ties for interconnection [6]. The opportunity to use such 

datasets (“big data”) with a multidisciplinary approach is 
often overlooked. However, available data analysis meth-
ods enable the processing and/or transformation of data 
with high epidemiological value and great significance in 
terms of health prevention.

Artificial intelligence techniques, such as machine 
learning (ML), have been widely exploited in medical and 
public health research [7–9] due to the potential advan-
tages this discipline offers in terms of health protection 
and promotion while increasing the efficiency of health 
services [10]. These tools facilitate the extraction of the 
underlying information contained in big data, enabling 
the discovery of otherwise invisible patterns that are 
valuable for public health and epidemiological research 
[11–14]. When the emphasis is on prediction rather than 
inference (which falls under the classical domain of sta-
tistics), ML algorithms have displayed pronounced suc-
cess. In the field of foodborne diseases, ML techniques 
have been employed to forecast the number of incident 
cases caused by selected foodborne pathogens [15–18], 
to identify food attributions or the causative agent 
responsible for human outbreaks [19–21] and to evalu-
ate the spatial risk of human outbreaks [22]. The identi-
fication of common spatial and temporal features in food 
and human data using ML may pave the way for the early 
detection of warning signals and the adoption of effective 
prevention strategies. Despite its potential, the current 
data collection methods for both veterinary and human 
epidemiological surveillance are usually separate and 
often neglect data integration.

Therefore, we aimed to demonstrate the added value 
of integrating data on the occurrence of salmonellosis 
in humans and food products in the Piedmont region of 
northwestern Italy. In particular, we assessed the poten-
tial of food data generated by regional food safety sur-
veillance activities to predict spatiotemporal patterns of 
emerging human infections by applying different tree-
based ML algorithms. The data generated by both sur-
veillance systems from 2014 to 2018 were used to develop 
optimal prediction models, whereas the food surveillance 
data from 2019 were used to predict the incidence of 
human salmonellosis in the same year.

Materials and methods
Data sources and processing
Data on Salmonella infections were obtained from dif-
ferent information databases and retrieved separately 
from each of the consulted information systems. We 
collected all the cases of human infection reported in 
the Piedmont region between January 1st, 2015, and 
December 31st, 2019. The computerised SeREMI sys-
tem, called “Sistema Informatizzato Malattie Infettive” 
(SIMI, [23]), provided the data on human infections. 
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The SIMI collects all probable and/or confirmed cases 
of infectious aetiology reported by physicians at the 
regional level. These data were extracted using the 
GeMInI web-based database [24], with the inclusion 
criteria based on the Code 003 of the International 
Classification of Diseases (ICD-9). This code identifies 
Salmonella infections and excludes those caused by S. 
typhi and S. paratyphi. To ensure comprehensive case 
detection, we additionally collected human salmonel-
losis data from the EnterNet Italia platform [25]. This 
portal records information concerning enteric patho-
gens involved in confirmed clinical cases at the national 
level. From EnterNet, we extracted all the records 
related to Piedmont’s Salmonella infections during the 
specified time period. The obtained human datasets 
were integrated by matching records based on birth 
date, sex, location of symptom onset, or, in the absence 
of this information, place of residence. This data inte-
gration provides added value by improving the charac-
terisation of the health issue and potentially identifying 
human cases that may have been missed by the SeREMI 
system.

Data on food products were obtained from the IZS-
PLVA laboratory information system called SIGLA, 
which records all institutional activities related to 
animal research and routine laboratory testing. We 
retrieved the data using general PL/SQL queries, which 
is a common method used at the IZSPLVA for data 
analysis and routine reporting activities. The result-
ing dataset contained nonaggregated records, includ-
ing details of sample collections, such as geographical 
origin, animal species, type of laboratory analyses per-
formed, and results. Among the features retrieved 
from the SIGLA system, no variable was dedicated to 
uniquely identifying specific diseases. This required 
several steps of accurate data processing before the 
data were ready for use (Additional file  1). Our inclu-
sion criteria focused on food products collected in the 
Piedmont region between July 1st, 2014, and December 
31st, 2019. We selected specific laboratory tests for Sal-
monella detection or untargeted laboratory tests, such 
as bacterial isolation, in which Salmonella spp. were 
identified. The resulting dataset was then checked for 
duplicates and cleaned, giving priority to confirmed 
positive results when multiple laboratory tests on the 
same sample yielded contrasting results.

Differences in the types of data collected between the 
food and human datasets led to the use of different meas-
ures of disease frequency prior to data integration. The 
human databases contained only positive/confirmed dis-
ease cases, allowing the calculation of disease incidence 
based on the resident population. By contrast, the ani-
mal/food database included both positive and negative 

results for pathogen detection, allowing the prevalence of 
infection in food products to be estimated.

In addition, we chose to use the open-source dataset 
provided by the Italian National Institute of Statistics 
(ISTAT, [26]) to compile the demographic and spatial 
data of the Italian territory. These data were needed to 
calculate the denominators of the resident population 
and to integrate the human and food datasets.

The dataset
We initiated the construction of the working dataset by 
focusing on human data collected from 2015 to 2018. 
These data were aggregated at the municipality level, 
calculating the monthly incidence rates of Salmonella 
infections (shown as the dependent variable, H_INC), 
and standardised by sex and age. Consequently, the epi-
demiological unit of the dataset consisted of a specific 
combination of a municipality where salmonellosis cases 
arose and a one-month interval (H_MONTH). Next, we 
assigned a value of Salmonella prevalence detected in 
food products (the predictive variable, F_PREV) for each 
epidemiological unit. This was determined by consider-
ing a hypothetical exposure area (the potential area of 
food supply) and a time lag that took into account the 
municipalities where consumers were most likely to pur-
chase food products, the incubation period of the disease 
(from pathogen exposure to illness onset), and the time 
elapsed between the onset of symptoms, disease case 
detection and notification of health authorities.

Foodborne disease outbreaks generally involve con-
tamination from a single point source in localised areas, 
and the infection only occasionally spreads through 
the supply chain to geographically distant locations 
[27]. Hence, we determined the potential exposure 
area based on the average size of the municipalities 
as well as the distance between them. The calculation 
of F_PREV, reflecting the proportion of positive food 
samples out of the total tested, was performed in the 
area encompassing the municipality where human 
cases emerged and among their nearest neighbours. 
Both the incubation period and the notification pro-
cess were considered when accounting for the time lag 
between infection and detection as a case in the infor-
mation systems. All infectious diseases exhibit an incu-
bation period. In nontyphoidal Salmonella infections, 
the typical reported duration of infection is between 6 
and 72  h [28]. Nonetheless, longer incubation periods 
of 9 to 16 days have been recorded [29, 30]. Addition-
ally, due to the delay associated with case identifica-
tion, confirmation and subsequent reporting to health 
authorities, the time lag can be quite long [31]. To 
address these complexities, we devised three differ-
ent temporal scenarios by linking the H_INC recorded 
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in a specific municipality and month with the F_PREV 
determined in the exposure area during three prede-
fined time lags (i.e., lags of two months, four months 
and seven months) from the emergence of human cases 
(Figure 1). Therefore, taking into account the 2-month 
time lag, the F_PREV expressed for H_INC occurring in 
March 2015 was calculated by considering all the food 
products tested and exhibiting in positive results from 
an exposure area during February and March 2015.

We excluded municipalities where no human salmo-
nellosis cases were recorded by health services or where 
no food product monitoring was conducted during the 
specific time interval. Each record was enriched with 
additional explanatory features intended to offer a more 
comprehensive understanding of the observed human 
incidence (Table 1). These features included spatial char-
acteristics such as the centroid coordinates (DDcoordY 
and DDcoordX) of the municipalities where human cases 
emerged; the total surface area of the exposure area 
(SUPKM2), expressed in km2; the quantity of food sam-
ples with positive results; and the total number of labora-
tory assays conducted for each exposure area across 11 
different food categories.

The entire dataset consisted of 220 observations, all of 
which contained complete data on both the dependent 
variable (H_INC) and the 27 predictors.

A significant challenge faced during this study was to 
find sufficient data on food products to develop param-
eter estimates. After integrating the data, only 220 out of 
the initial 1377 records provided complete information. 
To enhance the performance of the ML algorithms, we 
therefore simulated a scenario where we had Salmonella 
prevalence data for food products available for all the 
epidemiological units and time lags under investigation. 
This methodology allowed us to develop three ML algo-
rithms that were later used to pursue our objectives and 
evaluate their suitability for our dataset. To achieve this, 
we applied Laplace smoothing to the initial tests con-
ducted and positive outcome tallies [32]. This procedure 
assumed the requirement of further tests or samplings 
( α ) for detecting pathogens in foodstuffs per sampling 
area and lag time, irrespective of the food category. By 
including a minimum ‘corrected’ prevalence ( pc ), we 
could integrate the previously excluded records that 
lacked prevalence information. Here, pc was calculated as 
follows:

Figure 1  Time intervals established for estimating the prevalence of Salmonella contamination in food products from the hypothetical 
food supply areas (areas of exposure) within each spatial–temporal scenario. 
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where.
ni represents the observed number of Salmonella-posi-

tive food products tested;
α represents the hypothetical number of additional 

tests needed;
(∑n

i=1
xi

n

)

 denotes the mean prevalence observed in 
food products within a given sampling area and time lag; 
and.
n represents the actual number of tests conducted in a 

given sampling area and period of time.
A set of α-values was defined based on the municipal-

ity’s population size and the specified time lag for each 
scenario (Additional file  2, Sect.  4, Table  S2). For this 
purpose, we classified the municipalities in the Pied-
mont region into five distinct groups: (1) those with a 
population ≤ 5000 inhabitants, (2) those with a popula-
tion between 5001 and 9999, (3) those with a population 
between 10 000 and 19 999, (4) those with a population 
between 20 000 and 29 999, and (5) those with a popula-
tion ≥ 30  000 inhabitants. The parameters estimated for 

pc =
ni + α

(∑n
i=1

xi
n

)

n+ α

the model using this approach, along with the tempo-
ral scenario, which exhibited the best fit and the lowest 
mean absolute percentage error (MAPE), were consid-
ered the best results in the simulated modelling perfor-
mance assessment.

We compiled a final dataset containing exclusively 
data from the 2019 food safety surveillance. This was 
achieved by following the aforementioned procedure and 
adhering to the optimal temporal scenario. The dataset 
that resulted contains a total of 1035 observations, each 
equipped with complete information on the 27 explana-
tory features that are outlined in Table  1. Considering 
our aim to predict the emergence of human salmonel-
losis, this dataset, which was not used for model testing 
purposes, was treated as unlabelled data. This means that 
information on human salmonellosis, which was treated 
separately and later used for comparisons with the mod-
els’ predictions, was lacking.

Statistical analyses
All data management, preprocessing and analyses were 
performed using Stata 17 [33], whereas graphical rep-
resentation of the results was obtained by using R (ver-
sion 4.2.2) and QGIS3 (version 3.4 Madeira) software. 

Table 1  Description of the explanatory features used as inputs for the ML models in the study 

Predictors Name of the features Description

Time

 Month HMONTH Actual month in which incident cases emerged or may have emerged

Spatial

 Longitude DDcoordX Centroid coordinates of municipalities in which human cases have emerged

 Latitude DDcoordY

 Area of exposure SUPKM2 Area of pathogen exposure, expressed in km2

Food

 Food prevalence F_PREV Prevalence of Salmonella contamination in food products

 Food categories Type of foods tested within the food safety surveillance

Name of the food category N. of tests N. of positive samples Note

1 Eggs EGGt EGGp Including their products and derivatives

2 Milk MILKt MILKp

3 Cereal-based products and legumes CERELEGUMt CERELEGUMp Cereals, flour, pasta, dough, legumes

4 Fruits and vegetables FRUITt FRUITp Fresh and frozen products and vegetable sauces

5 Bakery products BAKERYt BAKERYp Creams, fruit jams, syrup and candied fruits, cookies

6 Seafood FISHt FISHp Fresh, frozen and canned products and fish-based sauces

7 Poultry meat POULTRY​t POULTRY​p Fresh, frozen, cured meats and processed meat products, includ‑
ing animal byproducts8 Beef BEEFt BEEFp

9 Pig meat PIGt PIGp

10 Various meats V_MEATt V_MEATp Fresh, frozen, cured and minced meats and processed products, 
including animal byproducts, from different animal species (e.g., 
horse, lamb, goat)

11 Ready-to-eat foods READYt READYp Products for direct consumption without the need for cooking 
or other processing
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We calculated the proportion of human salmonellosis 
detected by the human health system as well as the preva-
lence of Salmonella in food products and 95% exact bino-
mial confidence intervals (CIs). Initially, we evaluated 
the potential relationship between H_INC and F_PREV 
(Additional file 2, Sect. 1, Figure S4). For this purpose, we 
utilised data from the entire study period (2014–2019), 
considering the different designed time scenarios. A log–
log linear regression model was used to fit the natural 
logarithm transformation of both variables, with H_INC 
representing the dependent variable and F_PREV serving 
as the explanatory variable.

A range of epidemiological studies on foodborne dis-
eases have employed tree-based ML algorithms [15, 17, 
19–21]. We ran and fitted tree regression (TR), random 
forest (RM) and gradient boosting (GB) algorithms using 
the recently developed r_ml_stata_cv command [34]. 
This command makes use of the Python Scikit-learn 
API for both cross-validation and outcome prediction. 
To determine the model with the best performance, we 
conducted five-fold cross-validation. This method ran-
domly splits the training dataset into five equal-size por-
tions, called folds. Here, four folds were used for model 
training (in-sample), and the remaining fold was used 
to estimate model performance (out-of-sample). This 
procedure is repeated until all five folds have been used 
for testing five distinct models trained on the remaining 
folds, each using unique and separate training and test-
ing folds. The prediction error estimates are obtained by 
averaging all out–of–sample mean square errors obtained 
fold–by–fold. K-fold cross-validation also provides an 
estimation of the true test error (i.e., mean absolute per-
centage error,  MAPE), which enables us to evaluate the 
uncertainty of the best-optimised model. The tuning of 
the hyperparameters of each ML algorithm was modified 
from the default values based on the grid search strategy 
[35] using the values reported in Table 2 to optimise algo-
rithm performance.

To develop our ML algorithms, we used two collec-
tions of data: human data from 2015 to 2018 and food 

data from 2014 to 2018. These data were treated as both 
training and test datasets by randomly selecting data 
from the original dataset at a 7:3 ratio. The scenario that 
yielded the best model fit and precision was selected 
for the prediction of human salmonellosis in 2019. The 
unlabelled dataset for this task was the 2019 food safety 
surveillance data, which was employed to evaluate the 
generalisation performance of the predictive model that 
had been trained on data from 2015 to 2018 (Additional 
file 2, Sects. 3 and 5). The predictions obtained were then 
compared with the incidence of human salmonellosis 
recorded in 2019 by human health surveillance systems. 
In addition, we evaluated the sensitivity and specificity 
of the models when used to predict the observed disease 
occurrence status (in terms of the presence or absence of 
at least one case) of each municipality.

Results
The regional health services recorded 2560 Salmonella 
infections in the human population from 2015 to 2019, 
resulting in an average incidence rate of 5.8 per 10  000 
person-years. The infections were distributed among all 
age and sex strata, with the youngest population display-
ing the highest infection rates (Table  3). We noted dif-
ferences in the retrieval of disease occurrence records 
depending on which human data sources were used. 
Specifically, only 36.5% (n = 935) of the cases were com-
monly shared between both human databases, whereas 
the remaining 22.3% (n = 572) and 41.1% (n = 1053) of the 
cases specifically originated from the SeREMI and Enter-
net databases, respectively. Regarding food safety surveil-
lance, the system revealed a Salmonella spp. prevalence 
of 2.5% (95% CI 2.3–2.7) in food products monitored 
between 2014 and 2019. The highest levels of Salmonella 
spp. contamination were found in poultry and swine 
meat products, with other food categories not exceeding 
a prevalence of 3.7% (Figure 2).

We observed a positive association between the preva-
lence of Salmonella in food products and the incidence 
of human salmonellosis recorded during the study period 

Table 2  The parameters used in tree regression (TR), random forest (RF) and gradient boosting (GB) ML algorithms 

ML algorithm Parameter Real prevalence Simulated 
prevalence

TR Maximum tree depth 25 20

RF Maximum tree depth 25 20

Max. no. of splitting features 27 5

Max. no. of bootstrapped trees 50–250 50–250

GB Maximum tree depth 25 20

Learning rate 0.1–0.3 0.1–0.3

Number of sequential trees 50–250 50–250
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(β = 0.59; R2  = 0.28; p < 0.001): the expected percent-
age change in human illness increased by 0.5% for each 
one-unit increase in the prevalence of Salmonella in food 
products (Additional file 2, Figure S4).

The application of the different ML algorithms to the 
initial dataset (n = 220 records) yielded notable differ-
ences in model performance. Table  4 summarises the 
optimal tuning parameters, the fit and the MAPE results 
obtained by each algorithm in different scenarios on the 
test set. GB and RF generally outperformed the TR algo-
rithm; however, all models achieved only low-to-mod-
erate fit levels. No improvements in the performances 
of the RF and GB algorithms were observed when they 

were applied to scenarios with extended time lags; all of 
these algorithms achieved the highest level of fit in sce-
nario 1. Furthermore, the MAPE for all the models did 
not decrease but instead increased, especially in sce-
nario 2. We recorded the lowest MAPEs with the high-
est model fit in scenario 1 (Table 4), indicating that this 
was the most suitable time lag for prediction with mini-
mal error. Based on this latter result, we fitted the three 
models with the 2019 integrated dataset containing the 
time slots and municipalities for which the H_INC and 
F_PREV data were complete. This highlighted the differ-
ences observed earlier between the three algorithms (Fig-
ure 3). We obtained a comparatively low average H_INC 

Table 3  Salmonellosis incidence rates (IRs) in the Piedmont region from 2015 to 2019 

Incidence rates are presented as cases per 10 000 person-years and stratified by sex and age. A total of 129 cases of salmonellosis were omitted from this table 
because both sex and age data were unavailable. IRm represents the incidence rate for males, and IRf represents the incidence rate for females.

Males Females

Age strata n Average population IRm n Average population IRf

0–9 594 187 047.4 31.8 526 176 086.6 29.9

10–24 160 299 289.4 5.3 120 279 169 4.3

25–49 95 701 997.4 1.4 122 698 011.4 1.7

50–74 243 707 284.2 3.4 197 755 683.4 2.6

 ≥ 75 186 227 447.6 8.2 188 348 495.8 5.4

Figure 2  Prevalence and 95% CIs of  Salmonella spp. contamination in food products, the Piedmont region 2014–2019. 
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compared to the total average H_INC observed in the 
study municipalities (n = 39; 3.09 per 10  000 person-
years). The TR algorithm yielded an average incidence 
rate of 2.07 per 10  000 person-years, and the incidence 
rates calculated using RF and GB were 1.85/10  000 
and 2.16/10  000, respectively. Among the 27 features 
included in the models, the relevance of spatial data and 
the testing effort performed in particular food matrices 
were prominent (Figure 4), resulting in a 90.5% reduction 
in the variance of Salmonella incidence estimates. The 
sampling/testing effort employed in ready-to-eat foods 
(READYt), milk (MILKt), fruit and vegetables (FRUITt) 
and pig meat (PIGt) provided the greatest contribution 
to the models’ prediction ability. By contrast, the con-
tribution of positive outcomes ascertained for each food 

category was generally low (2.9%), with the number of 
positive pig meat samples (PIGp) obtaining the highest 
level of importance (1.5%; Figure 4).

By simulating greater data availability regarding Sal-
monella prevalence in food products, we observed that 
the prediction models displayed better performance and 
reduced the percentage error. Even minor increases in the 
simulated sampling/testing effort ( α) sufficed to maxim-
ise the models’ performance with increased data availa-
bility. Nevertheless, no further improvement in model fit 
occurred with gradual increases in α levels (Figure 5). RF 
and GB were verified as the best performing algorithms, 
achieving comparable levels of fit and attaining optimal 
performance at an α level = 4 (R2 ≈ 0.74; Additional file 2, 
Sect. 4, Table S3), with MAPE values of 5.50% and 5.39%, 

Figure 3  Observed and predicted incidence rates of human salmonellosis recorded across 39 municipalities in the Piedmont 
region during 2019. These data provide a partial representation of the actual distribution of human cases, as they only include the 
epidemiological units (a combination of time intervals and municipalities) for which data on both human salmonellosis (H_INC) and 
Salmonella contamination prevalence in food products (F_PREV) were available. 

Table 4  Optimal tuning parameters obtained after conducting five-fold cross-validation for tree regression (TR), random 
forest (RF) and gradient boosting (GB) algorithms 

The dataset for the years 2015–2018 (n = 220 observations) was used, including municipalities with complete information on H_INC and F_PREV

ML algorithm Scenario Optimal tuning parameters Log-scale

Tree depth No. splitting 
features

N. of trees Learning rate Fit MAPE (%)

TR 1 2 0.42 8.8

2 2 0.18 8.6

3 1 0.12 9.1

RF 1 20 20 150 0.55 7.5

2 5 4 50 0.32 8.3

3 5 8 50 0.31 5.8

GB 1 3 50 0.1 0.55 7.5

2 1 50 0.1 0.35 8.3

3 1 50 0.1 0.27 6.3
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respectively. By contrast, TR seemed to require more 
food sampling ( α level = 10) to achieve optimal perfor-
mance (R2 ≈ 0.60; Additional file 2, Sect. 4, Table S3) with 
the lowest error (MAPE = 7.29%).

In 2019, health services recorded an average H_INC of 
7.03 per 10  000 person-years, encompassing 213 out of 
1181 municipalities in the Piedmont region. Food safety 
surveillance covered 337 municipalities and revealed 
a total food contamination prevalence of 4.1% (95% CI  
3.6–4.7) involving 48 municipalities (Additional file  3). 
Based on the food-recorded data, our models predicted 
infection rates similar to those observed by the health 
services, especially when using RF (8.08/10 000) and GB 
(10. 4/10  000). However, we obtained lower incidence 
rates with TR, with an estimated average incidence rate 
of 4.99/10  000. The fit and MAPE of the algorithms for 
the predicted incidence are illustrated in Table 5. In our 
dataset, human cases of salmonellosis were officially 
reported in 213 of a total of 1181 municipalities. As 
described above, our models were used to predict the 
occurrence status (in terms of the presence or absence of 
at least one case) of each municipality. When the disease 
was reported by the health services, our models showed 
a sensitivity of 46.5% (99/213). Of the 968 municipalities 
where no human cases were recorded, the absence of the 
disease was correctly predicted in 760, yielding a specific-
ity of 78.5% (Figure 6).

Discussion
By fitting tree-based ML algorithms to real-world data 
produced by regional food safety surveillance activity, 
we successfully forecasted spatiotemporal patterns of 
emerging Salmonella infections in the local population 
of the Piedmont region of northwestern Italy. This novel 
approach highlights the essential role of veterinarians in 
the animal-based food supply chain and emphasises the 
importance of interdisciplinary collaboration in protect-
ing public health [36]. In addition, the method provides 
a consistent approach that can be implemented in food 
surveillance databases for hazards beyond Salmonella 
spp.

Despite ongoing efforts to reduce foodborne salmonel-
losis, its complexity derives from the various pathways 

Figure 4  Feature importance displayed by the random forest 
(RF) algorithm in scenario 1, expressed as the total percentage 
of variance reduction that results from predictor splits. 

Figure 5  Calibration of the tree regression (TR), random forest 
(RF) and gradient boosting (GB) algorithms in scenario 1 at 
different levels of simulated sampling/testing effort (α). 

Table 5  Performance of the ML algorithms for predictions in 2019 

ML algorithm Optimal tuning parameters Log-scale Natural scale

Tree depth No. splitting 
features

N. of trees Learning rate Fit MAPE (%) Fit MAPE (%)

TR 2 0.9998 8.21 0.9840 66.3

RF 20 20 150 0.9998 7.37 0.9872 59.9

GB 3 50 0.1 0.9999 7.07 0.9887 64.4
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that lead to foodborne illnesses and the different food 
products that can be involved in human outbreaks [37, 
38]. ML techniques can support prevention efforts 
against salmonellosis because these algorithms can 
detect complex patterns that can be overlooked by con-
ventional methods, especially when dealing with intricate 
interactions and patterns [39]. Among the tree-based 
algorithms used, random forest (RF) and gradient boost-
ing (GB) algorithms exhibited comparable abilities to pre-
dict human salmonellosis. Both algorithms outperformed 
tree regression (TR) algorithms in terms of accuracy and 
reduced uncertainty. TR algorithms are known to yield 
highly unstable predictions, as they are prone to over-
fitting and show high variance errors [40]. However, the 
incorporation of bootstrap aggregation techniques into 
TR (resulting in RF and GB algorithms) enhanced its pre-
dictive power and generalisation capabilities [41, 42].

Although the sensitivity levels were quite low and there 
were quite a few instances where our models inaccurately 
failed to predict the occurrence of at least one case at the 
municipality level, both the RF and GB algorithms were 
able to identify significant occurrences of actual human 
salmonellosis. Although the predictions of these ML 
algorithms closely resembled the infection rates reported 
by regional clinical laboratories and public health 
authorities, there were notable discrepancies in the dis-
tribution of the disease compared to the observed data. 
Several reasons may explain these discrepancies. Disease 
dynamics play a significant role, as cases may arise in 
municipalities escaping detection by the healthcare sys-
tem, or the origin of contaminated food may be traced 
to a different region [43]. Additionally, the high rates of 
false-negative results recorded may be partly due to con-
straints imposed by the quality and quantity of collected 

data available for developing the models [44]. Salmonella 
outbreaks primarily occur in domestic settings. However, 
disease cases are usually reported based on the munici-
pality of the individual’s official residence. This practice 
may not accurately reflect the actual home location of 
the patients, potentially leading to some geographical 
misclassification of the disease distribution. Such impre-
cision could impede our efforts to improve the accuracy 
of our predictions and have a direct impact on the devel-
opment of health system policies and their subsequent 
evaluation [45].

Despite these challenges, it is important to acknowl-
edge that our analysis assumes a solid and efficient 
health care system; however, limitations of the surveil-
lance strategies employed for humans and food prod-
ucts, administrative challenges within the health system, 
and intrinsic factors related to the natural progression 
of the illness may also account for the obtained results. 
Human salmonellosis surveillance operates under a pas-
sive monitoring approach, which inherently limits its 
ability to effectively identify disease cases. This strategy 
heavily relies on interactions with the health care sys-
tem to detect cases and is thus subject to such interac-
tions. However, various factors, including an individual’s 
attitude towards seeking medical care, the prevalence 
of subclinical or self-limiting infections, and challenges 
related to diagnosing, communicating and investigating 
cases within the healthcare system, can undermine the 
efficiency of case detection [46–49]. Although salmonel-
losis infections typically resolve spontaneously, certain 
vulnerable individuals, such as infants, elderly individu-
als, and immunocompromised individuals, may develop 
severe forms of the disease that require medical interven-
tion [50, 51]. As a result, only a fraction of illness events 

Figure 6  Comparison of the observed and predicted incidence rates of salmonellosis in humans using tree regression (TR), random 
forest (RF) and gradient boosting (GB) algorithms with food safety surveillance data from 2019. 
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within the population are detected, reported and com-
municated to health authorities [52]. In Greece, it was 
estimated that only 47.7% of human salmonellosis cases 
are officially reported, highlighting notable regional dif-
ferences in disease reporting practices [53]. We noted 
a comparable situation when incorporating data from 
health authorities with records from regional laborato-
ries. Our study revealed that although approximately 60% 
of the cases were officially reported, a significant num-
ber of cases were recognised by health services but not 
conveyed to health authorities. This difference exempli-
fies the difficulty of achieving extensive and precise data 
integration across the healthcare system and adequately 
capturing and measuring the real burden of Salmonella 
infections in the population [54, 55].

On the other hand, food safety surveillance is built 
upon standardised active monitoring aimed at the 
timely detection and resolution of potential food-
borne hazards [56]. However, the main challenge to 
this approach has centred on sampling considera-
tions. As microbial contaminants can occur at multiple 
stages of the food supply chain, the effectiveness of the 
active surveillance system depends on the accuracy of 
the sampling process [57, 58]. Therefore, any gaps in 
active monitoring activities or reduced sampling efforts 
for food products in certain areas could lead to over-
sights. This could cause our ML models to miss certain 
clusters of human salmonellosis (as we noticed in the 
northeastern and southeastern parts of the Piedmont 
region). These findings highlight the crucial role of 
sampling decisions in achieving successful results and 
emphasise the need to increase efforts within surveil-
lance systems to reduce the risk of contaminated food 
reaching consumers and to protect public health. There 
are many types of food in which Salmonella spp. are 
actively searched for, and the accuracy of this search 
significantly influences the probability of detection. 
The total number of tests performed on ready-to-eat 
foods, milk and milk products, fruits and vegetables, 
and pig meat and its byproducts were among the most 
important features for predicting human salmonel-
losis. These findings are consistent with recent Euro-
pean-level zoonotic surveillance data, which highlight 
mixed foods and pig meat as the primary food catego-
ries frequently implicated in human outbreaks [2]. In 
our study, a prevalence of 1.7% was found in pig meat 
and its byproducts, indicating a higher level of Salmo-
nella contamination compared to the average preva-
lence observed at both the Italian and European levels. 
These contrasting results may rely on the broad food 
categorisation used, as we did not differentiate between 
different meat products such as carcasses, fresh meat, 
or minced meat. Consequently, the higher prevalence 

observed may be due to the more frequent occurrence 
of the pathogen in pig meat products other than car-
casses. In fact, Salmonella contamination is most com-
mon in non-ready-to-eat foods derived from poultry 
and pig meat [2]. Nonetheless, the impact of the pres-
ence of Salmonella in food samples on the prediction 
of human cases appears to be rather limited, and it is 
important to be cautious in our interpretation. We 
recognise that the inclusion of this information con-
tributed to our ability to predict the geographical dis-
tribution of documented human outbreaks and the 
observed incidence rates. However, it is important to 
recognise that the performance of our models may be 
influenced by a complex interplay of factors, and the 
relative importance of certain variables may vary [59].

Data integration is a crucial aspect of gaining insights 
from real-time data [60]. Surveillance platforms are a 
reliable source of information on confirmed cases of dis-
ease and/or infection compared to other data sources. 
However, merging data from various sources can be 
challenging [61]. In our case, the integration of human 
and food databases was successful due to their similar 
structure and common fields that facilitated data merg-
ing. The challenge at hand was to obtain sufficient data 
for estimating ML model parameters. It is well known 
that the size of the dataset used for ML techniques has 
a significant impact on the precision and accuracy of the 
predicted outcomes [62, 63]. The first training dataset 
used in this study contained a limited number of records 
to ensure data completeness, resulting in models with 
moderate-to-low performance and low prediction accu-
racy. To evaluate the models’ effectiveness in predicting 
disease cases, we simulated increased availability of com-
plete data. The resulting increase in prediction accuracy 
confirms the models’ suitability for our stated objective. 
Our implementation of ML techniques underscores 
their potential to enhance the efficiency of health ser-
vices [10]. Although our predictive models do not have 
optimal sensitivity and specificity, the usefulness of these 
techniques is significant in regard to addressing evolving 
diseases and changing transmission patterns [64]. ML 
models can learn and adapt from new data continuously, 
enhancing their overall usefulness by refining their pre-
dictions as new data surfaces [65]. These methods can 
identify anomalous shifts in data that may indicate an 
emerging outbreak. Although these models may over-
look specific cases, the overall detection of these shifts 
can help authorities take proactive measures to prevent 
larger outbreaks [66]. Moreover, the timely identification 
of potential high-risk outbreak areas and particular food 
categories that significantly contribute to disease trans-
mission can offer guidance for targeted interventions. 
This enables health services to focus their efforts on the 
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areas in greatest need, optimising resource allocation in a 
more responsive and data-driven manner and mitigating 
the impact of disease spread.

Our findings highlight the significance of interdisci-
plinary collaboration, reliable data integration, and the 
utilisation of ML techniques to enhance preparedness 
to effectively manage risks from foodborne salmonello-
sis. We have gained valuable insights into the potential 
of food safety surveillance data in predicting foodborne 
Salmonella outbreaks. Additionally, challenging issues 
have been identified within healthcare services regard-
ing data transmission and integration, emphasising the 
complexity of managing epidemiological data. The use 
of ML algorithms, particularly random forest (RF) and 
gradient boosting (GB), on our dataset has shown con-
siderable success in predicting cases of human salmo-
nellosis. Despite some inherent shortcomings, such as 
limited sensitivity and specificity, these ML algorithms 
nevertheless represent valuable operational tools. As 
such, they hold great promise as a warning resource for 
public health interventions, thereby facilitating a pro-
active response. The methodology outlined here offers 
potential for adaptation to other contexts and commu-
nicable diseases. However, any extension of this method 
should be undertaken carefully, taking into account the 
specific characteristics and challenges of particular epi-
demiological scenarios. This approach, if implemented 
with care and consideration of local epidemiological 
circumstances, can provide insightful guidance and 
support in protecting public health.
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