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Abstract 

Antimicrobial resistance (AMR) is a global health issue and surveillance of AMR can be useful for understanding AMR 
trends and planning intervention strategies. Salmonella, widely distributed in food-producing animals, has been 
considered the first priority for inclusion in the AMR surveillance program by the World Health Organization (WHO). 
Recent advances in rapid and affordable whole-genome sequencing (WGS) techniques lead to the emergence of 
WGS as a one-stop test to predict the antimicrobial susceptibility. Since the variation of sequencing and minimum 
inhibitory concentration (MIC) measurement methods could result in different results, this study aimed to develop 
WGS-based random forest models for predicting MIC values of 24 drugs using data generated from the same labora‑
tories in Taiwan. The WGS data have been transformed as a feature vector of 10-mers for machine learning. Based on 
rigorous validation and independent tests, a good performance was obtained with an average mean absolute error 
(MAE) less than 1 for both validation and independent test. Feature selection was then applied to identify top-ranked 
10-mers that can further improve the prediction performance. For surveillance purposes, the genome sequence-
based machine learning methods could be utilized to monitor the difference between predicted and experimental 
MIC, where a large difference might be worthy of investigation on the emerging genomic determinants.
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Introduction
Salmonella, belonging to the Enterobacteriaceae fam-
ily, is a gram-negative rods bacillus. They are widely dis-
tributed in animals and are prevalent in food-producing 
animals, including cattle, porcine, and poultry [1]. Sal-
monella is one of the major food-borne zoonotic patho-
gens causing approximately 93.8 million global infections 
with 155  000 deaths per year [2]. The symptoms of sal-
monellosis are generally mild; however, the severity 
of the disease depends on the serotypes of Salmonella 
and host factors [3, 4]. The World Health Organization 
(WHO) estimates that Salmonella is one of the four key 
causes of global diarrhoeal diseases. Salmonella has been 
considered the first priority for inclusion in a program of 
integrated surveillance of antimicrobial resistance (AMR) 
in foodborne pathogens by the WHO [5]. In Taiwan, Sal-
monella isolated from healthy poultry and swine is one of 
the major detected pathogens in our national AMR sur-
veillance program from 2017.

AMR poses a major health problem worldwide. It was 
estimated that 4.95 million deaths were associated with 
bacterial AMR in 2019 [6]. Surveillance programs at mul-
tidisciplinary level are vital for better understanding of 
AMR and minimizing the emergence of AMR [7]. Recent 
advances in fast and affordable whole-genome sequenc-
ing technologies have revolutionized microbial surveil-
lance [8]. Whole-genome sequence-based surveillance 
enabled the detection of multidrug-resistance (MDR) and 
can be a replacement for phenotypic tests [9–11]. While 
various online tools and databases are available for AMR 
detection and surveillance [8], the conventional methods 
are based on the search of AMR genes using a curated 
knowledge base such as the Comprehensive Antibiotic 
Resistance Database (CARD) [12] and ResFinder [13]. 
However, a knowledge gap was found that may impede 
the adoption of the conventional methods [10].

Machine learning algorithms are emerging tools 
for identifying AMR. The genomic sequences can be 
encoded as feature vectors for training prediction models 
of AMR. In contrast to the conventional methods rely-
ing on sequence comparison to a database, the machine 
learning methods learn patterns of AMR from training 
dataset without the issue of knowledge gap and usually 
provide superior performance over the conventional 
methods [14, 15]. The machine learning methods and 
software for AMR detection have been comprehensively 
reviewed [14]. The methods can be generally classified 
into qualitative and quantitative methods. The qualitative 
methods predict AMR based on a predefined dataset of 
susceptible and resistant isolates. Since the breakpoints 
for defining AMR may change, retraining of the qualita-
tive methods will be required. Furthermore, the classifi-
cation of isolates with minimum inhibitory concentration 

(MIC) near the breakpoint could be unreliable and the 
isolates were often excluded from the development of 
qualitative methods [15]. In contrast, the quantitative 
methods directly predict the MIC values that provide 
a more flexible option for interpreting the prediction 
results [16, 17].

Since an MIC variation of up to two two-fold dilutions 
across laboratories was observed [15, 18, 19], the devel-
opment and deployment of machine learning algorithms 
for MIC prediction can benefit from a dataset with well-
controlled experimental conditions. In this study, ran-
dom forest models were developed for AMR prediction 
of nontyphoidal Salmonella. Random forest is a popular 
ensemble tree-based algorithm consisting of multiple 
trees, each learned from different bagging samples. The 
average of predicted values from all trees will be the final 
predicted result. It is robust even for a small dataset and 
capable of dealing with high-dimensionality [20], that is 
suitable for the present work. The sequencing data and 
MIC measurement for 24 drugs were all generated from 
the antimicrobial surveillance program supported by the 
Bureau of Animal and Plant Health Inspection and Quar-
antine in Taiwan using the same protocols and conducted 
in the same laboratories. The robust prediction on new 
isolates not involved in developing the models showed 
the effectiveness of the models.

Materials and methods
Dataset
The WGS and MIC data were obtained based upon 
works supported by the Council of Agriculture, Exec-
utive Yuan, Taiwan, ROC, under grant numbers 
106AS-9.12.1-BQ-B1, 107AS-8.9.1-BQ-B1, 108AS-8.8.1-
BQ-B1, 109AS-8.8.1-BQ-B1,110AS-5.6.1-BQ-B1, and 
111AS-5.6.1-BQ-B1. The Salmonella strains were iso-
lated from fecal samples collected randomly from healthy 
poultry and swine in slaughterhouses in Taiwan. A total 
of 321 Salmonella isolates collected before 2020 were 
utilized for model training and validation. For each drug, 
the associated isolates were divided into a training and a 
validation dataset in a ratio of 8:2. Additional 16 Salmo-
nella isolates collected in 2020 were utilized as independ-
ent test dataset for assessing the prediction performance 
of the developed model. The WGS reads were gener-
ated using an Illumina MiSeq sequencer (Illumina®, San 
Diego, CA, USA) with paired-end 150  bp sequencing. 
The reads were trimmed at a Phred quality score of Q30 
using Trimmomatic [21], and were de novo assembled 
using Unicycler with an Illumina-only assembly pipeline 
[22]. Parameters for genomes assembling include a mini-
mum length of 75 bp. The genome assemblies were used 
for further analysis.
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The final genome assemblies were checked by the qual-
ity metrics of the depth of coverage, total read length, 
N50 and number of contigs for its contiguity. Genome 
completeness was measured by alignment search of 
expected gene content and reference genome in Salmo-
nella In Silico Typing Resource (SISTR) database. We 
followed the quality assessment recommended by the 
EU Reference Laboratory for antimicrobial resistance 
(EURL-AR) [23] and revised the quality standard based 
on our previous experience in strain identification, sub-
typing, and phylogenetic analysis. The good quality was 
set at over 50-fold depth of coverage, 4.5–5.5 Mb of total 
read length, over 20  000  bp of N50 and less than 1000 
contigs. If the genome did not reach the quality standard 
as mentioned above, it was regarded as low quality. Low-
quality genomes were removed from all further analysis 
and sequencing was carried out again.

The MICs of 24 antimicrobial agents, including amoxi-
cillin, ampicillin, azithromycin, cefotaxime, cefoxitin, 
ceftazidime, ceftiofur, ceftriaxone, chloramphenicol, 
ciprofloxacin, colistin, enrofloxacin, ertapenem, florfeni-
col, gentamicin, kanamycin, meropenem, nalidixic acid, 
oxytetracycline, streptomycin, sulfonamide, tetracy-
cline, tigecycline, and trimethoprim for Salmonella iso-
lates were determined by broth microdilution method in 
accordance with the guideline of the Clinical and Labo-
ratory Standards Institute (CLSI, USA) [24]. The anti-
microbial agents were tested at two-fold dilution series 
with a maximum concentration from 64 to 1024 μg/mL. 
There are some isolate-drug pairs without MIC evalua-
tion leading to a total number of 4924 and 1246 isolate-
drug pairs for model training and validation, respectively. 
For the independent test dataset, only MICs for 11 drugs 
were evaluated for the 16 isolates resulting in 176 iso-
late-drug pairs (shown in Table  1). The breakpoints of 
CLSI (2021) for the 24 drugs were utilized for classifying 

susceptible and resistant isolates. The log2-transformed 
MIC (log2MIC) values were utilized for following analy-
sis. Detailed numbers of the datasets were shown in 
Table 2.

Model development and feature selection
In this study, 10-mer features extracted from the genome 
sequences of isolates were utilized for machine learning. 
The k-mer counting (KMC) program [25] was applied 
to calculate the 10-mer frequencies as features. Theo-
retically, there will be 410 = 1  048  576 features. After 
removing the 10-mers not found in our dataset, the total 
number of features based on the 321 isolates of the train-
ing and validation datasets is 524  301. Please note that 
the test dataset might have additional 10-mer features 
not found in the training and validation dataset, but 
those 10-mers were ignored in this experiment. The com-
mand utilized for calculating 10-mer counts is “kmc -k 10 
-fm -ci1 -cs1677215 input output temp”.

The random forest algorithm was applied to train a pre-
diction model for log2MIC. The random forest algorithm 
has been shown to be effective for predicting AMR [26]. 
Random forest is an ensemble of n decision trees trained 
on bootstrap samples and m randomly selected features. 
The prediction results were the average of the predic-
tions from the tree ensembles, where the decimals were 
rounded off. The number of randomly selected features 
for tree building was set to a default value of m = 724 that 
is the square root of the total feature number. The param-
eter of n was tuned based on out-of-bag (OOB) MAE. 
The OOB error is a method to estimate predictive per-
formance by applying the model to predict OOB samples 
that were not involved in the development of a tree. In 
this study, we considered the n ∈ {100, 200, 500, 700, 1000, 
1500}. The random seed was set to 0 for reproducibility.

Table 1  The numbers of susceptible and resistant isolates based on the CLSI breakpoints (2021) in the independent test 
dataset for 11 drugs. 

Drugs Resistant Susceptible log2MIC (Min., Q1, Q2, Q3, Max.)

Amoxicillin 15 1 (0, 6, 8, 8,8)

Ceftiofur 0 16 (0, 0, 1, 2, 4)

Chloramphenicol 13 3 (3, 7.75, 8, 8, 8)

Ciprofloxacin 1 15 (−2, −1.25, −1, −1, 3)

Colistin 1 15 (−1,−3, −1.5, 1, 2)

Enrofloxacin 0 16 (−1, 0, 0, 0, 1)

Florfenicol 12 4 (4, 5.5, 8, 8, 8)

Gentamicin 1 15 (−1, −1, 0, 1, 6)

Kanamycin 9 7 (2, 4, 8, 8, 8)

Nalidixic acid 7 9 (3, 4, 4, 5.75, 8)

Oxytetracycline 14 2 (3, 8, 8, 8, 8)
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For feature selection, the built-in feature importance 
function was utilized to rank the features for their impor-
tance. Subsequently, the top k features were adopted for 
model training and OOB error evaluation, where k ∈ {100, 
200,…, 2000}. The scikit-learn 0.23.1 library and python 
3.7 programming language were utilized to implement 
the random forest regressor.

Performance measurement
The present work aims to predict the MIC value for iso-
lates using genome sequence, therefore the main indica-
tor for measuring the performance of models is the mean 
absolute error (MAE). As for the classification results 
based on clinical breakpoints, accuracy, sensitivity, 

specificity and precision were utilized for evaluating 
model performance as shown in the following:

(1)Accuracy =
TP + TN

N

(2)Sensitivity =
TP

TP + FN

(3)Specificity =
TN

TN + FP

(4)Precision =
TP

TP + FP

Table 2  The numbers of susceptible and resistant isolates in the training and validation dataset and clinical breakpoints for 
24 drugs.

Drugs Training Resistant Susceptible log2MIC (Min., 
Q1, Q2, Q3, 
Max.)

Validation Resistant Susceptible log2MIC (Min., 
Q1, Q2, Q3, 
Max.)

Clinical 
Breakpoint 
(μg/mL)

Amoxicillin 256 215 41 (−1, 8, 8, 8, 8) 65 54 11 (−1, 8, 8, 8, 8) 32

Ampicillin 167 135 32 (0, 8, 8, 8, 8) 42 33 9 (0, 8, 8, 8, 8) 32

Azithromycin 146 21 125 (1, 1, 1.5, 2, 8) 37 5 32 (1, 1, 2, 3, 8) 32

Cefotaxime 167 42 125 (−3, −3, −2,1, 6) 42 10 32 (−3, −3, −2, 
1.25, 6)

4

Cefoxitin 146 46 100 (1, 2, 3, 6, 8) 37 11 26 (−3, 2, 3, 7, 8) 32

Ceftazidime 167 27 140 (−1, −1, 0, 1, 8) 42 7 35 (−1, 0, 0, 1, 8) 16

Ceftiofur 256 23 233 (−1, 0, 0, 1,8) 65 6 59 (−1, 0, 1, 1, 8) 32

Ceftriaxone 167 27 140 (−3, −3, −3, −2, 6) 42 6 36 (−3, −3, −2, 
−1.75, 4)

4

Chloramphenicol 256 178 78 (1, 3, 8, 8, 8) 65 45 20 (1, 4, 8, 8, 8) 32

Ciprofloxacin 256 27 229 (−7, −5, −3, −2, 4) 65 7 58 (−7, −3, −2, 
−1, 6)

1

Colistin 256 44 212 (−3, −3, −1, 1, 3) 65 12 53 (−3, − 3, − 1, 1, 6) 4

Enrofloxacin 256 2 254 (−1, −1, −1, −1, 5) 65 1 64 (−1, −1, −1, 0, 7) 32

Ertapenem 146 14 132 (−3, −3, −3, −3, 6) 37 3 34 (−3, −3, −3, 
−3, 6)

2

Florfenicol 256 161 95 (1, 3, 6, 8, 8) 65 41 24 (1, 3, 7, 8, 8) 32

Gentamicin 256 34 222 (−1, −1, −1, 1, 8) 65 9 56 (−1, −1, −1, 1, 8) 16

Kanamycin 256 73 183 (0, 1, 2, 8, 8) 65 19 46 (0, 1, 2, 8, 8) 64

Meropenem 167 1 166 (−3, −3, −3, −3, 6) 42 0 42 (−3, −3, −3, −3, 
−2)

4

Nalidixic Acid 256 102 154 (1, 2, 4, 8, 8) 65 26 39 (1, 2, 4, 8, 8) 32

Oxytetracycline 256 215 41 (0, 7, 8, 8, 8) 65 54 11 (0, 7, 8, 8, 8) 32

Streptomycin 167 122 45 (1, 4, 5, 8, 8) 42 30 12 (1, 4.75, 5, 8, 8) 32

Sulfonamide 167 119 48 (5, 7, 10, 10, 12) 42 29 13 (3, 9.75, 10, 10, 10) 512

Tetracycline 167 135 32 (−1, 6, 7, 8, 8) 42 34 8 (−1, 6, 7, 8, 8) 16

Tigecycline 167 0 167 (−3, −3, −2, −1, 0) 42 0 42 (−3, −2, −2, −1, 
−1)

4

Trimethoprim 167 115 52 (−1, −1, 8, 8, 8) 42 29 13 (−1, 6.25, 8, 8, 8) 16
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where N, TP, TN, FP, and FN represent the total number 
of samples, true positives, true negatives, false positives, 
and false negatives, respectively.

Results
Model development, validation and independent test
For model development, parameter tuning was con-
ducted using the training dataset and the tuned param-
eter was then utilized for training the final prediction 
models. The system flow of this study is shown in Fig-
ure 1. A total of 24 models were developed for predicting 
the MICs of 24 drugs. The tree number of n = 1000 gave 
the best performance on OOB samples for 24 drugs with 
an average MAE of 0.916 (Figure 2A). The MAE ranging 
from 0.916 (n = 1000) to 0.927 (n = 100) for various num-
bers of trees indicates a small effect of the parameter of 
tree number on the MAE performance. The MAE value 
of less than 1 means the prediction will generally fall 
within a two-fold dilution range. When taking the break-
point into consideration, the random forest models are 
able to distinguish susceptible and resistant isolates with 
an average accuracy of 91% (Figure  2B). Detailed OOB 
performance was shown in Additional file  1. The drugs 
meropenem, tigecycline, and enrofloxacin are associated 
with the lowest MAEs of less than 0.6. In contrast, ertap-
enem, kanamycin, and cefoxitin are associated with the 
worst MAEs of greater than 1.2. To have a better insight, 
the predictions were further evaluated by using meas-
urements of sensitivity, specificity and precision. Please 
note that some drugs are associated with only a few 
resistant isolates that are expected to have low sensitiv-
ity. There are 11 drugs with a sensitivity higher than 0.8. 
Since there is no resistant isolate for tigecycline in the 

dataset, sensitivity was not calculated. High specificity 
was obtained for all drugs except for streptomycin with 
a specificity of less than 0.69. High precision of greater 
than or equal to 0.8 was obtained for 18 drugs. For three 
drugs of enrofloxacin, meropenem and tigecycline, all 
isolates were predicted to have MIC values less than the 
breakpoints and therefore there are no calculated preci-
sion values.

To further evaluate the 24 models, the model perfor-
mance on the validation dataset was shown in Figure  2 
and Additional file 2. Please note that the validation data-
set was not involved in the model training, therefore it 
represents a test on unseen isolates. Overall, similar aver-
age values of MAEs and accuracies of 0.92 and 0.92 were 
obtained for the validation dataset, respectively. A total 
of 11, 23 and 18 drugs are associated with a performance 
value greater than or equal to 0.8 in terms of sensitiv-
ity, specificity and precision, respectively. The perfor-
mance measures based on OOB and validation dataset 
are very similar and are therefore considered less overfit-
ting issues. Four drugs of meropenem, tigecycline, enro-
floxacin, and sulfonamide are associated with the lowest 
MAEs of less than 0.6. Five drugs of ertapenem, cefoxitin, 
ciprofloxacin, tetracycline, and gentamicin are associated 
with worst MAEs of greater than 1.2.

While the models provide good performance on OOB 
and validation datasets, an additional dataset collected 
in 2020 was utilized to independently test the models to 
simulate the application of the models for AMR surveil-
lance. The MIC values of 176 unseen isolate-drug pairs 
were predicted based on the above-mentioned models. 
As shown in Figure  2, The average MAE and accuracy 
of 0.94 and 0.92, respectively, are similar to the results 
obtained from OOB and validation showing no overfit-
ting problems. Detailed information is shown in Addi-
tional file 3.

Performance improvement by enlarging dataset
While the developed prediction models gave a good 
prediction of MIC values for unseen isolates, the train-
ing dataset is relatively small. Since dataset size is a 
critical factor for developing machine learning mod-
els, the continuous integration of newly sequenced 
and phenotyped isolates into the training dataset could 
benefit the models. Therefore, this study evaluated the 
performance change made by enlarging the training 
dataset. An integrated training dataset was developed 
by integrating the original training, validation and test 
datasets. The integration resulted in a dataset of 6346 
isolate-drug pairs that were utilized to train new mod-
els and evaluate the corresponding OOB errors. As 
expected, the integration of 1422 isolate-drug pairs 

Figure 1  System flow of the present study.
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improved the average OOB MAE and accuracy by 
3.05% and 1.01% with values of 0.88 and 0.92, respec-
tively. A comparison of the OOB performance using 
the training and integrated datasets is shown in Fig-
ure  2. Detailed performance was shown in Additional 
file  4. The largest improvement in MAE was made for 
kanamycin, trimethoprim, and amoxicillin with 0.19, 
0.18 and 0.11 improvements, respectively. As for accu-
racy, 15%, 13% and 10% improvement was obtained for 
kanamycin, cefotaxime, and ciprofloxacin, respectively. 

Future integration of more isolate-drug pairs could fur-
ther improve the performance.

Top‑ranked 10‑mers as predictive features
The developed models are predictive, however, the high-
dimensional feature vector could interfere with the per-
formance of the applied machine learning algorithm and 
slow down the execution time. The top-k features ranked 
by using the built-in feature importance function esti-
mator of random forest with the lowest OOB and MAE 

Figure 2  Performance comparison for 24 drugs and four datasets of training, validation, test and integrated datasets. OOB out-of-bag, 
MAE mean absolute error.
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values were identified for each drug. Random forest algo-
rithms were then applied to develop prediction models 
using the training dataset and top-k features. Selected 
top-ranked 10-mers for each drug are shown in Addi-
tional file  5. As shown in Additional file  6, the average 
MAE and accuracy of 0.72 and 0.93, respectively, were 
obtained that were much better than the models utilizing 
all 10-mer features. None of the drugs has an MAE value 
greater than 1.2. Four drugs of enrofloxacin, meropenem, 
sulfonamide and tigecycline are associated with low MAE 
values of less than 0.6. When applying the top-10 models 
to the validation dataset, the average MAE and accuracy 

were 0.81 and 0.93, respectively (Additional file 7). Both 
results suggested that the top-ranked 10-mers are essen-
tial predictive features for MIC prediction.

An independent test on the additional dataset consist-
ing of 176 unseen isolate-drug pairs collected in 2020 
showed slightly improved performance (1%). The average 
MAE and accuracy of the model using the top-ranked 
10-mers are 0.93 and 0.93, respectively. Detailed infor-
mation is shown in Additional file  8. Compared to the 
large improvement on the validation dataset, it is unex-
pected that only a small improvement was made on the 
independent test dataset. As shown in Figure  3A, the 

Figure 3  Performance comparison for 24 drugs and four datasets of training, validation, test and integrated datasets using top-ranked 
10-mers. OOB out-of-bag, MAE mean absolute error.
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independent test performance of MAE for colistin, flo-
rfenicol and oxytetracycline are much worse than those 
observed in OOB and validation datasets. In contrast, 
chloramphenicol and nalidixic acid showed much worse 
accuracies. Since there are only 16 isolates per drug, the 
bias in performance may be introduced by the small data-
set. In addition, gene mutation may result in different 
10-mer profiles that may not be captured by the model. 
To incorporate all available information for developing 
final models, the integrated dataset of training valida-
tion and independent test datasets was utilized to train 
the final models using the selected top-ranked 10-mers. 
Detailed information was shown in Additional file  9. 
The average MAE and accuracy of the model using the 
top-ranked 10-mers are 0.71 and 0.94, respectively. Alto-
gether, as shown in Figure 4, the top-ranked 10-mers and 
integration of additional datasets are useful for improv-
ing the prediction of MIC.

Comparison to existing methods
To provide a comparison of the developed method and 
existing methods, a publicly available machine learning-
based tool [16] trained on a public database of PAT-
RIC [27] and a knowledge-based method of ResFinder 
were applied to predict the samples of the independent 
test dataset. The machine learning-based tool utilizing 
XGBoost algorithm was reported to achieve high accu-
racy for predicting MICs for 15 antibiotics. However, 
the application of the models for predicting samples of 
the independent test dataset showed relatively low per-
formance with an average MAE of 2.929 and accuracy 
of 65%, respectively. Note that some of the antibiotics 
in the independent test dataset were not covered by the 
XGBoost models and only amoxicillin, ceftiofur, chlo-
ramphenicol, ciprofloxacin, gentamicin, kanamycin, and 
nalidixic acid were considered in this comparison. For 
the ResFinder 4.1, the assembled contigs were submit-
ted to the web server at with default parameters. The 
average accuracy for predicting the samples of the inde-
pendent test dataset is 75% for amoxicillin, ceftiofur, 

chloramphenicol, ciprofloxacin, colistin, florfenicol, gen-
tamicin, kanamycin, and nalidixic acid. Detailed perfor-
mances for the XGBoost-based model and ResFinder are 
available as Additional files 10 and 11. Both methods did 
not provide satisfactory performance and stress out the 
importance of the present work.

Discussion
AMR is a global health issue and surveillance of AMR 
can be useful for understanding AMR trends and plan-
ning intervention strategies. However, traditional anti-
microbial susceptibility testing is time-consuming and 
labor-intensive. Modern artificial intelligence meth-
ods are capable of capturing the patterns hidden in the 
dataset generated by previous experiments and apply-
ing the patterns for predicting unseen samples. As the 
inter-laboratory variation of MIC measurement can vary 
up to two two-fold dilutions, the publicly available tool 
[16] trained on a public database of PATRIC [27] did not 
produce good prediction results in our datasets. Also, 
the knowledge-based method of ResFinder did not pro-
vide satisfactory performance. Considering the possible 
knowledge gap and variation of sequencing and MIC 
measurement methods, it is desirable to develop genome 
sequence prediction models based on the data produced 
using the same protocols by the same laboratories in 
Taiwan.

In this study, genome sequence-based random forest 
models were developed for predicting MIC values of 24 
drugs with rigorous validation and testing using three 
datasets. The sequence features were represented as a 
large number of 10-mers and a good performance of an 
average MAE less than 1 was obtained from the models. 
The performance comparison of top-ranked 10-mers and 
all 10-mers highlighted the importance of feature selec-
tion. The top-ranked 10-mers can be further mapped to 
the genome for identifying genes relevant to antimicro-
bial susceptibility.

The proposed random forest algorithm is a non-linear 
learning method whose prediction is derived from com-
plex 10-mer-based rules of an ensemble of decision trees. 
Since AMR can involve multiple genes simultaneously, 
the proposed method can provide better performance 
than traditional AMR gene-based methods. However, the 
identified 10-mers may not be directly linked to a spe-
cific phenotype making the interpretation of the associa-
tions difficult. The tradeoff between interpretability and 
prediction performance is a well-known issue. Machine 
learning methods can provide good performance [28], 
while the traditional AMR gene identification tool pro-
vides good interpretability. Other tools such as DBG-
WAS [29], while not designed to build predictors for 
maximizing the prediction performance of phenotypes, 

Figure 4  Comparison of MIC prediction based on all k-mers and 
top-ranked k-mers.
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may also be utilized to study the associations of k-mers 
and phenotypes. Furthermore, while out of the scope of 
this study, as the phylogenetic information can benefit 
the genome-wide association study [30], the information 
may be further engineered as new features and evaluated 
for its contribution to MIC prediction.

As the utilized dataset was obtained from a regular sur-
veillance program on healthy poultry and swine, the data 
imbalanced issues were expected and that may not ham-
per the utilization of the model due to the nature of the 
model for predicting MIC values rather than susceptibil-
ity. However, prediction performance of susceptibility 
classification should be interpreted with care. For exam-
ple, enrofloxacin was associated with only two, one and 
zero resistant isolates in the training, validation and test 
dataset, respectively. The predictor learned more from 
the MIC distribution of the majority class of susceptible 
isolates and predicted the susceptible isolates well. As a 
result, the accuracy for enrofloxacin is notably high, and 
this can primarily be attributed to the majority class.

For surveillance purposes, the genome sequence-based 
machine learning methods could be utilized to monitor 
the difference between predicted and experimental MIC, 
where a large difference might be worthy of investiga-
tion on the emerging genomic determinants. This study 
presented a successful machine learning-based MIC 
prediction method utilizing genomic and phenotypic 
data obtained from surveillance programs in Taiwan. 
The incorporation of future data is expected to further 
improve the prediction performance of the models.
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