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Abstract 

Respiratory diseases are a health and economic concern for poultry production worldwide. Given global economic 
exchanges and migratory bird flyways, respiratory viruses are likely to emerge continuously in new territories. The pri‑
mary aim of this study was to investigate the major pathogens involved in respiratory disease in Tunisian broiler poul‑
try and their epidemiology. Between 2018 and 2020, broilers farms in northeastern Tunisia were monitored, and 39 
clinically diseased flocks were sampled. Samples were screened for five viral and three bacterial respiratory pathogens 
using a panel of real‑time PCR assays. The reemergence of H9N2 low pathogenic avian influenza virus (LPAIV) in com‑
mercial poultry was reported, and the Northern and Western African GI lineage strain was typed. The infectious bron‑
chitis virus (IBV) GI‑23 lineage and the avian metapneumovirus (aMPV) subtype B also were detected for the first time 
in broilers in Tunisia. H9N2 LPAIV was the most detected pathogen in the flocks tested, but rarely alone, as 15 of the 16 
H9N2 positive flocks were co‑infected. Except for infectious laryngotracheitis virus (ILTV), all of the targeted patho‑
gens were detected, and in 61% of the respiratory disease cases, a combination of pathogens was identified. The 
major combinations were H9N2 + aMPV (8/39) and H9N2 + IBV (6/39), showing the high contribution of H9N2 LPAIV 
to the multifactorial respiratory diseases. This field survey provided evidence of the emergence of new respiratory 
viruses and the complexity of respiratory disease in Tunisia. A comprehensive and continuous surveillance strategy 
therefore is needed to better control respiratory pathogens in Tunisia.
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Introduction
Over the past 20 years, the commercial poultry sector has 
grown rapidly in Tunisia. Production levels have doubled, 
and poultry have become the main source of protein in 
the country (FAO). Respiratory diseases pose a major 

health threat to commercial poultry worldwide, causing 
tremendous economic losses. The H9N2 low pathogenic 
avian influenza virus (LPAIV) is the most prevalent avian 
influenza virus in the world [1]. In the late 1990s, H9N2 
LPAIV already had been detected in Southeast Asia and 
the Middle East in domestic poultry. Since the 2000s, 
H9N2 LPAIV has become enzootic in Asia, the Middle 
East, and North and West Africa [2].

H9N2 LPAIV was detected in Tunisia for the first time 
in 2009. The strain, assumed to have originated from 
Pakistan, was replaced in 2012 by a genetically related 
virus that originated from the United Arab Emirates 
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(UAE) and spread to Tunisia through Libya [3–5]. In early 
2018, the surveillance of H9N2 LPAIV in migratory birds 
in Tunisia enabled the detection of two different strains 
of H9N2 LPAIV from the same lagoon in the northeast 
region of the country. The first was closely related to 
the Tunisian H9N2 strain of 2012 and was isolated from 
wild birds, whereas the second fell in the Northern and 
Western African H9N2 cluster and was isolated from 
lagoon water [6]. The earliest virus in the latter cluster 
was detected in Morocco in 2016, and has since become 
endemic in several North and West African countries like 
Algeria, Burkina-Faso, Ghana, Togo and Benin [5, 7–10]. 
An H9N2 virus from the same cluster was detected in an 
infant in Senegal in 2019, exhibiting its potential zoonotic 
risk [11]. Over the past decade, other respiratory viruses 
affecting poultry also have emerged in Tunisia, including 
Newcastle disease virus (NDV) genotype VII.2 in 2013, a 
novel variant of infectious bronchitis virus (IBV) in 2016, 
and infectious laryngotracheitis virus (ILTV) between 
2013 and 2016 [12, 13].

Previous studies have provided evidence of the mul-
tifactorial origin of respiratory diseases. A primary 
infection can be complicated by environmental factors 
(ammonia, dust, moisture etc.) and/or by co-infection 
with other pathogens [14–16]. Co-infection is likely to 
enhance the clinical signs and mortality of each of the 
pathogens involved through synergistic mechanisms 
operating between them. This seems to be true for H9N2 
LPAIV, which under experimental conditions barely 
induces clinical signs in chickens, while in the field is cor-
related with severe clinical signs and high mortality [10, 
17]. Several experimental infections succeeded in repro-
ducing H9N2 LPAIV clinical signs in the field by co-
infecting H9N2 alongside another pathogen such as IBV, 
NDV or E. coli [18–21].

Given the repeated emergence and circulation of res-
piratory pathogens in the Tunisian commercial poultry 
sector, a comprehensive and longitudinal surveillance 
study is needed. In this study, we monitored broiler 
flocks in northeast Tunisia over 3 years to investigate the 
pathogens involved in the respiratory disease outbreaks 
observed and assess their longitudinal circulation. In 
the end we brought to light the emergence of three res-
piratory viruses on broiler farms in Tunisia between 2018 
and 2020. We also conveyed that the respiratory diseases 
have a multifactorial etiology as 2/3rd of the flocks tested 
were co-infected.

Materials and methods
Context and sampling protocol
From January 2018 to June 2020, six farms belonging to 
the same broiler rearing company in Tunisia were moni-
tored for respiratory outbreaks. These farms were located 

either in Ben Arous or in Nabeul, two northeastern Tuni-
sian governorates (Figure  1). The farms were named 
using letters from A to F. Flocks showing acute respira-
tory signs were sampled within the first 5 days of an out-
break. The number of flocks sampled from the same farm 
during an outbreak depended on the health status of 
each one of the flocks. For each flock, 12 tracheal swabs 
were collected from diseased or freshly dead birds and 
immediately smeared onto the four circles of an  FTA® 
card, with three swabs per circle.  FTA® cards were dried 
for at least five minutes, labelled, placed in a Ziploc bag 
and transported on ice to be stored at −20 °C until later 
use [22]. A written form including information about the 
GPS location, age, date of the first respiratory signs, daily 
mortality and vaccination history was provided with each 
sampled flock.

FTA card preparation and nucleic acid extraction
Three disks of 2 mm diameter were punched out of each 
 FTA® card’s circle using a Whatman Harris Uni-Core™ 
puncher and pooled together in a 2 mL microcentrifuge 
tube with 300 µL of TE Buffer (10 mM Tris, 1 mM EDTA, 
pH8.0) to soak the disks. The puncher was cleaned using 
pure ethanol between circles and cards. For nucleic acid 
elution, microcentrifuge tubes were vortexed for two 
hours with Vortex-Genie® 2 then briefly centrifuged. 
Then 150  µL of eluent were used for RNA and DNA 
extraction using the NucleoSpin RNA Virus extraction 
kit (Macherey–Nagel, Düren, Germany) following the 
manufacturer’s instructions.

Screening of respiratory pathogens
Samples were screened for a panel of eight respiratory 
pathogens including H9N2 LPAIV, IBV, NDV, aMPV and 
ILTV, Mycoplasma gallisepticum (MG), Mycoplasma syn-
oviae (MS), and Ornithobacterium rhinotracheale (ORT). 
Primers used for this study are listed in Additional file 1 
[23–30]. Depending on the different pathogens’ nucleic 
acid class, real-time PCR (qPCR) or RT-real-time PCR 
(RT-qPCR) assays were performed on an Agilent Bravo 
Automated Liquid Handling Platform (Santa Clara, USA) 
and an Applied Biosystems ViiA7 thermocycler (Foster 
City, USA).

RT‑qPCR for RNA amplification
The RNA viruses were screened using the  iTaq™ univer-
sal  SYBR® green one-step RT-qPCR kit (Bio-Rad, Hercu-
les, USA). The reaction mix consisted of 5 µL of 2 × iTaq 
mix, 0.125  µL of iScript reverse transcriptase, 0.3  µL of 
each primer (10 µM), 2.275 µL of nuclease free water and 
2  µL of RNA with the following program: reverse tran-
scription at 50  °C for 10 min and polymerase activation 
at 95 °C for 1 min followed by 35 cycles of denaturation 
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at 95  °C for 15  s and annealing/extension at 60  °C for 
60 s. AIV M gene positive samples were further subtyped 
using [31] H9 primers following the same reaction setup 
and thermal cycling conditions of one-step RT-qPCR on 
a LightCycler  96® system (Roche Applied Science, Penz-
berg, Germany).

qPCR for DNA amplification
The DNA viruses and bacteria were screened using 
 LightCycler® 480 SYBR Green I Master qPCR kit (Roche 
Applied Science, Mannheim, Germany). The reaction 
mix consisted of 5  µL of Master mix, 0.2  µL of each 
primer (10 µM), 2.6 µL of nuclease free water and 2 µL 
of DNA with the following program: pre-incubation at 
95 °C for 10 min followed by 45 cycles of denaturation at 
95 °C for 10 s, annealing at 60 °C for 15 s and extension at 
72 °C for 15 s.

Sanger sequencing
Sequencing was performed only on material from FTA 
cards. The HA gene of H9N2 LPAIV was sequenced 
using universal primers described by Hoffmann et  al. 

[32]. The complete fusion gene of NDV was sequenced 
using Esmaelizad et al. [33] primers to differentiate vac-
cine type strains from field challenge strains. A partial 
sequence (~950 base pairs) overlapping the small hydro-
phobic (SH) and attachment (G) gene of aMPV was 
generated using SH1 + and G6- primers described by 
Cecchinato et  al. [34]. The partial S1 gene sequence of 
IBV (~300 base pairs) spanning the hypervariable region 
3 (HVR3) was generated using Worthington et  al. [35] 
nested PCR. For all viruses, PCR products were loaded 
on agarose gel and DNA fragments with the expected 
length were excised and purified using  NucleoSpin® Gel 
and PCR Clean-up kit (Macherey–Nagel, Düren, Ger-
many) according to the supplier’s instructions. Purified 
DNA was prepared for Sanger sequencing and shipped 
to the sequencing external service of Eurofins genomics 
(Cologne, Germany).

Sequence treatment and phylogenetic analysis
Fasta format sequences were manually treated using the 
BioEdit v7.2.5 software package and consensus sequences 
were generated. The BLAST program [36] was used 

Figure 1 Geographic distribution of tested flocks on monitored and external broiler farms in Tunisia. Circles on the map represents 
the surveyed farms and the numerical value represents the cumulative number of sampled flocks in each farm. The monitored farms were 
distributed in two governorates, Nabeul in the east of the country, and Ben Arous in the west. The map was created using QGIS3 software



Page 4 of 14Jbenyeni et al. Veterinary Research           (2023) 54:88 

Table 1 qPCR positiveresults and number of pathogens detected per flock 

In this table, are reported the qPCR positive results and the number of pathogens detected per flock, as well as the total number of detections for the eight screened 
pathogens: H9N2, low pathogenic avian influenza virus

aMPV: Avian metapneumovirus, IBV: Infectious Bronchitis virus, ILTV: Infectious Laryngotracheitis virus, MG: Mycoplasma gallisepticum, MS: Mycoplasma synoviae, NDV: 
Newcastle Disease virus, ORT: Ornithobacterium rhinotracheale, N.D: not done
a Negative
b Positive

Pathogen Viral Bacterial Number of 
pathogens detected 
per flockFlocks ID H9N2 NDV IBV aMPV Ms Mg ORT

18–001 –a – 1 – – – N.D 1

18–003 – – 1 – 1 – N.D 2

18–004 1b – – – 1 – N.D 2

18–007 1 – – – 1 – N.D 2

18–008 1 – – – – – N.D 1

18–010 1 – – – – – N.D 1

18–011 – – 1 – – – N.D 1

18–012 1 – 1 – – – N.D 2

18–013 1 – 1 – – – N.D 2

18–014 1 – – – – – N.D 1

18–015 1 – 1 – – – N.D 2

18–016 – – 1 – – – N.D 1

18–017 1 – 1 – – – N.D 2

18–019 1 – 1 – – – N.D 2

18–020 – – 1 – – – N.D 1

18–021 – – 1 – – – N.D 1

18–022 – – 1 – – – N.D 1

18–023 – – 1 – – – N.D 1

18–026 – – 1 – 1 – N.D 2

18–028 – – 1 – – – N.D 1

18–029 – – 1 – – – N.D 1

19–035 – 1 – – – – N.D 1

19–036 – 1 – – 1 – N.D 2

19–037 – 1 – – – – N.D 1

19–038 – 1 – – – – N.D 1

19–042 – – 1 – – 1 N.D 2

20–047 – – 1 1 – – N.D 2

20–048 – – – 1 – – 1 2

20–049 1 – – – – – 1 2

20–051 1 – – 1 – – 1 3

20–052 1 – 1 – 1 – 1 4

20–053 1 – – 1 1 – 1 4

20–054 1 – – 1 1 – 1 4

20–055 1 – – 1 1 – 1 4

20–056 1 – – 1 – – 1 3

20–057 1 – – 1 1 – 1 4

20–058 1 – 1 1 1 – 1 5

20–059 1 – – 1 1 – 1 4

20–060 1 – – 1 1 – 1 4

Total 21 4 20 11 13 1 12 82
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Figure 2 Phylogenetic tree of H9N2 LPAIV. The tree was constructed using the HA gene nucleotide sequences. Sequences from this study 
were labelled with red triangle, Tunisian sequences available in GenBank were labelled with black circle and G1 lineage sequences from Africa 
and the Middle East and reference sequences of other H9N2 lineages were unlabelled. The evolutionary history was inferred using the Maximum 
Likelihood method with General Time Reversible model and 1000 bootstrap replications in MEGA X. All nucleotide positions containing gaps 
and missing data were eliminated. A total of 924 positions were included in the final dataset. Only bootstrap values higher than 60 were conserved
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for comparison with sequences in the NCBI database. 
Sequences with high identity percentages were used to 
construct phylogenetic trees. MAFFT multiple sequence 
alignment program online version 7 was used to align 
sequences [37]. Maximum likelihood phylogenetic trees 
with 1000 bootstraps were created using MEGA 10 soft-
ware: Molecular Evolutionary Genetics Analysis version 
10.

Results
Farms and flocks
During the study period, a total of 39 flocks were inves-
tigated and sampled between January 2018 and June 
2020. Due to logistical reasons, monitoring and sam-
pling activities were interrupted between April and 
October 2019. Of these 39 flocks, 34 originated from 
the six monitored farms in the Ben Arous and Nabeul 
governorates (Figure  1). The number of flocks sampled 
from farms A, B, C, D, E and F were 1, 15, 2, 10, 4 and 2, 
respectively (Additional file 2). The five additional flocks 
came from farms that were not affiliated with the rear-
ing company (referred to as “external farms”) (Additional 
file  2) and were located in the Ben Arous, Nabeul, Biz-
erte and Manouba governorates (Figure  1). The median 
age of all 39 flocks studied was 31 days, with a minimum 
age of 15 days. The daily mortality of the flocks studied 
ranged from 0.05 to 14.36% during the outbreak (Addi-
tional file  3). The respiratory signs observed included 
sneezing, coughing, foamy eye, and dyspnea. In terms 
of lesions, tracheitis, fibrinous cast in the trachea, pneu-
monia, petechial proventriculitis and inflammation of 
Harderian gland, spleen and caeca tonsils were recorded. 
All flocks were vaccinated against IBV and NDV. The IBV 
vaccination schedule comprised priming at the hatchery 
with a Mass-like vaccine and boosting on the farm with 
a 793B-like vaccine. For NDV, birds were primed at the 
hatchery with either a combination of a recombinant and 
a live virus vaccine or with a live virus vaccine only, and 
were boosted every 10  days using a live virus vaccine. 
None of the flocks had been vaccinated for H9N2 LPAIV 
or aMPV.

Molecular epidemiology
The qPCR assays showed a high detection of viral path-
ogens with at least one of the five screened viruses per 
flock. For the 39 tested flocks, 56 positive results for 
viruses were recorded. H9N2 LPAIV, IBV, aMPV and 
NDV were detected in 21 (54%), 20 (53%), 11 (28%), and 
4 (10%) flocks, respectively. ILTV was not detected in 
any of the flocks. MS, ORT and MG were detected in 13 
(33%), 12 (31%) and one (3%) flock, respectively (Table 1).

Although monitoring began in January 2018, it was 
not until April 2018 that H9N2 LPAIV was first detected. 

This virus continued to be detected until the end of the 
study on all of the monitored farms, exhibiting two waves 
of outbreaks. IBV was detected throughout the 3  year 
study on all of the monitored farms except farms A and 
C. NDV was recorded in two flocks of farm D and in one 
external flock during the same period in February 2019. 
aMPV was first detected in February 2020, and continued 
to be detected until the end of the study on monitored 
and external farms (Table 1).

Respiratory co‑infections
Altogether, the PCR tests performed on the 39 study 
flocks showed a total of 82 positive results, covering 4 
viruses and 3 bacteria included in the panel, which con-
firms frequent co-infections and the diversity of res-
piratory pathogens in these Tunisian poultry holdings. 
The co-infections were detected in 24 (61%) of the 39 
flocks and involved viruses and/or bacteria in combi-
nations of two, three, four or five pathogens in 14, 2, 7 
and 1 flock, respectively (Table 1). Co-infections involv-
ing only viruses occurred in 16 flocks. These viral-viral 
co-infection combinations were mainly H9N2 + aMPV, 
H9N2 + IBV, IBV + aMPV and H9N2 + IBV + aMPV, pro-
filed in 8, 6, 1 and 1 co-infections, respectively. H9N2 
LPAIV was the most involved pathogen, found in 15 of 
the 16 viral co-infected flocks. Co-infections involving 
viruses and bacteria occurred in 18 of the 24 co-infected 
flocks, and were divided in two groups. The first con-
sisted of a bacterial superinfection of a viral-viral co-
infection and occurred in 10 flocks; the second consisted 
of a bacterial superinfection of a single virus infection 
and occurred in 8 flocks. Again, H9N2 LPAIV was the 
most involved pathogen in the co-infections, with 18/21 
H9N2 LPAIV positive flocks. H9N2 LPAIV co-infections 
were detected with ORT, MS, aMPV and IBV in 11, 10, 9, 
7 flocks, respectively.

Phylogenetic analysis
H9N2 LPAIV
Complete (1.7  kb) or partial (1  kb) HA sequences of 
H9N2 LPAIVs from seven flocks were generated. HA 
gene sequences and related metadata were deposited 
in the GenBank database under accession numbers 
OQ179924-OQ179930 (Additional file  4). The phylo-
genetic tree showed that Tunisian H9N2 LPAIV viruses 
belonged to the h9.4.2 clade of the G1-like lineage and 
have a common ancestor with the United Arab Emirates 
H9N2 LPAIV virus (JX273562.1) (Figure 2). Our Tunisian 
H9N2 viruses clustered with those detected in Algeria 
and Morocco. The H9N2 LPAIV viruses detected during 
this study exhibit a nucleotide pairwise distance of 10% 
from the Tunisian H9N2 LPAIV of 2010.



Page 7 of 14Jbenyeni et al. Veterinary Research           (2023) 54:88  

Figure 3 Phylogenetic tree of NDV. The tree was constructed using F gene nucleotide sequences of Class II NDV. Sequences from this study 
were labelled with filled red triangle, previous NDV Tunisian sequences available in GenBank were labelled with black circle, 2019 NDV sequences 
from Tunisian backyard chickens were labelled with empty red triangle and reference sequences were unlabelled. The evolutionary history 
was inferred using the Maximum Likelihood method with Tamura 3‑parameter model and 1000 bootstrap replications in MEGA X. All nucleotide 
positions containing gaps and missing data were eliminated. A total of 1675 positions were included in the final dataset. Only bootstrap values 
higher than 60 were conserved
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Other viruses
NDV Complete F gene sequences of NDVs from one 
monitored flock and one external flock were generated. 
F gene sequences and related metadata were depos-
ited in the GenBank database under accession numbers 
OQ199524 and OQ199525 (Additional file 4). Referring to 
the revised nomenclature recommended by [38], the phy-
logenetic analysis showed that NDV sequences belonged 
to the genotype VII.2 (formerly VII-i) and shared 97% of 
nucleotide identity with the 2013 and 2015 Tunisian geno-
type VII.2 strains (Figure 3).

aMPV Partial SH and G gene sequences of aMPVs were 
generated from eight flocks. G gene sequences and related 
metadata were deposited in the GenBank database under 
accession numbers OQ199508 and OQ199515 (Addi-
tional file  4). The phylogenetic analysis sorted G gene 
sequences into two different clusters within the subtype 
B, and were distinct from aMPV vaccine strains (Fig-
ure 4). The alignment of the SH and G gene sequences of 
the detected aMPVs and the reference sequence of aMPV 
revealed some genetic polymorphic features. These fea-
tures consist of two or four nucleotide insertions in the 
noncoding region between the SH and G genes. Based 
on these two features, we were able to retrieve the two 
clusters obtained by the phylogenetic analysis of the G 
gene sequences. Two motifs of nucleotide insertions were 
found; the first involved the insertion of two nucleotides 
and the second the insertion of four nucleotides (Figure 5).

IBV The partial S1 gene sequence of IBV was generated 
from 13 flocks. These sequences and related metadata 
were deposited in the GenBank database under accession 
numbers OQ199494 and OQ199507 (Additional file  4). 
To distinguish between vaccine and field type viruses, 
nucleotide identity between the detected IBV sequences 
and IBV vaccine sequences was used. The detected IBVs 
were considered a vaccine type when their nucleotide 
identity with a vaccine strain was 99% or more, and were 
considered a field challenge when their nucleotide iden-
tity was less than 99% [35]. Adopting [39] nomenclature, 
the phylogenetic analysis showed the presence of three GI 
lineages. Eleven, two and one sequence respectively fell in 
the GI-13, GI-23 and GI-1 lineages. GI-13 were 793B vac-
cine-like sequences and homologous to either 4/91 (eight 
sequences) or CR88 vaccine strains (three sequences). 
The GI-23 sequences shared 95% of nucleotide identity 
with both the Israeli variant 2 strain (AF093796) and the 
Libyan GI-23 strains detected in 2012 (Figure 6).

Discussion
In this study, we monitored over a 3 year-period sponta-
neous acute respiratory cases on broiler farms operated 
by the same rearing company in Tunisia. Our aim was to 
investigate the major respiratory pathogens involved in 
respiratory diseases in the northeastern region of Tunisia 
and their longitudinal circulation.

The design of our study, which involved targeting a 
large panel of respiratory pathogens and sampling clini-
cally diseased birds during the early stage of a respiratory 
outbreak, enabled us to detect at least one viral pathogen 
per flock with high viral loads. We even detected aMPV 
(Ct 15), which is known to be difficult to detect due to its 
short shedding window (Additional file 3) [40].

Importantly, we found that H9N2 LPAIV was the 
most detected respiratory pathogen (54%) on the farms 
monitored. H9N2 LPAIV was enzootic on the monitored 
farms in 2018 and 2020, with outbreaks occurring during 
spring and summer. However, we cannot confirm the sea-
sonality of H9N2 LPAIV due to the interruption of field 
monitoring that occurred during the study period. Fur-
ther investigation is therefore required. The phylogenetic 
analysis revealed that the H9N2 LPAIV viruses detected 
in 2018 and 2020 were monophyletic, belonged to the G1 
lineage and clustered with Northern and Western Afri-
can viruses introduced from the Middle East in 2016 [5]. 
In addition, the H9N2 LPAIV strain reported here was 
distant from the old Tunisian G1 lineage that emerged 
in 2009 and that was detected until 2016 on poultry 
farms, and until 2018 in migratory birds [3, 4]. The phy-
logenetics of H9N2 LPAIV suggest a new introduction of 
H9N2 LPAIV in Tunisia. This study is the first to report 
the circulation of the Northern and Western African 
clade of H9N2 LPAIV in poultry in Tunisia. Interest-
ingly, during the same period in 2018, the first detection 
of H9N2 LPAIV coincided with the detection of a very 
closely related virus (99%) from the water of a lagoon in 
the same region of Tunisia [6]. Our findings support the 
hypothesis proposed by Larbi et  al. [6] that the trans-
mission of H9N2 LPAIV occurs from poultry farms to 
migratory birds via their contamination of the environ-
ment as strains isolated from the water and the migratory 
birds on the same site were different. Considering the 
close phylogenetic relatedness between the H9N2 LPAIV 
introduced in Tunisia and those circulating in neighbor-
ing countries during the same period, we assume that the 
new introduction occurred through the trade of poultry 
or poultry products.

The second most detected virus on the farms moni-
tored was IBV (53%), with an enzootic circulation over 
the study period. The phylogenetic analysis showed the 
dominance of GI-13 vaccine-like strains (793B). This 
finding is common as GI-13 live virus vaccines are used 
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Figure 4 Phylogenetic tree of aMPV. The tree was constructed using G gene nucleotide sequences. Sequences from the present study 
were labelled with red triangle, previous Tunisian sequence were labelled with black circle, vaccine sequences were labelled with green circle 
and other aMPV‑B sequences available in GenBank were unlabelled. The evolutionary history was inferred using the Maximum Likelihood method 
with Tamura 3‑parameter model and 1000 bootstrap replications in MEGA X. All nucleotide positions containing gaps and missing data were 
eliminated. A total of 292 positions were included in the final dataset. Only bootstrap values higher than 65 were conserved
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widely on poultry. The rolling infection of birds with 
vaccine viruses within a flock, when the initial coverage 
is incomplete, can lead to vaccination reactions, thus 
complicating diagnostic efforts [41]. Given the epide-
miological context in Tunisia, an infection with a rolling 
IBV vaccine strain could be co-infected by H9N2 LPAIV 
which leads to the exacerbation of the clinical signs [42, 
43]. In this study, we report the detection of the GI-23 
lineage (variant 2) for the first time in Tunisia. Over the 
3 years of the study period, variant 2 was detected twice, 
5  months apart, on the same farm. The lack of spread 
of the GI-23 virus to the other farms monitored and its 
occasional detection suggest a cross protection of Massa-
chusetts and 793B combination against variant 2, as also 
described in previous studies [44, 45]. However, we can-
not draw conclusions about the prevalence of this lineage 
in Tunisia; active and continuous surveillance of this vari-
ant therefore is required.

The detection of aMPV started in February 2020 and 
lasted until June 2020. During this period, aMPV was 
detected on both monitored and external farms (28%) 
in the different governorates, indicating the emergence 
and circulation of a new aMPV in broilers. Lachheb et al. 
[46] also reported the detection of an aMPV field strain 
in 2019 in broilers. Unfortunately, we were not able to 
determine the phylogenetic relatedness of the previ-
ously described virus with the detected aMPVs during 
this study as the sequence was not published. The phy-
logenetic analysis grouped the detected aMPVs in two 
different clusters within the subtype B and outside of the 
vaccine strains cluster, suggesting the circulation of two 
different field strains. We noticed that these aMPVs held 
polymorphic features in their SH-G non-coding region 
which do not exist in other aMPVs. Noncoding regions 
have different biological roles, including the regulation of 
viral replication, viral persistence, host immune evasion, 
and cellular transformation [47]. These insertions conse-
quently should not be neglected, and pathogenicity stud-
ies are required.

NDV genotype VII.2 was detected during the same 
period in two flocks on the same monitored farm and 
on one external farm, showing an epizootic circulation 
of this virus. This sporadic detection of NDV could be 
explained by the reinforcement of NDV control meas-
ures. After genotype VII.2 emerged in 2013 in Tunisia, 
it was recommended to add NDV live vaccine boosters 
every 10  days in broilers and to use NDV vector vac-
cines. The phylogenetic analysis of NDV showed that the 
detected viruses are identical and share the most recent 
common ancestor with previously reported viruses in 
Tunisian (KU175357) and Libya [48].

Bacterial pathogens also were highly detected, even 
though samples were collected in the acute respiratory 
phase showing an early bacterial superinfection. To the 
best of our knowledge, mycoplasma prevalence in poul-
try in Tunisia has not yet been studied. Based on the 
global prevalence of MG and MS, the low detection of 
MG (one flock) in contrast with the high detection of MS 
(33%) is in line with their reported occurrence in all poul-
try populations. However, our results are not in line with 
the global occurrence of MG and MS in broiler poultry, 
which are reported to be approximately the same (around 
25%) [49]. The lower rate of MG compared to MS could 
be explained by control measures that are oriented more 
toward MG than MS in breeding birds, thereby reducing 
MG vertical transmission in broilers. Considering these 
results, we are tempted to say that control measures in 
Tunisia have reduced the occurrence of MG on broiler 
farms. Nevertheless, more studies on mycoplasma in 
different poultry populations are needed to monitor the 
effectiveness of MG and MS control measures and adapt 
them accordingly. Surprisingly, the detection rate of ORT 
was very high (100%) in the 12 flocks tested. The screen-
ing of ORT was included in our respiratory panel in 2020 
and only flocks sampled that year were tested. Even so, 
these results draw our attention to the likely contribution 
of this pathogen to respiratory disease in broilers. Our 
results are consistent with the few existing ORT studies 

Figure 5 The genetic polymorphic features of Tunisian aMPV sequences. The alignment of the noncoding region between SH and G genes 
of Tunisian aMPV sequences from this study with VCO3 reference sequence showed the presence of two motifs of nucleotide insertions highlighted 
in the red frames
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in other countries suggesting the underdiagnosis of this 
pathogen [21, 50–52].

Interestingly, co-infections between respiratory path-
ogens were very frequent as 61% of the flocks studied 
were positive for two or more pathogens. Our results 
are consistent with the results of similar studies [15, 16] 
confirming the complexity of respiratory disease and 
its diagnosis in the field. Viral co-infections occurred in 
16 of the 39 flocks studied; of these, H9N2 LPAIV was 
the major contributor (15/16). The dominance of co-
infections by H9N2 LPAIV could be explained by the 
high detection rate of H9N2 LPAIV in the flocks stud-
ied, and could explain the clinical signs associated with 
H9N2 LPAIV positive flocks. In these co-infections, the 
major viral combinations were H9N2 + IBV (6/16) and 
H9N2 + aMPV (8/16). Several experimental studies have 
shown that co-infections with H9N2 LPAIV and IBV 
consistently result in more severe clinical signs than sin-
gle infections with either H9N2 LPAIV or IBV, regardless 
of the virulence of the IBV strain [17, 42, 43]. This syn-
ergy between H9N2 LPAIV and IBV could be explained 
either by the severe inflammatory response induced by 
IBV [20], or by the trypsin-like serine protease encoded 
by IBV which probably facilitates the cleavage activa-
tion of the hemagglutinin of the H9N2 LPAIV virus, and 
thus increases its replication [53, 54]. In contrast, little is 
known about co-infection mechanisms between H9N2 
LPAIV and aMPV as to the best of our knowledge this 
co-infection has not been previously reported. Clinical 
manifestations of aMPV in broilers are absent or mild, so 
co-infections with H9N2 LPAIV could explain the clinical 
manifestation of flocks positive for aMPV [55]. All of the 
flocks co-infected with H9N2 and aMPV also were posi-
tive for ORT, making it even more difficult to understand 
the sequential order of co-infections and the synergistic 
effect between the three pathogens. Only dual co-infec-
tions between ORT and H9N2 or aMPV and ORT were 
previously studied by experimental infections. Pan 
et al. [21] showed that in broilers, a co-infection involv-
ing H9N2 and ORT, either simultaneously or primed by 
ORT, increased mortality by 60–70% respectively com-
paring to a single infection with H9N2 LPAIV. Similarly, 
Marien et al. [56] showed that a prior infection of ORT 
with aMPV enabled the reproduction of respiratory dis-
ease in specific pathogen free (SPF) turkeys, which was 
not possible by the inoculation of ORT alone via the nat-
ural infection route.

In conclusion, this study brought to light the emer-
gence of three new respiratory viruses in Tunisia, as 
well as several respiratory co-infections. The introduc-
tion of a new G1 lineage of H9N2 LPAIV, GI-23 line-
age of IBV and subtype B of aMPV was shown, which 
highlights the importance of active and continuous 

Figure 6 Phylogenetic tree of IBV. The tree was constructed 
using IBV HVR3 nucleotide sequences. The sequences 
from the present study were labelled with red triangle and reference 
sequences of the different IBV lineages available in GenBank were 
unlabelled. The evolutionary history was inferred using the Maximum 
Likelihood method with General Time Reversible model and 1000 
bootstrap replications in MEGA X. A total of 1875 positions were 
included in the final dataset. Only bootstrap values higher than 60 
were conserved
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surveillance and points to an urgent need to adjust 
control measures to the current situation. The high fre-
quency of the co-infection between H9N2 LPAIV and 
aMPV suggests that it would be relevant to study the 
mechanisms of a likely synergism between these two 
viruses. The complexity of respiratory disease dem-
onstrated in the study emphasizes the need to adopt a 
comprehensive diagnostic approach for multifactorial 
respiratory diseases.
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