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Prototheca spp. induce an inflammatory 
response via mtROS‑mediated activation 
of NF‑κB and NLRP3 inflammasome pathways 
in bovine mammary epithelial cell cultures
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Abstract 

Emergence of bovine mastitis caused by Prototheca algae is the impetus to better understand these infections. Both P. 
bovis and P. ciferrii belong to Prototheca algae, but they differ in their pathogenicity to induce inflammatory responses. 
The objective was to characterize and compare pathogenesis of inflammatory responses in bMECs induced by P. bovis 
versus P. ciferrii. Mitochondrial ultrastructure, activity and mtROS in bMECs were assessed with transmission electron 
microscopy and laser scanning confocal microscopy. Cytokines, including TNF-α, IL-1β and IL-18, were measured by 
ELISA and real-time PCR, whereas expressions of various proteins in the NF-κB and NLRP3 inflammasome pathways 
were detected with immunofluorescence or Western blot. Infection with P. bovis or P. ciferrii damaged mitochon-
dria, including dissolution and vacuolation of cristae, and decreased mitochondrial activity, with P. bovis being more 
pathogenic and causing greater destruction. There were increases in NADPH production and mtROS accumulation in 
infected bMECs, with P. bovis causing greater increases and also inducing higher cytokine concentrations. Expressions 
of NF-κB-p65, p-NF-κB-p65, IκBα and p-IκBα proteins in the NF-κB pathway, as well as NLRP3, Pro Caspase1, Caspase1 
p20, ASC, Pro IL-1β, and IL-1β proteins in the NLRP3 inflammasome pathway, were significantly higher in P. bovis-
infected bMECs. However, mito-TEMPO significantly inhibited production of cytokines and decreased expression of 
proteins in NF-κB and NLRP3 inflammasome pathways in bMECs infected with either P. bovis or P. ciferrii. In conclusion, 
P. bovis or P. ciferrii infections induced inflammatory responses in bMECs, with increased mtROS in damaged mito-
chondria and activated NF-κB and NLRP3 inflammasome pathways, with P. bovis causing a more severe reaction.
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Introduction
Mastitis is common in dairy cattle worldwide, causing 
serious reductions in milk yield and quality and large 
financial losses [1, 2]. Infections with pathogens are an 

important cause of mastitis. Prototheca spp. are unicel-
lular achlorophyllous algae, 3–30  µm in diameter, that 
lack a specific glucosamine cell wall or chloroplasts; 
specific species include P. bovis, P. ciferrii, P. cerasi, P. 
pringsheimii, P. blaschkeae, P. wickerhamii, P. xanthoriae, 
P. cookie, P. xanthoriae, P. cutis, P. miyajii, P. tumulicola, 
P. moriformis, P. stagnora, and P. ulmea [3–5]. Bovine 
mastitis caused by Prototheca spp. is characterized by 
an abrupt decrease in both milk production and quality, 
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an increased somatic cell count, and frequently culling, 
with substantial economic losses [6]. Among Prototheca 
spp., P. bovis was the causative pathogen of bovine mas-
titis, whereas P. ciferrii occasionally causes granuloma-
tous lesions in experimentally infected bovine udders and 
protothecosis in humans [7, 8]. Prototheca spp. mastitis 
has been reported in many countries, including Canada, 
Poland, Italy, Brazil, and Japan [9–11].

An inflammatory response, a typical feature of bovine 
mastitis, is characterized by release of inflammatory 
cytokines such as IL-1β, TNF-α and IL-18. Numerous 
signal molecules or pathways are involved in regulation 
of an inflammatory response, including reactive oxygen 
species, inflammasome and NF-κB pathway [12, 13]. The 
inflammasome is an upstream regulatory mechanism 
that triggers an inflammatory response when stimulated 
by pathogens. The best characterized inflammasome is 
the NLRP3 inflammasone, comprised of NLRP3, apop-
tosis-associated speck-like protein containing adaptor 
(ASC), and Caspase1 [12–14]. Furthermore, NLRP3 is 
a cytosolic pattern recognition receptor (PRR) activated 
by pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs) [15]. 
Once activated, the inflammasome recruits NLRP3, ASC, 
and Caspase1, and cleaves Pro Caspase1 to an active 
form (cleavage Caspase1) that triggers proteolytic cleav-
age of Pro IL-1β and Pro IL-18 to mature and secreted 
forms [12, 15]. Although NLRP3 signaling usually con-
fers protection, excessive activation can damage cells and 
cause inflammatory diseases [16–18]. The NLRP3 inflam-
masome can be generated and activated by Escherichia 
coli and Staphylococcus aureus, causing an aggravated 
inflammatory response and damage in bMECs [19, 20]. 
Activation of the NLRP3 inflammasome is regulated by 
various genes. In that regard, NF-κB participates, and has 
an important regulatory role, in activation of the NLRP3 
inflammasome, which triggers an inflammatory response 
[21]. Furthermore, an activated NF-κB pathway could 
function as an upstream activator of NLRP3 and contrib-
ute to regulating inflammatory cytokines [22, 23].

Mitochondrial reactive oxygen species (mtROS) also 
activate the NLRP3 inflammasome, promoting inflam-
mation and enhancing immune responses [24, 25]. Accu-
mulation of damaged mitochondria may be essential 
for NLRP3 activation. In addition to increased mtROS, 
exposure of mitochondria-derived DAMPs (mtDAMPs) 
[e.g., mitochondrial DNA (mtDNA)] and cardiolipin 
to the cytosol, can also promote NLRP3 activation [26, 
27]. Activation of the NLRP3 inflammasome has a cru-
cial role in inflammatory responses in many diseases. 
Clinical bovine mastitis is usually characterized by pain, 
edema, cytokine production, and cellular infiltration. In 
Prototheca spp. mastitis, there are interstitial infiltrates 

of macrophages, plasma cells and lymphocytes into the 
mammary gland, and an antiserum against bovine kera-
tin had weak positive expression in damaged mammary 
tissue [28]. We reported that infections with P. bovis or 
P. ciferrii increased expression of cytokine mRNA in 
bMECs [29]; however, inflammatory responses in bovine 
mammary epithelial cells (bMECs) infected with P. bovis 
or P. ciferrii are not well characterized. Therefore, mito-
chondrial damage, inflammatory cytokines including 
TNF-α, IL-1β and IL-18, and protein expression in the 
NF-κB/NLRP3 pathway that regulate inflammation were 
measured to characterize and compare the pathogenesis 
of inflammatory responses in bMECs induced by infec-
tion with P. bovis versus P. ciferrii.

Materials and methods
Reagents and antibody
Cell Counting Kit-8 (CCK-8), NADP + /NADPH assay 
kit, Bicinchoninic acid (BCA) protein assay kit, radio-
immunoprecipitation assay (RIPA) lysis buffer, Mito-
Tracker Green staining solution and Hoechst 33342 
live cell staining solution were purchased from Beyo-
time (Shanghai, China). ELISA assay kit was purchased 
from mlbio (Shanghai, China). 4’, 6-Diamidine-2’-phe-
nylindole dihydrochloride (DAPI), coverslips and Tri-
ton X-100, penicillin, streptomycin and bovine serum 
albumin (BSA) was purchased from Solarbio (Beijing, 
China). Enhanced chemiluminescence (ECL) kits were 
obtained from Thermo Fisher Scientific Pierce (Rock-
ford, IL, USA). Fetal Bovine Serum (FBS) and Dulbecco’s 
Modified Eagle’s medium (DMEM) were purchased from 
Hyclone (Logan, UT, USA). Rotenone was purchased 
from MCE (Shanghai, China). Mito-SOX red mitochon-
drial superoxide indicator was purchased from Yeasen 
(Shanghai, China). Trizol Reagent, cDNA synthesis 
superMix and Two-step RT-PCR superMix were pur-
chased from TransGen Biotech (Beijing, China). Primary 
antibodies, including NLRP3, ASC, Caspase-1, IL-1β and 
α-Tubulin, were purchased from Proteintech (Wuhan, 
China), and NF-κB p65, Phospho-NF-κB p65, IκBα and 
Phospho-IκBα were purchased from Cell Signaling Tech-
nology (Danvers, MA, USA). Peroxidase-conjugated goat 
anti-mouse IgG and goat anti-rabbit IgG were purchased 
from Proteintech (Wuhan, China).

P. bovis and P. ciferrii isolates
Prototheca bovis was isolated in 2016 from 105 clinical 
mastitis milk samples collected on 6 large (> 500 cows) 
Chinese dairy farms, whereas the 58 P. ciferrii isolates 
were recovered in the same year from environmental 
samples from 3 large dairy farms, located in suburbs of 
Beijing, Tianjin and Shandong [3]. The isolates were 
stored at 4  °C at the College of Veterinary Medicine, 
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China Agricultural University, Beijing, China [3]. These 
Prototheca spp. were characterized as P. bovis and P. cifer-
rii by several methods. Firstly, based on cellular fatty acid 
pattern, P. bovis had more eicosadienoic acid (C20:2) 
compared to P. ciferrii [7]. Secondly, we determined 18S 
rDNA sequences using genotype-specific PCR. For this, a 
PCR mix (20 µL) containing Prototheca (450 bp) fragment 
internal amplification control Proto18-4f (GAC​ATG​GCG​
AGG​ATT​GAC​AGA) and Proto18-4r (AGC​ACA​CCC​
AAT​CGG​TAG​GA) primers (2.5  µL each primer), DNA 
template (1  µL), ddH2O (4  µL), and 2 × EasyTaq PCR 
supermix (10 µL) was amplified under specific conditions 
(2 min at 95 °C, followed by 34 cycles of 30 s at 95 °C, 30 s 
at 50 °C, and 30 s at 72 °C, with a final extension of 5 min 
at 72 °C). Amplified fragments were sent for sequencing 
(Sangon Biotech, Shanghai, China). Then, P. bovis and P. 
ciferrii were characterized by genotype-specific primers 
[3, 7]. Additionally, the P. bovis and P. ciferrii genotypes 
were further confirmed by restriction fragment length 
polymorphism analysis targeting the cytb gene fragment 
[7, 30]. Taken together, we confirmed P. bovis and P. cifer-
rii genotypes in the isolates recovered from clinical mas-
titis milk and environmental samples. These strains in 
within a species (P. bovis and P. ciferrii), strains had the 
same genotype, colony morphology and similar biochem-
ical characteristics. We randomly selected 3 strains of 
each species for the following experiments, which were 
performed independently in triplicate. The 3 strains of P. 
bovis and 3 strains of P. ciferrii were isolated from clini-
cal mastitis milk and environmental samples of 3 large 
farms located near suburbs of Beijing, Tianjin and Shan-
dong, respectively [3]. Furthermore, within each species, 
genotype and colony morphology were the same and the 
biochemical characteristics were similar. Additionally, P. 
ciferrii grew more slowly than P. bovis on SDA and their 
colonies had differences in morphological characteris-
tics; P. ciferrii produced small colonies with smooth sur-
face and folded edges compared to P. bovis, whereas the 
latter had more eicosadienoic acid (C20:2) compared to 
the former [7]. P. bovis and P. ciferrii isolates were mul-
tiplied by streaking on sabouraud dextrose agar (SDA) 
and incubated at 37 °C for 48 h. Then, a single colony was 
placed in sabouraud dextrose broth (SDB) and incubated 
for 72 h. Thereafter, organisms were diluted in DMEM to 
achieve required concentrations.

Cell culture and treatment
The MAC-T line of bMECs (Shanghai Jingma Biological 
Technology Co., Ltd. China) was used for cell culture. 
bMECs were placed in DMEM medium supplemented 
with 10% fetal bovine serum, penicillin (100  U/mL) 
and streptomycin (100 U/mL) and grown in cell culture 
plates. Cells were incubated in 5% CO2 at 37 °C, and cells 

from passages 2–8 were used for experiments. Before 
infection, cells were put in 6-well plates (1 × 106 cells per 
well) and cultured overnight. Next, cells were infected 
with P. bovis or P. ciferrii at a 5:1 multiplicity of infec-
tion (MOI; ratio of P. bovis or P. ciferrii to bMECs) and 
incubated in 5% CO2 at 37  °C for 12  h. Then, culture 
supernatants were collected and frozen (−80 °C) to sub-
sequently determine cytokine concentrations, whereas 
cells were collected to extract and characterize proteins. 
Each experiment was conducted in triplicate.

Transmission electron microscopy
The bMECs were fixed as described [29] and trans-
mission electron microscopy (TEM) used to assess 
ultrastructure. Briefly, cells were washed 3 times with 
phosphate buffered solution (PBS) and then fixed with 
2.5% glutaraldehyde solution (pH 7.4) for 2–4 h at room 
temperature. After fixation, samples were routinely pro-
cessed and examined with a transmission electron micro-
scope (H7650, Hitachi, Tokyo, Japan) at an accelerating 
voltage of 80 kV.

Cell viability assay
Cell viability was measured with a Cell Counting Kit-8 
(CCK-8). The bMECs were seeded into 96-well plates at a 
density of 5 × 103 cells/well, allowed to adhere overnight, 
and then treated for 12 h with various concentrations of 
rotenone (mitochondrial electron transport chain com-
plex I inhibitor) used to enhance mitochondrial reactive 
oxygen species production (i.e., a positive control). Then, 
bMECs were washed 3 times with PBS and 10 µL CCK-8 
solution added to each well. After incubation for 1.5 h at 
37 °C with 5% CO2, OD values were read at 570 nm.

Mito‑tracker green staining
The bMECs were cultured in 6-well plates overnight and 
then infected with P. bovis or P. ciferrii at a 5:1 MOI. After 
12  h, bMECs were washed 3 times with PBS and 2  mL 
of warm (37  °C) Mito-Tracker Green staining solution 
was added. After incubation for 30  min at 37  °C, Mito-
Tracker Green staining solution was removed and 2 mL 
fresh cell culture solution (37  °C) was added. Then, 10 
μL Hoechst 33342 live cell staining solution was added 
to each well. After incubating for 10  min at 37  °C, the 
dye-containing culture medium was aspirated, cells were 
washed 3 times with culture medium and observed with 
laser scanning confocal microscopy (Olympus-FV3000, 
Olympus, Tokyo, Japan).

Mitochondrial ROS measurement
To detect intracellular mtROS production, bMECs were 
seeded into 6-well plates with cell climbing films and 
infected with P. bovis or P. ciferrii at a 5:1 MOI. After 
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12 h, Mito-SOX red mitochondrial superoxide indicator 
was used to label mitochondrial reactive oxygen species. 
To induce accumulation of mtROS (positive control), 
bMECs were treated with 2.5 μM rotenone for 12 h. Next, 
cells were incubated with Mito-SOX (5 μM) in the dark 
for 10 min at 37  °C and then washed 3 times with PBS. 
Nuclei were stained with 300 nM 4. 6-diamimo-2-phenyl 
indole (DAPI) for 5 min at 37  °C and washed with PBS. 
Slides were covered with glass cover slips and intracellu-
lar mtROS assessed with laser scanning confocal micros-
copy (Olympus-FV3000).

NADPH analysis
The bMECs were cultured into 6-well plates overnight 
and then infected with P. bovis or P. ciferrii at a 5:1 
MOI for 12  h. The NADPH content in cells was deter-
mined with a commercial NADP + /NADPH Assay Kit, 
according to the manufacturer’s protocol. Briefly, 200 μL 
NADP + /NADPH extract was added into each hole of 
the 6-well plate, gently blown to promote cell lysis, and 
supernatant collected for subsequent experiments. Then, 
50 μL supernatant and 200 μL of G6PDH working solu-
tion were added into each 96-well plate. After incuba-
tion for 10 min at 37 °C, 10 μL chromogenic solution was 
added into each well and after incubation for 20 min at 
37 °C, absorbance was measured at 450 nm.

ELISA
The bMECs were infected with the 3 P. bovis or 3 P. 
ciferrii isolates at a 5:1 MOI for 12  h, and 10  µM of 
2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-ox-
oethyl) triphenyl-phosphonium chloride, monohydrate 
(mito-TEMPO), a mitochondria-targeted superoxide 
dismutase mimetic with superoxide and alkyl radical 
scavenging properties, was used to scavenge superoxide. 
Cytokines in supernatants of bMECs culture medium 
were quantified by ELISA kits, according to the manu-
facturer’s instructions. Cell culture supernatants were 
collected and concentrations of TNF-α, IL-1β and IL-18 
in supernatants were measured, based on OD values at 
450 nm.

RNA extraction and real time PCR
The bMECs were treated as described above for ELISA, 
washed 3 times with PBS, and cells collected for total 
RNA extraction. Trizol Reagent was pre-chilled on ice 
and 1  mL added to cell samples for 5  min to lyse cells. 
Mixed liquid was centrifuged at 12 000 × g for 15 min at 
4  °C and supernatant collected. Total mRNA of bMECs 
was extracted with mRNA extraction kit according to 
manufacturer’s instructions. Relative expression levels of 
TNF-α, IL-1β and IL-18 mRNA were determined using 
the StepOnePlus Real-Time PCR systems. Data were 

analyzed according to the 2−∆∆Ct method and results 
were expressed as relative mRNA levels [7]. Primer 
sequences for GAPDH (housekeeping gene), TNF-α, 
IL-1β, and IL-18 are presented in Table 1.

Immunofluorescence
The bMECs were treated as described above for ELISA, 
washed 3 times with PBS and then fixed in 4% paraform-
aldehyde for 30  min and subsequently permeabilized in 
0.25% Triton X-100. Cells were incubated with 3% bovine 
serum for 30  min at room temperature and then incu-
bated overnight at 4 °C with the following primary anti-
bodies: NLRP3, NF-κB p65, Phospho-NF-κB p65, ASC, 
and IL-1β. Next, samples were washed with PBS and 
incubated with Alexa Fluor 488-labeled goat anti-rabbit 
IgG (H + L) for 1 h at room temperature. Then, samples 
were washed with PBS and stained with DAPI for 20 min. 
After washing with PBS, slides were covered with glass 
cover slips and observed under a laser scanning confocal 
microscope (Olympus-FV3000).

Western blot
The bMECs were treated as described above for ELISA 
and then lysed on ice and the cell lysate suspension col-
lected and centrifuged (12 000 × g, 4 °C) for 15 min. Total 
protein concentration in the supernatant was determined 
with a BCA protein assay kit. Protein samples were dena-
tured in boiling water for 10  min and then separated 
by SDS-PAGE and transferred onto polyvinylidene dif-
luoride (PVDF) membranes. These membranes were 
blocked with 5% nonfat dry milk for 2 h at room temper-
ature, then incubated overnight at 4  °C with the follow-
ing primary antibodies: α-Tubulin, NLRP3, NF-κB p65, 
Phospho-NF-κB p65, IκBα, Phospho-IκBα, ASC, Cas-
pase-1, and IL-1β. For α-Tubulin, membranes were incu-
bated with mouse anti-α-Tubulin antibody, whereas for 
all other proteins, they were incubated with secondary 
antibody against rabbit IgG for 1 h at room temperature. 
After washing with Tris-buffered saline, the membrane 
was developed using ECL reagents and visualized with a 

Table 1  List of primers for real-time PCR. 

Gene Primer Sequence (5’-3’) Size (bp)

GAPDH Forward
Reverse

TCA​CCA​ACT​GGG​ACG​ACA​
GCA​TAC​AGG​GAC​AGC​ACA​

206

TNF-α Forward
Reverse

ATG​TGT​GTG​GAG​AGC​GTC​AA
GGG​CCA​TAC​AGC​TCC​ACA​AA

145

IL-1β Forward
Reverse

ATG​ACT​TCC​AAG​CTG​GCT​GTTG​
TTG​ATA​AAT​TTG​GGG​TGG​AAAG​

114

IL-18 Forward
Reverse

TTG​CAT​CAG​CTT​TGT​GGA​AA
TGG​GGT​GCA​TTA​TCT​GAA​CA

213
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chemiluminescence system. Results were normalized to 
α-Tubulin, and band density was analyzed with Image J 
(National Institutes of Health, Bethesda, MD, USA).

Statistical analyses
After visually confirming that the data were normally 
distributed, independent Student’s t-tests or one-way 
ANOVA were used to analyze effects of Prototheca 
spp. on cell viability, NADPH content, inflammatory 
cytokines including TNF-α, IL-1β and IL-18, and protein 
expression in NF-κB/NLRP3 pathway, with a Bonferroni 
method used to correct multiple comparisons, P < 0.05 
was divided by the number of tests to be considered sta-
tistically significant. Data are reported as means ± stand-
ard deviation (SD) of 3 independent experiments (3 
technical replicates were carried out in each experiment).

Results
Prototheca spp. infection caused mitochondrial damage 
in bMECs
In uninfected bMECs (controls), mitochondria had retic-
ulated morphologies and mitochondrial cristae were 
clearly visible with TEM (Figure  1, panels A1 and A2), 
whereas in bMECs infected with P. ciferrii, mitochondria 
had relatively minor damage, including slight vacuoliza-
tion (Figure 1, panels B1 and B2). In contrast, in bMECs 
infected with P. bovis, mitochondria had dissolution 

of their cristae and large areas of vacuolation (Figure  1, 
panels C1 and C2). Intensity of green fluorescence was 
profoundly decreased in bMECs infected with P. bovis, 
with less suppression in the P. ciferrii infection group, 
although both were lower than the control (Figure  2), 
indicating decreased mitochondrial activity in infected 
bMECs. Both P. bovis and P. ciferrii induced mitochon-
drial damage, with more severe damage caused by P. 
bovis.

Prototheca spp. infection enhanced mtROS accumulation 
in bMECs
In bMECs infected with P. ciferrii, the mtROS assay had 
weak red fluorescence (Figure 3A). As a positive control, 
bMECs were treated with various concentrations of rote-
none, with 2.5  µM rotenone used to treat bMECs (Fig-
ure 3B). However, strong red fluorescence was observed 
in bMECs infected with P. bovis or treated with rotenone 
(Figure  3A); therefore, P. bovis induced greater mtROS 
accumulation. Furthermore, NADPH content was higher 
in bMECs infected with P. bovis or P. ciferrii compared 
to the control (P < 0.05), with the highest NADPH in the 
P. bovis infection group (Figure 3C). P. bovis and P. cifer-
rii decreased bMECs viability at 12  h post infection, 
although P. bovis caused a more profound decrease than 
P. ciferrii in the viability of bMECs (Figure 3D).

Figure 1  Mitochondrial ultrastructure in bMECs. A1 and A2: Control group, with normal mitochondria and mitochondrial cristae in the bMECs. 
B1 and B2: P. ciferrii infection group; note the slight vacuolization in mitochondria in P. ciferrii-infected bMECs. C1 and C2: P. bovis infection group; 
note the mitochondrial cristae dissolution and large areas of vacuolation in bMECs.
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Prototheca spp. infection increased production of TNF‑α, 
IL‑1β and IL‑18 in bMECs
Infection with P. ciferrii increased production of IL-1β, 
and IL-18 proteins and mRNAs in bMECs (P < 0.05), with 
more profound increases in bMECs infected with P. bovis 
(P < 0.05) (Figures 4B and C). P. bovis infection increased 
production of TNF-α proteins and mRNAs in bMECs 
(P < 0.05) (Figure  4A). In contrast, treatment with mito-
TEMPO inhibited production of TNF-α, IL-1β and IL-18 
proteins and mRNAs in bMECs infected with P. bovis or 
P. ciferrii (P < 0.05) (Figures 4A, B and C). Expression of 
TNF-α, IL-1β and IL-18 was not significantly different 
among isolates within P. bovis nor among P. ciferrii spe-
cies (Additional file 1).

Prototheca spp. infection promoted protein expression 
of NF‑κB pathway in bMECs
Infection with P. bovis increased the green fluorescence 
intensity of NF-κB p65 and p-NF-κB p65 in bMECs 
(Figures  5A and B). Furthermore, in Western blots, 

protein expression levels of NF-κB p65 and p-NF-κB 
p65 were also upregulated in P. bovis-infected bMECs 
(P < 0.05) compared to the control (Figures  5C, D 
and E). Although P. ciferrii infection in bMECs also 
increased expression levels of NF-κB p65 and p-NF-κB 
p65 proteins, changes were less profound than in the 
P. bovis infection group, with the immunofluorescence 
consistent with the Western blot (Figures  5A, B, C, D 
and E). In addition, expression level of p-IκBα proteins 
was upregulated in P. bovis-infected cells (P < 0.05); 
there were fewer profound increases induced by P. cifer-
rii, but p-IκBα (P > 0.05) was higher than the control 
(Figures  5C and G). Mito-TEMPO inhibited expres-
sion levels of NF-κB p65 and p-NF-κB p65 proteins 
in bMECS infected with P. bovis or P. ciferrii (P < 0.05) 
(Figures  5C, D and E). A similar trend in expression 
levels of IκBα and p-IκBα protein in bMECs infected 
with P. bovis or P. ciferrii was also observed after treat-
ment with mito-TEMPO, but IκBα and p-IκBα were 
decreased compared to the P. bovis group (P < 0.05) 
(Figures 5C, F and G). Protein expression in the NF-κB 

Figure 2  Mitochondrial activity in bMECs. Mito-Tracker Green is a mitochondrial green fluorescent probe, with intensity of green fluorescence 
reflecting mitochondrial activity. A1, A2, and A3: In the Control group, mitochondria in normal bMECs had strong green fluorescence, indicating 
good mitochondrial activity. B1, B2, and B3: In the P. ciferrii infection group, there was weak green fluorescence, indicating decreased mitochondrial 
activity in bMECs. C1, C2, and C3: In the P. bovis infection group, there was weak green fluorescence in bMECs, indicating mitochondrial activities 
were decreased.
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pathway was not significantly different among isolates 
within P. bovis or P. ciferrii species (Additional file 2).

Prototheca spp. infection contributed to NLRP3 
inflammasome activation in bMECs
The green fluorescence intensity of NLRP3 and ASC 
was higher after infection with P. bovis or P. ciferrii com-
pared to the control (Figures  6A and B). In contrast, 

treatment with mito-TEMPO decreased the green fluo-
rescence intensity of NLRP3 and ASC compared to infec-
tion with either P. bovis or P. ciferrii (Figures 6A and B). 
Furthermore, expression levels of NLRP3, Pro Caspase1, 
Caspase1 p20, and ASC proteins were upregulated in P. 
bovis-infected cells (P < 0.05) compared to the control 
(Figures 6C, D, E, F and G). Infection of bMECs with P. 
ciferrii also increased expression of these proteins, but 

Figure 3  Mitochondrial accumulation of reactive oxygen species in bMECs. A Mit-SOX red mitochondrial superoxide indicator (5.0 µM) was 
used to label reactive oxygen species in mitochondria (mtROS) of bMECs infected with P. bovis or P. ciferrii; both induced mtROS accumulation, 
with P. bovis being more severe. Rotenone (2.5 µM), a mitochondrial electron transport chain complex I inhibitor, was used to induce production of 
mtROS. B Effects of various concentrations of rotenone on bMECs viability (note the gradual decrease with increasing rotenone concentrations). As 
a positive control, bMECs were treated with 2.5 µM rotenone. C NADPH in bMECs infected with either P. bovis or P. ciferrii. D Cell viability in infected 
bMECs. Data represent means ± SD of 3 independent experiments. *P < 0.05 or **P < 0.01, difference compared to the control.
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there was no significant change compared to the control 
(lowest P = 0.14) (Figures 6C, D, E, F and G). Expression 
of these proteins were all upregulated after P. bovis or P. 
ciferrii infections, with more pronounced increases for P. 
bovis. However, in bMECs pretreated with mito-TEMPO, 
expression of NLRP3, Pro Caspase1, Caspase1 p20, and 
ASC proteins were inhibited in bMECs infected with P. 
ciferrii and P. bovis (except ASC, P < 0.05) (Figures 6C, D, 
E, F and G). Protein expression in NLRP3 inflammasome 
pathway was not significantly different among isolates 
within P. bovis or P. ciferrii species (Additional file 2).

Prototheca spp. infection enhanced protein expression 
of IL‑1β in bMECs
Infection with P. bovis or P. ciferrii increased the red 
fluorescence intensity of IL-1β in bMECs compared to 
the control (Figure  7A). However, treatment with mito-
TEMPO decreased the red fluorescence intensity of 
IL-1β in bMECs infected with P. bovis or P. ciferrii (Fig-
ure  7A). Furthermore, expression of Pro IL-1β pro-
tein was upregulated in bMECs infected with P. bovis 
(P < 0.05) (Figures  7B and C). In addition, IL-1β protein 
was also upregulated in bMECs infected with P. bovis 
or P. ciferrii (P < 0.05) (Figures 7B and D). Expression of 

Pro IL-1β and IL-1β proteins were higher after P. bovis 
compared to P. ciferrii infection. Treatment with mito-
TEMPO inhibited expression of Pro IL-1β after P. bovis 
infection (P < 0.05) and IL-1β protein in P. bovis and P. 
ciferrii infected bMECs were downregulated (P < 0.05) 
(Figures  7B, C and D). Protein expression of IL-1β was 
not significantly different among isolates within P. bovis 
or P. ciferrii species (Additional file 2).

Discussion
In this study, Prototheca spp. infection in bMECs induced 
an inflammatory response through the NF-κB and 
NLRP3 inflammasome pathways. Infection of bMECs 
with Prototheca spp., especially P. bovis, damaged mito-
chondria and promoted mtROS accumulation, which 
activated an inflammatory response through the NF-κB 
and NLRP3 inflammasome pathways and enhanced IL-1β 
production. However, scavenging mtROS decreased 
expressions of proteins in NF-κB/NLRP3 inflamma-
some pathways and IL-1β production in bMECs infected 
with P. bovis or P. ciferrii. Accumulation of mtROS may 
be important in inflammatory responses to P. bovis or P. 
ciferrii infections. Furthermore, mtROS activated NF-κB/

Figure 4  Production of TNF-α, IL-1β, and IL-18 in bMECs. A, B and C Changes of TNF-α, IL-1β and IL-18 in bMECs measured by ELISA and real 
time PCR, respectively. Treatment with MT (10 µM) for 12 h inhibited cytokine production in bMECs infected with P. bovis or P. ciferrii. The mRNA 
expression was analyzed according to the 2−∆∆Ct method and results were expressed as relative mRNA levels. Data represent means ± SD of 3 
independent experiments. *P < 0.05 or **P < 0.01, difference compared to the control; #P < 0.05 or ##P < 0.01, difference compared to the P. ciferrii 
infection group; &P < 0.05 or &&P < 0.01, difference compared to the P. bovis infection group.
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NLRP3 inflammasome pathways were involved in inflam-
mation in bMECs infected with P. bovis and P. ciferrii.

Pathogenic infections can cause mitochondrial dam-
age, including swelling and vacuolation, increase ROS, 
decrease membrane potential, and increase oxidative 
stress, both in  vitro and in  vivo [31–33]. Mitochondrial 
damage is closely related to development of inflamma-
tory diseases [34]. In the current study, Prototheca spp. 
infections in bMECs, especially P. bovis, caused dissolu-
tion and large area vacuolation of mitochondrial cris-
tae, and decreased mitochondrial activity. Mitochondria 
are the main site for mtROS production [35] and mito-
chondrial damage may contribute to mtROS produc-
tion. Based on Mito-SOX, mtROS in bMECs increased 
after infection with P. bovis, with a lesser increase in P. 

ciferrii-infected bMECs. NADPH is closely linked to 
ROS production and there is increasing evidence that 
increases in both ROS production and expression of 
NADPH oxidase were upregulated both in  vitro and 
in vivo [36, 37]. In the present study, P. bovis or P. ciferrii 
infections in bMECs increased NADPH, which also pro-
vided evidence for production of mtROS. In this study, 
although strains for each species (P. bovis and P. ciferrii) 
were isolated from different samples, the pathogenicity 
of strains in each species to bMECs was similar, as both 
P. bovis and P. ciferrii induced mitochondrial damage and 
mtROS accumulation, with the former causing more pro-
found damage.

Increased mitochondrial ROS promoted inflammatory 
responses in peritoneal mesothelial cells, macrophages 

Figure 5  Expression of NF-κB pathway proteins in bMECs. A and B Green fluorescence is expression of NF-κB p65 and p-NF-κB p65 proteins; 
treatment with MT (10 µM) for 12 h inhibited expression of these proteins in bMECs infected with P. bovis or P. ciferrii. C–G Treatment with MT 
(10 µM) for 12 h reduced expression levels of NF-κB p65, p-NF-κB p65, IκBα, and p-IκBα proteins in bMECs infected with P. bovis or P. ciferrii. “-” 
and “ + ” after MT indicated that MT was not or was added, respectively; “-” and “ + ” after P. bovis indicated that P. bovis was not or were added, 
respectively; “-” and “ + ” after P. ciferrii indicated that P. ciferrii was not or were added, respectively. Data represent means ± SD of 3 independent 
experiments. *P < 0.05 or **P < 0.01, difference compared to the control; #P < 0.05 or ##P < 0.01, difference compared to the P. ciferrii infection group; 
&P < 0.05 or &&P < 0.01, difference compared to the P. bovis infection group.
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and T cells [15, 38]. Infection of bMECs with P. bovis or 
P. ciferrii stimulated inflammatory responses, character-
ized by release of inflammatory cytokines which activate 
immune effector cells to eliminate invading pathogens. 
There were significant increases in production of TNF-
α, IL-18, and IL-1β at 12  h after bMECs were infected 
with P. bovis or P. ciferrii, indicating a marked inflamma-
tory response. However, responses to P. bovis were more 
severe than P. ciferrii, consistent with its greater patho-
genicity. However, scavenging mtROS with mito-TEMPO 
significantly decreased cytokine production. There-
fore, we inferred that infection with P. bovis or P. cifer-
rii induced inflammatory responses in bMECs that were 
mitigated by suppression of mtROS.

Inflammatory responses have many regulatory mecha-
nisms, including the NF-κB and NLRP3 inflammasome 
pathways [39, 40]. In the NF-κB pathway, both IκBα 
and NF-κB p65 are inactive in the cytoplasm [41, 42]. 
However, when an upstream signal activates inhibitor 
of nuclear factor kappa-B kinase (IKK), it will be ubiq-
uitinated, phosphorylated and degrade IκBα, so that 
NF-κB p65 will be activated and translocated from the 
cytoplasm to the nucleus to bind to the corresponding 
inflammation-related genes, promote transcription of 
inflammatory cytokines, and induce inflammation [42, 
43]. In the current study, infection of bMECs with P. 
bovis or P. ciferrii activated the NF-κB pathway, upregu-
lating expression of IκBα and NF-κB p65 proteins. Fur-
thermore, expression levels of phosphorylated IκBα and 

Figure 6  Expression of NLRP3 inflammasome pathway proteins in bMECs. A and B in P. bovis- or P. ciferrii-infected bMECs. Treatment with MT 
(10 µM) for 12 h inhibited protein expression of NLRP3 and ASC in P. bovis- or P. ciferrii-infected bMECs. Green fluorescence is expression of NLRP3 
and ASC proteins. C–G Treatment with MT (10 µM) for 12 h inhibited expressions of NLRP3, Pro Caspase1, Caspase1 p20, and ASC proteins in P. 
bovis- or P. ciferrii-infected bMECs. “-” and “ + ” after MT indicated that MT was not or were added, respectively; “-” and “ + ” after P. bovis indicated that 
P. bovis was not or were added, respectively; “-” and “ + ” after P. ciferrii indicated that P. ciferrii was not or were added, respectively. Data represent 
means ± SD of 3 independent experiments. *P < 0.05 or **P < 0.01, difference compared to the control; #P < 0.05 or ##P < 0.01, difference compared to 
the P. ciferrii infection group; &P < 0.05 or &&P < 0.01, difference compared to the P. bovis infection group.
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NF-κB p65 proteins were upregulated after P. bovis or 
P. ciferrii infection, with greater upregulation of protein 
expression in the NF-κB pathway induced by P. bovis, 
indicating higher pathogenicity. Activation of the NF-κB 
pathway promoted inflammation, including a massive 
increase in cytokine production. In addition, mtROS 
activation of the IKK complex and subsequent signal-
ing through the NF-κB pathway led to secretion of pro-
inflammatory cytokines by inducing the intermolecular 
disulfide linkage of nuclear factor IκBα essential modu-
lator [44], whereas quenching mtROS in vivo decreased 
the NF-κB-guided anti-inflammatory phenotype [45]. In 
the present study, in bMECs infected with P. bovis or P. 
ciferrii, mito-TEMPO decreased expression of various 
proteins in the NF-κB pathway, including IκBα, NF-κB 
p65, p-IκBα and p-NF-κB p65. Thus, infection of bMECs 
with Prototheca spp., especially P. bovis, caused overex-
pression of proteins in the NF-κB pathway and enhanced 
inflammatory responses through generation of mtROS.

Activation of inflammasomes is critical in inflamma-
tory responses, with key roles in regulating inflamma-
tion caused by pathogenic bacteria [46, 47]. The NLRP3 
inflammasome is well characterized [48]. Once activated, 
ASC self assembles and activates Pro Caspase1; the acti-
vated Caspase1 induces maturation of IL-1β and IL-18 
for subsequent release [48, 49]. Activation of the NLRP3 
inflammasome is regulated by many factors, including 
bacterial infections and mtROS [50, 51]. In the present 
study, P. bovis or P. ciferrii infection in bMECs promoted 

activation of NLRP3 inflammasomes to varying degrees, 
modulating upregulation of expression of NLRP3, ASC, 
and Caspase1 proteins, and promoting cleavage of Cas-
pase1. We inferred that infection with either P. bovis or 
P. ciferrii contributed to the assembly of ASC, Pro Cas-
pase1, and NLRP3 during inflammasome formation. 
Although P. bovis or P. ciferrii infections in bMECs pro-
moted NLRP3 inflammasome activation, P. bovis induced 
larger increases in proteins of the NLRP3 inflammasome, 
indicating greater pathogenicity. Furthermore, expres-
sion levels of proteins of the downstream genes Pro IL-1β 
and IL-1β were upregulated in cells infected with P. bovis 
or P. ciferrii, although P. bovis caused more pronounced 
increases. Therefore, P. bovis induced a greater inflamma-
tory response than P. ciferrii vai the NLRP3 inflammasom 
pathway.

Generation of mtROS is one of the first identified 
triggers of NLRP3 inflammasome activation, although 
mtROS-independent activation of the NLRP3 inflamma-
some has been reported [52, 53]. In the present study, P. 
bovis or P. ciferrii infections induced mtROS in bMECs. 
However, treatment with mito-TEMPO downregulated 
expression levels of NLRP3, ASC and Caspase1 proteins 
in bMECs infected with P. bovis or P. ciferrii, whereas 
expression of Pro IL-1β and IL-1β proteins was also 
downregulated. Therefore, we inferred that mtROS has 
an important role in activation of NLRP3 inflammasomes 
and enhances production of IL-β, resulting in an inflam-
matory response in bMECs. Mito-TEMPO suppressed 

Figure 7  Expression IL-1β protein in bMECs. A Treatment with MT (10 µM) for 12 h inhibited IL-1β expression in P. bovis- or P. ciferrii-infected 
bMECs. Red fluorescence is expression of IL-1β protein. B–D Treatment with MT (10 µM) for 12 h inhibited expression of Pro IL-1β and IL-1β proteins 
in P. bovis- or P. ciferrii-infected bMECs. “-” and “ + ” after MT indicated that MT was not or were added, respectively; “-” and “ + ” after P. bovis indicated 
that P. bovis was not or were added, respectively; “-” and “ + ” after P. ciferrii indicated that P. ciferrii was not or were added, respectively. Data represent 
means ± SD of 3 independent experiments. *P < 0.05 or **P < 0.01, difference compared to the control; #P < 0.05 or ##P < 0.01, difference compared to 
the P. ciferrii infection group; &P < 0.05 or &&P < 0.01, difference compared to the P. bovis infection group.
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expression of proteins in NF-κB and NLRP3 inflammas-
omes pathways and reduced inflammatory responses in 
P. bovis- and P. ciferrii-infected bMECs (Figure 8). In this 
study, 3 strains in each species were randomly selected 
to infect bMECs. Consequently, we maximized the prob-
ability of choosing strains that represented other strains 
within each species in terms of pathogenicity. Regardless, 
mechanisms of Prototheca spp.-infected cells inducing 
mtROS generation need further study.

Infections of bMECs with either P. bovis or P. cifer-
rii damaged mitochondria and induced inflammatory 
responses, with P. bovis causing a more severe inflam-
matory response. Accumulation of mtROS had an 
important role in activation of NF-κB and NLRP3 inflam-
masomes and suppression of mtROS reduced inflamma-
tory responses in bMECs infected with either P. bovis or 
P. ciferrii.
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