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Abstract 

Lyophilized Streptococcus spp. isolates (n = 50) from animal samples submitted to the diagnostic laboratory at the Uni‑
versity of Connecticut in the 1940s were revivified to investigate the genetic characteristics using whole‑genome 
sequencing (WGS). The Streptococcus spp. isolates were identified as follows; S. agalactiae (n = 14), S. dysgalactiae 
subsp. dysgalactiae (n = 10), S. dysgalactiae subsp. equisimils (n = 5), S. uberis (n = 8), S. pyogenes (n = 7), S. equi subsp. 
zooepidemicus (n = 4), S. oralis (n = 1), and S. pseudoporcinus (n = 1). We identified sequence types (ST) of S. agalactiae, 
S. dysgalactiae, S. uberis, S. pyogenes, and S. equi subsp. zooepidemicus and reported ten novel sequence types of those 
species. WGS analysis revealed that none of Streptococcus spp. carried antibiotic resistance genes. However, tetra‑
cycline resistance was observed in four out of 15 S. dysgalactiae isolates and in one out of four S. equi subsp. zooepi-
demicus isolate. This data highlights that antimicrobial resistance is pre‑existed in nature before the use of antibiotics. 
The draft genome sequences of isolates from this study and 426 complete genome sequences of Streptococcus spp. 
downloaded from BV‑BRC and NCBI GenBank database were analyzed for virulence gene profiles and phylogenetic 
relationships. Different Streptococcus species demonstrated distinct virulence gene profiles, with no time‑related vari‑
ations observed. Phylogenetic analysis revealed high genetic diversity of Streptococcus spp. isolates from the 1940s, 
and no clear spatio‑temporal clustering patterns were observed among Streptococcus spp. analyzed in this study. 
This study provides an invaluable resource for studying the evolutionary aspects of antibiotic resistance acquisition 
and virulence in Streptococcus spp.
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Introduction
Streptococci are Gram-positive bacteria that can be 
classified into the Lancefield group taxonomic system 
based on colony morphology, hemolysis, and serologi-
cal specificity [1]. Many streptococci are non-pathogenic 
and belong to the commensal microbiota of humans and 
animals; however, some can cause severe diseases and 
health issues [1]. Several Streptococcus species can cause 
bovine mastitis (e.g., S. uberis, S. agalactiae, S. dysgalac-
tiae subsp. dysgalactiae, and S. canis) and are responsi-
ble for major economic losses in the dairy industry [2, 3]. 
Various species of Streptococcus, such as S. equi, S. suis, S. 
porcinus, S. oralis, and S. iniae are associated with infec-
tions in pigs, horses, sheep, birds, aquatic mammals, and 
fish [4].

Streptococcus spp. is typically sensitive to penicillin, 
which has been used as the drug of choice to combat 
gram-positive mastitis-causing organisms since 1945 [5, 
6]. However, Streptococcus spp. quickly developed resist-
ance to antibiotics, and the limited efficacy of mastitis 
control through the treatment of clinical cases  was first 
noted by Murphy et al. in 1956 [7]. As a result, conven-
tional antibiotic therapy often proves ineffective [5].

To improve our understanding of the emergence of 
antimicrobial resistance (AMR) and the evolution of bac-
terial pathogens, the AMR and genetic characteristics of 
historical isolates from before the widespread clinical use 
of antimicrobials, that is, the “pre-antibiotic” era, have 
been analyzed in previous studies, including those on 
Klebsiella pneumoniae [8], methicillin-resistant Staphy-
lococcus aureus [9], Salmonella enterica serotype Typh-
imurium [10], Neisseria gonorrhoeae [11], Vibrio cholerae 
[12], and Enterobacteriaceae [13]. These studies demon-
strated that a significant proportion of isolates from the 
pre-antibiotic era were resistant to antibiotics before 
their routine use, and the association between antibiotic 
use and selection of resistance determinants was not as 
direct as often presumed.

In this study, we sequenced the whole genomes of 50 
lyophilized Streptococcus spp. isolates from clinical ani-
mal samples submitted to the diagnostic laboratory at 
the University of Connecticut in the pre-antibiotic era 
(1940s). We analyzed the phenotypic AMR, presence of 
AMR genes in the draft genomes, the sequence type (ST) 
using multi-locus sequence typing (MLST), phylogenetic 
relationships, and virulence gene profiles to examine the 
genetic characteristics of these historical isolates.

Materials and methods
Reviving lyophilized Streptococcus spp. isolates
A total of 50 lyophilized Streptococcus spp. cultures iso-
lated from animal samples and stored by the Connecticut 
Veterinary Medical Diagnostic Laboratory (CVMDL), 

Department of Pathobiology and Veterinary Science, 
University of Connecticut, between 1941 and 1947 were 
revivified according to the Reviving Freeze-Dried Micro-
organisms Instructional Guide method published by the 
American Type Culture Collection (ATCC). Information 
on the isolates includes the isolation year and bacterial 
species which were indicated in the stock list but lacks 
other metadata such as host and disease information.

Briefly, lyophilized bacterial stocks were rehydrated 
and cultured in Tryptic Soy Broth medium (TSB) (Becton 
Dickinson, Franklin Lakes, NJ) for 24 h at 37 ℃. The cul-
tured broth was streaked on blood agar plates, followed 
by incubation for an additional 24 h at 37 ℃. Next, col-
onies from blood agar plates (a colony from each plate) 
were cultured in TSB for 24 h at 37 ℃. The cultures were 
stored in the Cryocare Bead Storage system (Key Scien-
tific Product, Stamford, Texas) at −80 ℃ until ready for 
analysis.

Antimicrobial susceptibility testing
The antimicrobial susceptibility of Streptococcus spp. iso-
lates was determined using a  Sensititre™ Streptococcus 
STP6F AST Plate (Thermo Fisher Scientific, Waltham, 
MA) which is a colorimetric microdilution test consist-
ing of the following 20 antimicrobials: moxifloxacin, 
levofloxacin, tetracycline, cefuroxime, ceftriaxone, cefo-
taxime, daptomycin, chloramphenicol, penicillin, mero-
penem, ertapenem, amoxicillin/clavulanic acid 2:1 ratio, 
linezolid, clindamycin, cefepime, tigecycline, azithromy-
cin, erythromycin, trimethoprim/sulfamethoxazole, and 
vancomycin. Briefly, bacterial colonies were suspended in 
sterile distilled water to approximate the 0.5 McFarland 
turbidity standard. Next, 100 µL of the bacterial suspen-
sion was transferred into 5  mL of  Sensititre™ Mueller 
Hinton broth with lysed horse blood, and 100 µL of the 
inoculum was inoculated into each well of a  Sensititre™ 
Streptococcus species STP6F susceptibility plate. After 
24 h of incubation at 37 ℃, the minimum inhibitory con-
centration (MIC) was determined using a BIOMIC V3 
Microbiology system (Giles Scientific Inc., Santa Bar-
bara, CA) according to the manufacturer’s instructions. 
The AMR of the isolates was determined according to the 
concentrations of each drug range and interpretive crite-
ria in the instruction of M100 of the Clinical and Labora-
tory Standards Institute (CLSI) [14].

Whole genome sequencing (WGS)
For WGS, genomic DNA was extracted from pure cul-
tures of Streptococcus spp. using the DNeasy Blood and 
Tissue kit (Qiagen, Valencia, CA, USA) according to the 
manufacturer’s instructions. Sample DNA concentra-
tions were determined using a Qubit dsDNA HS assay 
kit (Invitrogen, Carlsbad, CA, USA), and DNA samples 
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were diluted to 0.2  ng/µL. Sample libraries were pre-
pared using the Illumina Nextera XT DNA Library Prep 
Kit (Illumina, San Diego, CA, USA), followed by dilution 
to a concentration of 2 nM; the concentration of librar-
ies was measured using the Qubit dsDNA HS assay kit. 
Samples were sequenced using a MiSeq Reagent Kit V2 
(500 cycle) cartridge (Illumina) after loading 600  µL of 
the 10 pM pooled libraries.

Species identification
The BIOLOG MicroLog3 Microbial Identification Sys-
tem (Biolog, Hayward, CA, USA) was used to identify the 
species of all isolates. For the confirmation of bacterial 
species identification, we analyzed the genome sequences 
of 16S rRNA region. The 16S rRNA region in the assem-
bled contigs of the isolates was predicted using bacterial 
ribosomal RNA predictor barnap (Galaxy Version 1.2.1) 
and extracted manually. For each 16S rRNA sequence, 
the nearest-neighbor species with > 99% identity were 
searched using the Basic Local Alignment Search 
Tool (BLAST) on the National Center for Biotechnology 
Information (NCBI) database to identify the species of 
each isolate with the default parameters.

Genomic characterization
Raw reads were de novo assembled using the SPAdes 
algorithm [15] at the BV-BRC online server. The assem-
bled contigs with a coverage of less than 5 × and sizes 
below 300 bases were removed. The presence of acquired 
antimicrobial resistance genes was determined using Res-
Finder 3.2 with settings for other species, a threshold of 
90%, and a minimum length of 60% with raw sequencing 
reads [16]. Plasmids were detected using PlasmidFinder 
2.1 [17], a web-based tool for in silico detection and 
characterization of plasmid sequences based on BLAST 
searches against plasmid replicon genes with the assem-
bled contigs of gram-positive bacteria. MLST 2.0 (Multi-
Locus Sequence Typing) [18] was used to determine the 
STs of the predicted species using the assembled contigs. 
The virulence genes of the isolates used for the phyloge-
netic analysis including our isolates (Additional file  1) 
were analyzed using ABRicate (Version 1.0.1) against vir-
ulence factor database (VFDB) [19], with a 80% sequence 
identity and a 80% coverage.

Phylogenetic analysis
All available complete genome sequences of S. agalactiae 
(n = 185), S. dysgalactiae (n = 23), S. equi subsp. zooepi-
demicus (n = 25), and S. pyogenes (n = 193) with collec-
tion year information were downloaded from BV-BRC 
and NCBI GenBank database to investigate the genetic 
relationships between the isolates. The species which 
the number of complete genomes in the NCBI GenBank 

database was less than 20 as of February 21, 2024, were 
excluded from the phylogenetic analysis; S. oralis (n = 19), 
S. uberis (n = 4), and S. pseudoporcinus (n = 3). The infor-
mation of the genome sequences used for the analysis 
is listed in Additional file  1. Whole genome SNPs were 
identified using kSNP4 [20] which employs an alignment-
free approach for SNP identification. The SNPs-based 
ML tree was generated using FastTree [21], which was 
automatically applied in the kSNP4 pipeline.

Results
Genomic characteristics
The de novo assembly results and genomic character-
istics of the isolates are shown in Additional file  2. The 
average depth of coverage ranged from 40.8 to 187.1, 
the number of contigs from 12 to 167, and the N50 from 
32 972 to 1 034 038. The average number of protein cod-
ing sequences (CDS) of each species ranged from 1795 
(S. pyogenes) to 2301 (S. equi subsp. Zooepidemicus), the 
rRNA was from 4 to 5, and the tRNA was from 39 (S. 
pyogenes) to 51 (S. uberis) (Additional file 2).

In this study, the average GC content for each species 
was 35% for the S. agalactiae isolates, 39% for the S. dys-
galactiae isolates, 36% for the S. uberis isolates, 38% for 
the S. pyogenes isolates, 41% for the S. equi subsp. zooepi-
demicus isolates, 40.9% for the S. oralis isolate, and 37.3% 
for the S. pseudoporcinus isolate (Additional file 2).

Species identification, sequence type and plasmid 
of Streptococcus spp.
The Streptococcus spp. isolates (n = 50) included 14 S. 
agalactiae, 10 S. dysgalactiae subsp. dysgalactiae, five S. 
dysgalactiae subsp. equisimils, eight S. uberis, seven S. 
pyogenes, four S. equi subsp. zooepidemicus, one S. oralis, 
and one S. pseudoporcinus (Table 1).

We identified STs of S. agalactiae, S. dysgalactiae, S. 
uberis, S. pyogenes, and S. equi subsp. zooepidemicus, 
which are available in MLST 2.0. (Table 1). The most fre-
quent STs were ST 61 in S. agalactiae isolates (5 out of 
14), ST 531 in S. dysgalactiae isolates (5 out of 15), and 
ST28 in S. pyogenes isolates (3 out of 7). In this study, we 
reported the novel sequence types of one S. agalactiae 
isolates (ST 2225), one S. dysgalactiae isolates (ST 723), 
seven S. uberis isolates (ST 1801, 1802, 1804, 1815, 1817, 
and 1818), and two S. equi subsp. zooepidemicus (ST 529 
and 530) isolates (Table 1 and Additional file 3).

Plasmid detection via the PlasmidFinder 2.1 revealed 
that among the 50 Streptococcus spp. isolates, two S. aga-
lactiae (G2 and G19) carried two plasmids, pA996 and 
pSSU1, and one S. uberis isolate carried the pA996 plas-
mid (Table 1). It should be noted that plasmid fragments 
without replicons may have been missed in this analysis 
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Table 1 Antibiotic resistance genotypes and phenotypes, sequence types (ST), and plasmids of Streptococcus spp. isolates 
from 1940s analyzed in this study (n = 50) 

Isolates Isolation year Sequence Type Genotype Phenotype (MIC, μg/mL)b Plasmid

S. agalactiae

 16 1941 356 ‑ S

 39 1941 61 ‑ S

 090R 1941 25 ‑ S

 B1006 1947 61 ‑ S

 B2142 1941 23 ‑ S

 B2151 1941 23 ‑ S

 G2 1941 61 ‑ S pA996 and pSSU1

 G19 1947 61 ‑ S pA996 and pSSU1

 G42 1948 61 ‑ S

 H36B 1941 6 ‑ S

 N49 1941 2225 a ‑ S

 S101 1941 23 ‑ S

 S102 1948 64 ‑ S

 S104 1948 23 ‑ S

S. dysgalactiae subsp. dysgalactiae

 21 1941 298 ‑ S

 36 1941 532 ‑ Tetracycline R (8)

 41 1941 308 ‑ Tetracycline R(8)

 43 1941 531 ‑ Tetracycline I (4)

 45 1941 308 ‑ Tetracycline I (4)

 46 1941 298 ‑ S

 B2198 1941 531 ‑ Tetracycline I (4)

 B2200 1941 531 ‑ Tetracycline I (4)

 B2263 1941 531 ‑ S

 B2273 1941 531 ‑ Tetracycline R (8)

S. dysgalactiae subsp. equisimilis

 18 1941 3 ‑ S

 19 1941 275 ‑ S

 29 1941 641 ‑ S

 30 1941 84 ‑ S

 34 1941 723 a ‑ Tetracycline R (8)

S. uberis

 17 1941 472 ‑ S

 B2160 1947 1802 a ‑ S pA996

 B2254 1941 1815 a ‑ S

 B2258 1941 1815 a ‑ S

 B2165 1941 1801 a ‑ S

 B2139 1941 1817 a ‑ S

 B2141 1941 1818 a ‑ S

 U84 1947 1804 a ‑ S

S. pyogenes

 5 1941 38 ‑ S

 6 1941 28 ‑ S

 7 1941 1278 ‑ S

 9 1941 28 ‑ S

 12 1941 26 ‑ S

 14 1941 28 ‑ S
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since the PlasmidFinder 2.1 identifies plasmids based on 
replicon sequences.

Antibiotic resistance of Streptococcus spp.
The presence of antimicrobial resistance genes and phe-
notypic antimicrobial susceptibility testing of Strepto-
coccus spp. isolates are shown in Table 1. Antimicrobial 
resistance genes were not found in the Streptococcus 
spp.isolates. All of S. uberi, S. pyogenes, S. oralis, and S. 
pseudoporcinus isolates were susceptible to all antibiot-
ics tested. However, phenotypic resistance to tetracycline 
was observed in three out of ten S. dysgalactiae subsp. 
dysgalactiae isolates, one out of five S. dysgalactiae 
subsp. equimilis isolate, and one out of four S. equi subsp. 
zooepidemicus isolate. Four of ten S. dysgalactiae subsp. 
dysgalactiae isolates and two out of four S. equi subsp. 
zooepidemicus isolates showed intermediate resistance to 
tetracycline. In addition, three out of four S. equi subsp. 
zooepidemicus isolates showed intermediate resistance to 
clindamycin.

Virulence gene profile
The virulence gene profiles of 50 Streptococcus spp. iso-
lates sequenced in this study were analyzed and com-
pared with those of 426 complete genome sequences of 
Streptococcus spp. downloaded from BV-BRC and NCBI 
GenBank database (Tables 2, 3, 4, 5 and Additional file 4).

The virulence genes were classified into eight catego-
ries based on their function: adherence, anti-proteolysis, 
antiphagocytosis, exoenzymes, immune evasion, man-
ganese uptake, stress proteins, and toxins (Additional 
file 4). Different Streptococcus species demonstrated dis-
tinct virulence gene profiles, and no time-related varia-
tions were observed in the virulence gene profile across 
all analyzed Streptococcus species (Additional file 4). All 
14 S. agalactiae isolates sequenced in this study carried 

the genes related to antiphagocytosis (cpsA-F, cpsL, and 
neuA-D) and toxins (cfa/cfb) (Table  2). Among these 
genes, cfa/cfb, cpsL, and neuB-D genes were detected in 
all S. agalactiae complete genome sequences analyzed in 
this study (Additional file  4). All 38 genome sequences 
of S. dysgalactiae including isolates from this study har-
bored fbp54 (adherence) and hasC genes (anti-proteol-
ysis) (Table 3 and Additional file 4). All 200 S. pyogenes 
genome sequences carried lmb (adherence), ideS/mac 
(antiphagocytosis), fbp54 (toxin), ska (toxin), and slo 
(toxin) (Additional file  4), and all our S. pyogenes iso-
lates (n = 7) additionally harbored scpA (immune inva-
sion) and SmeZ (toxin) (Table  4). Two virulence genes 
encoding exozyme, hylP and mf2, were observed in all 
analyzed S. equi subsp. zooepidemicus, and two of four 
S. equi subsp. zooepidemicus isolates from this study 
harbored only mf2 gene (Table  5 and Additional file  4). 
S. pseudoporcinus isolates carried speB genes encod-
ing exozyme, while S. oralis isolates harbored the pavA 
(adherence) and psaA (magnese uptake) genes (Table 5). 
Lastly, no virulence gene in VFDB was detected in our S. 
uberis isolates (Additional file 4).

Phylogenetic analysis
The genome sequences of S. agalactiae (n = 199), S. 
dysgalactiae (n = 38), S. pyogenes (n = 200), and S. equi 
subsp. zooepidemicus (n = 29) including our isolates were 
analyzed to investigate the genetic relationships using 
SNP analysis. The phylogenetic trees and the heatmaps 
of four different species are shown in Additional files 5, 
6, 7 and 8.

The host species of 185 S. agalactiae sequences down-
loaded from databases were humans (n = 81), aquatic ani-
mals (n = 81), cows (n = 22), a dog (n = 1), and unknown 
(n = 11). S. agalactiae from aquatic animals formed two 
distinct clusters which are compressed in phylogeny 

a Novel ST
b S-sensitive; I-intermediate; R-resistant

Table 1 (continued)

Isolates Isolation year Sequence Type Genotype Phenotype (MIC, μg/mL)b Plasmid

 15 1941 120  ‑ S

S. equi subsp. zooepidemicus

 24 1941 529 a ‑ Tetracycline I (4)

 37 1941 182 ‑ Tetracycline I (4), Clindamycin I (0.5)

 38 1941 530 a ‑ Clindamycin I (0.5)

 40 1941 27 ‑ Tetracycline R (8), Clindamycin I (0.5)

S. oralis

 11 1941 – ‑ S

S. pseudoporcinus

28 1941 – ‑ S
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(Additional file  5). The phylogenetic analysis revealed 
that our isolates were divided into four groups (Addi-
tional file 5). S. agalactiae N49 and H36B were grouped 
with isolates from cows in 1970 and 1954, respectively, 
exhibiting high sequence identity (82.6% and 87.2%, 
respectively). Five isolates (S101, S104, B090R, B2142, 
and B2151) demonstrated an average identity of 89.6% 
with two isolates, one from a cow in 1977 and another 
from a human in 2011. Seven isolates (B1006, G42, 
G19, G2, S102, 39, and 16) were grouped with two iso-
lates from cows in 1954 and 1964 showing average 68.2% 
identity.

The sequences of S. dysgalactiae were divided into two 
subspecies, S. dysgalactiae subsp. equisimillis and S. dys-
galactiae subsp. dysgalactiae (Additional file  6). Four S. 
dysgalactiae subsp. equisimillis isolates from this study 
(30, 29, 19, and 18) clustered with isolates from humans 
between 1953 and 2018, and three of them showed an 
average 78.3% identity with an isolate from a human in 
1953. One isolate (34) was grouped with two isolates 
from a cow and a rhinoceros, exhibiting an average 58.8% 
identity. All S. dysgalactiae subsp. dysgalactiae isolates 
from this study clustered with an isolate from a cow in 
2020, exhibited an average 76.0% identity.

S. pyogenes sequences available in the databases were 
from human isolates (n = 184) and unknown (n = 9). The 
S. pyogenes isolates of this study were grouped into five 
clusters (Additional file 7). The isolates (6, 14, and 9) were 
grouped with isolates from humans in 1950–2019, exhib-
iting an average 95.3% identity. S. pyogenes isolates 12 and 
5 showed high identity with historical strains isolated in 
1927 (90.6%) and 1950 (98.3%), respectively. S. pyogenes 
isolate 15 also exhibited high identity with human strains 
isolated between 1997 and 2016 (97.4%), and S. pyogenes 
isolate 7 were clustered with human strains isolated 

between 2009 and 2015 (84.6%). For S. equi subsp. zooep-
idemicus, four isolates of this study clustered into three 
different groups (Additional file 8). The clusters contain-
ing S. equi subsp. zooepidemicus isolates 37 and 38 exhib-
ited average 52.1% and 54.0% identity and S. equi subsp. 
zooepidemicus isolates 40 and 24 clustered with an isolate 
from a cow with an average identity of 45.5%.

Discussion
Streptococcus spp. have been identified using classical 
phenotypic microbiological procedures [22]. However, 
previous studies have reported the limited discriminatory 
power of these methods for Streptococcus spp. [22–25], 
and the 16S rRNA sequence started to be used as a ref-
erence for species identification [3, 22, 25]. Therefore, 
in the present study, we determined the species using a 
BLASTn search of the 16S rRNA sequences. One of the 
limitations of this study is the lack of information regard-
ing the isolates, such as host and disease. Therefore, we 
assumed the host of each isolate based on the prevalence 
of Streptococcus spp. in different animals as reported in 
the previous studies. S. agalactiae, S. dysgalactiae, and S. 
uberis are the main species involved in clinical and sub-
clinical bovine mastitis [1, 3, 5, 26]. A few bovine mas-
titis cases caused by S. pyogenes were reported between 
1930 and 1940 [27, 28]. S. equi subsp. zooepidemicus is 
an opportunistic pathogen in both humans and a broad 
range of animal species, including horses, dogs, and pigs 
[29]. S. oralis, a member of the mitis group of strepto-
cocci, has been isolated from milk samples from women 
[30] and lactating cows [31]. S. pseudoporcinus was ini-
tially thought to be  S. porcinus, which was first isolated 
frompigs in 1937 [32].

All S. agalactiae isolates of this study carried the 
mre(A) gene (data not shown), which is known to prob-
ably reside in S. agalactiae and may encode a metabolic 
function [33]. The mre(A) gene, which encodes a flavoki-
nase, was discovered in a unique strain of S. agalactiae 
COH31 γ/δ as a macrolide efflux gene by Clancy et  al. 
[34], and cumulative data suggested that the mreA  gene 
was located on the chromosome of S. agalactiae COH31 
γ/δ [33]. This is supported by our finding that all S. aga-
lactiae isolates in this study carried the mre(A) gene with 
an erythromycin-sensitive phenotype. The  mre(A) gene 
was found in all S. agalactiae isolates analyzed with either 
erythromycin-resistant or erythromycin-sensitive pheno-
types in previous studies [33, 35, 36], indicating its ubiq-
uity in this bacterial species. In this study, phenotypic 
resistance to tetracycline and intermediate resistance to 
clindamycin were observed in the S. dysgalactiae subsp. 
dysgalactiae isolates, S. dysgalactiae subsp. equimilis 
isolate, and S. equi subsp. zooepidemicus isolate, while 
resistance genes were not found in the Streptococcus 

Table 5 Virulence gene profiles of S. equi subsp. 
zooepidemicus (n = 4), S. oralis (n = 1), and S. pseudoporcinus 
(n = 1) isolates from 1940s analyzed in this study (n = 6) 

Strains Adherence Manganese 
uptake

Exoenzyme

pavA psaA mf2 speB

S. equi_subsp. zooepidemi-
cus_24

S. equi_subsp. zooepidemi-
cus_37

 + 

S. equi_subsp. zooepidemi-
cus_38

S. equi_subsp. zooepidemi-
cus_40

 + 

S. oralis_11  +  + 

S. pseudoporcinus_28  + 
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spp. isolates. Tetracycline resistance in S. agalactiae, S. 
dysgalactiae, and S. equi subsp. zooepidemicus has been 
detected by several resistance monitoring programs in 
previous studies [29, 37], and AMR in Streptococcus 
spp. varies greatly depending on the streptococcal spe-
cies, geographical location, study design (sampling size, 
scheme, and method for resistance determination), and 
literature source [1]. A poor correlation between tetracy-
cline-resistant phenotypes and resistance genes has been 
reported previously [38–40]. In the previous study [40], 
six of 18 tetracycline resistant S. dysgalactiae subsp. dys-
galactiae isolates did not carry the tet genes. In addition, 
in Tian et  al.’s study on 64 Streptococcus  isolates from 
mastitic milk samples in China [38], the average consist-
ency between resistant phenotypes and resistance genes 
was 35.87%, and the consistency rate for tetracycline was 
50%.

The phenotypic and genotypic AMR of bacterial path-
ogens from the pre-antibiotic era have been reported in 
previous studies, such as the Murray Collection of the 
pre-antibiotic era Enterobacteriaceae strains carrying 
antibiotic resistance genes [13], Proteus spp. resistant to 
tetracycline [41], Klebsiella resistant to ampicillin [8], 
Escherichia spp. resistant to both ampicillin and kanamy-
cin [42], and Vibrio cholerae strains harboring functional 
β-lactamase antibiotic resistance genes [12]. In addi-
tion, metagenomic studies on ancient human guts from 
the pre-antibiotic era have been reported [43–45]. These 
investigations on the gut microbiome of pre-Columbian 
Andean [44], pre-Inca/Inca, and Italian nobility mum-
mies [43, 45] revealed the presence of genes associated 
with beta-lactamases, penicillin-binding proteins, resist-
ance to fosfomycin, chloramphenicol, aminoglycosides, 
macrolides, sulfa, quinolones, tetracycline, and vancomy-
cin, as well as multi-drug transporters. This suggests that 
resistance may not necessarily be associated solely with 
the selective pressure of antibiotics.

Moreover, the studies propose that antibiotic resist-
ance might have an environmental origin, indicating 
that a higher exposure to the environment could lead to 
a greater acquisition of antibiotic-resistance genes [43, 
45]. Additionally, it has been hypothesized that antibiotic 
resistance in pathogens likely originated in non-path-
ogenic bacteria, possibly those originating from the soil 
[43, 45]. Contrastingly, our study has revealed that Strep-
tococcus spp. isolates from animal origins during the pre-
antibiotic era did not carry antibiotic resistance genes. 
This disparity in findings appears to be attributed to the 
differing origins (animal vs. human) and pathogenicity of 
the bacteria.

Several studies where PCR was used to screen for 
virulence genes have reported differences in the detec-
tion of the virulence factors of Streptococcus spp. from 

different sources, such as S.  agalactiae  strains from 
human and bovine sources [46, 47]. However,  litera-
ture  reports on the virulence gene profiles of Strep-
tococcus spp. isolates from animals using WGS are 
scarce [39, 48]. In this study, we compared the viru-
lence gene profiles of Streptococcus spp. isolates from 
1940s with those of 426 complete genome sequences of 
Streptococcus spp. obtained from diverse hosts and dif-
ferent years to investigate potential time-related vari-
ations and evolutionary trends. The results revealed 
conserved virulence gene profiles among different 
Streptococcus species and no time-related variations 
in the virulence gene profile in analyzed Streptococcus 
species. This comprehensive approach provides insight 
into the diverse virulence gene pattern shaping the 
framework of Streptococcus spp. pathogenesis. A dis-
crepancy in reporting of virulence gene prevalence was 
observed among different previous studies, which can 
be explained by the difference in the origin of the iso-
lates as well as other factors [1, 5, 38, 46–50]. In addi-
tion, a limitation of VFDB is its primary focus on data 
from human pathogens, potentially overlooking viru-
lence genes for animal pathogens. This raises concerns 
regarding the understanding of virulence gene datasets 
of Streptococcus spp. infecting animals, such as S. ora-
lis, S. uberis, and S. pseudoporcinus. Therefore, fur-
ther WGS analysis of Streptococcus spp. isolates from 
animals is essential to update the database and better 
understand the evolution of virulence genes in Strepto-
coccus spp. from diverse host species.

In this study, all available complete genome 
sequences of S. agalactiae, S. dysgalactiae, S. equi 
subsp. zooepidemicus, and S. pyogenes with collection 
year information were downloaded from databases to 
investigate the genetic relationships with our isolates 
using SNP analysis. Phylogenetic analysis revealed high 
genetic diversity of Streptococcus spp. isolates from 
the 1940s, and no clear spatio-temporal clustering pat-
terns were observed among Streptococcus spp. analyzed 
in this study. S. agalactiae isolates and S. dysgalactiae 
subsp. dysgalactiae isolates of this study exhibited high 
genetic similarity with the isolates from cows, suggest-
ing a potential host-specific association. S. dysgalac-
tiae subsp. equismillis and S.  pyogenes displayed high 
genetic identity (> 90%) with both historical and con-
temporary human isolates, suggesting their persistence 
and adaptability within human populations overtime. 
However, the scarcity of sequence data for these spe-
cies from animals constrained genetic analysis with ani-
mal isolates in this study. Further research with a wider 
range of animal isolates is needed to better understand 
genetic diversity and evolution of these subspecies.
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This study reports on the antibiotic resistance, sequence 
type, phylogenetic relationships, and virulence gene pro-
files of lyophilized Streptococcus spp. isolated from ani-
mals in the 1940s, the pre-antibiotic era, using WGS 
analysis. This study provides an invaluable resource for 
further investigation of the evolutionary aspects of anti-
biotic resistance acquisition and adaptation of bacterial 
strains.
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