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Newcastle disease virus induces testicular 
damage and disrupts steroidogenesis in specific 
pathogen free roosters
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Abstract 

Newcastle disease (ND), which is caused by Newcastle disease virus (NDV), can cause heavy economic losses to the 
poultry industry worldwide. It is characterised by extensive pathologies of the digestive, respiratory, and nervous sys-
tems and can cause severe damage to the reproductive system of egg-laying hens. However, it is unknown whether 
NDV replicates in the male reproductive system of chickens and induces any pathologies. In this study, we selected a 
representative strain (i.e. ZJ1) of the most common genotype (i.e. VII) of NDV to investigate whether NDV can induce 
histological, hormonal, and inflammatory responses in the testes of specific pathogen free (SPF) roosters. NDV infec-
tion increased the expression of toll like receptor TLR3, TLR7, MDA5, IFN-α, IFN-β, IFN-γ, IL-8, and CXCLi1 in the testes 
of NDV-infected roosters at 5 days post-infection (dpi). Severe histological changes, including decrease in the number 
of Sertoli cells and individualized, shrunken spermatogonia with pyknotic nuclei, were observed at 3 dpi. At 5 dpi, the 
spermatogenic columns were disorganized, and there were fewer cells, which were replaced by necrotic cells, lipid 
vacuoles, and proteinaceous homogenous material. A significant decrease in the plasma concentrations of testos-
terone and luteinizing hormone (LH) and the mRNA expression of their receptors in the testes, steroidogenic acute 
regulatory protein, cytochrome P450 side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase in the NDV-
infected group was observed relative to those in the control group (P < 0.05). Collectively, these results indicate that 
NDV infection induces a severe inflammatory response and histological changes, which decrease the steroidogenesis.
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Introduction
Newcastle disease (ND) is caused by Avian orthoavulavi-
rus 1 (AOAV 1) (formerly designated as Avian avulavirus 
1 (AAvV-1)), commonly known as Avian paramyxovirus 
1 (APMV-1), or Newcastle disease virus (NDV), and is 
a leading cause of economic losses to the poultry indus-
try worldwide [1, 2]. APMV-1 belongs to the genus 
Avulavirus in the family Paramyxoviridae and order 
Mononegavirales, which encompasses a diverse group 
of non-segmented, single‐stranded, and negative‐sense 

RNA viruses [1, 3]. The 15 kb genome of NDV encodes 
six proteins, including the nucleocapsid, phosphoprotein, 
matrix (M), fusion, haemagglutinin-neuraminidase, and 
large polymerase, and uses host cellular machinery for 
translation after invasion.

NDV can infect almost every species of bird, and the 
virulent strains of NDV cause one of the most serious 
infectious diseases of commercial poultry [4]. Based on 
the clinical manifestations, NDV is divided into four 
pathotypes, which are listed as follows in increasing 
order of virulence: asymptomatic enteric, lentogenic, 
mesogenic, and velogenic [5, 6]. Based on tissue tro-
pism, velogenic strains of NDV can be further divided 
into viscerotropic and neurotropic strains. NDV 
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replicates in almost every organ and mainly affects the 
digestive, respiratory, and nervous systems and causes 
complex pathologies in these organs, which decrease 
growth and egg production.

In commercial poultry farming, broiler and layer 
breeders are reared to produce fertile eggs to obtain the 
broiler and layer chicks, which are eventually grown to 
meet the requirement of high-quality animal protein 
for human consumption. Many factors affect the fertil-
ity of roosters and hens. In roosters, semen production 
and quality is affected by infectious and non-infectious 
factors [7]. Infectious factors, such as avian leukosis 
virus [8], Marek’s disease virus [9], and NDV [10], affect 
reproductive performance. Although, NDV replicates 
in the ovary and oviduct [11], causing severe inflamma-
tion and apoptosis, and result into decreased egg pro-
duction [12–14] and fertility rates [15], the pathologic 
effects of NDV on the male reproductive system are yet 
to be characterized.

Spermatogenesis (sperm production) is a complex, 
hormone-controlled process, and sperm cells are pro-
duced from the spermatogonial stem cells within 
the seminiferous epithelium. Spermatogenesis is 
meticulously managed by testosterone, follicle stimu-
lating hormone (FSH), gonadotropin-releasing hor-
mone  (GnRH), luteinizing hormone (LH), germ cells, 
neurons within the central nervous system, and their 
interaction with Sertoli cells [16] and is ultimately con-
trolled by the hypothalamus-pituitary–gonadal axis 
[17].

The innate immune response is the first line of 
defence against invading viruses and stimulates a spe-
cific mucosal and humoral immune response [18]. In 
NDV infection, after the detection of viruses by pattern 
recognition receptors (PRRs), complex host–pathogen 
interaction pathways direct an intense inflammatory 
response to inhibit viral replication [14, 19] and elevate 
plasma glucocorticoids [20]. These pro-inflammatory 
cytokines and their crosstalk with hormones shape the 
immune system to control the potential harmful effects 
and the return of homeostasis after the clearance of a 
pathogen [21, 22]. Similarly, glucocorticoids affect the 
hypothalamic-pituitary–gonadal axis to control the 
hypothalamus to synthesise and release gonadotropin 
releasing hormone and the pituitary gland to prevent 
the synthesis and release of LH, and FSH [23].

In poultry, studies of NDV pathogenesis have mainly 
focused on the intestines, lungs, trachea, brain, spleen 
and feathers [14, 24–29]. Studies on the effects of 
NDV infection on histological lesions, innate immune 
responses, and steroidogenesis in the testes are rare. 
Therefore, we harnessed the NDV infection in white 
leghorn rooster testes in this study.

Materials and methods
Virus and reagents
A wild-type velogenic NDV isolate, ZJ1, was originally 
isolated from geese in 2000 (Goose/China/ZJ1/2000; 
GB AF431744.3) and was generously provided by Pro-
fessor Xiufan Liu from Yangzhou University (Yangzhou, 
China). The pathogenicity indices including the mean 
death time (MDT), intracerebral pathogenicity index 
(ICPI), and intravenous pathogenicity index (IVPI) of ZJ1 
were 51.6, 1.89, and 2.7, respectively. ZJ1 belongs to sub-
genotype VIId of genotype VII, and has been responsible 
for the recent disease outbreaks in Asian countries [30]. 
The virus stock was prepared by growing the virus in 
10-day-old SPF embryonating chicken eggs and was sub-
sequently stored at − 80 °C until further use.

Animals, ethics statement and treatments
All the animal experimental procedures were performed 
in strict accordance with the recommendations in the 
Guide for the Care and Use of Laboratory Animals of the 
Shanghai Veterinary Research Institute (SHVRI, Shang-
hai, China) of the Chinese Academy of Agricultural Sci-
ences (CAAS, Beijing, China). All the protocols applied 
in this study were approved by the Institutional Animal 
Care and Use Committee of SHVRI (Permission number: 
SHVI-RO-2018030178), CAAS. All efforts were made to 
minimize the suffering of birds.

SPF white leghorn roosters were purchased from Zhe-
jiang Lihua Agricultural Technology Co. Ltd (China) 
and reared up to the age of 25  weeks before the collec-
tion of blood samples or the challenge studies. Birds 
were housed in positive pressure isolators, and a pho-
toperiod of 16L:8D was set. All the birds were provided 
with ad libitum access to feed and water throughout the 
experiment. At the age of 25  weeks, roosters were ran-
domly divided into two groups of 20 chickens each. The 
birds in group 1 were mock infected with PBS and served 
as negative controls, whereas the birds in group 2 (NDV-
challenged) were infected with 0.1  mL of a ZJ1 suspen-
sion containing a 105.5 50% embryo infectious dose via 
the right eye and choanal slit instillation.

Four birds per treatment were selected for daily blood 
and tissue sample collection. Blood samples were col-
lected from the wing vein at 1, 3, and 5  days post-
infection (dpi) in EDTA coated tubes and immediately 
transferred to the laboratory, maintaining the cold chain. 
To obtain the plasma, blood samples were centrifuged at 
2000 × g for 10 min at 4  °C and stored at − 80  °C until 
analysis. A total of four chickens per experimental treat-
ment were sacrificed every day for the collection of testes 
at 1, 3, and 5 dpi. One part of every tissue sample was 
rinsed with PBS and put in microtubes (already marked 
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and weighed), immediately frozen in liquid nitrogen, and 
subsequently stored at − 80 °C until further use. Another 
part of each testis was fixed in 10% neutral-buffered for-
malin tubes for histological studies.

Detection of viral loads in the testis
The NDV ZJ1 strain was grown in 10-day-old SPF 
embryonated eggs and allantoic fluid was collected after 
60  h of infection. Viral RNA was extracted from the 
allantoic fluid using TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA) as per manufacturer’s instructions. A 1095 bp 
fragment of the ZJ1 M gene was amplified, and electro-
phoresis was performed to know the correct size of the 
product. The PCR product was purified with the HiPure 
Gel Pure DNA Mini Kit (AnGen Biotech, Guangzhou, 
China) as per manufacturer’s instructions and cloned 
into a plasmid vector to construct a standard curve. 
Approximately, a total of 1  μg RNA extracted from the 
testis samples was reverse transcribed to cDNA with 
HiScript II (Catalogue # R233; Vazyme Biotech Co., Ltd., 
China), and quantitative PCR for NDV was performed 
with SYBR Premix (Dongsheng, Biotech, China). Virus 
copy numbers were calculated using the standard curve.

Histology of testis
Tissue samples collected at 3 and 5 dpi were fixed in 
10% neutral buffered formalin, processed by a stand-
ard histological procedure. Sections with a thickness of 
5 µm were cut and stained with haematoxylin and eosin 
[31]. The slides were scanned and digitalized with Pan-
oramic SCAN (3DHISTECH Ltd., Hungary), and histo-
pathological lesions were evaluated with CaseViewer 2.2 
(3DHISTECH Ltd.).

Hormone analysis
Specific radioimmunoassay kits were used to determine 
plasma hormone concentrations. All samples were ana-
lysed in 1 assay to avoid inter-assay variations. Pre-exper-
imental evaluations were conducted for all hormones to 
measure the optimum dilution of plasma to determine 
their concentration. The concentrations of testosterone 
(CSB-E12797C) were determined using commercially 
available chicken specific kits (CUSABIO, Wuhan, 
China) following the manufacturer protocols. The plasma 
LH levels of roosters were determined using an ELISA 
kit (MBS008505; MyBioSource, San Diego, CA, USA) 
according to the manufacturer’s protocol. The minimum 
detectable limit of LH was less than 1.0 mIU/mL. The 
absorbance was determined at 450  nm using an Epoch 
microplate spectrophotometer (BioTek Instruments, Inc., 
Winooski, VT, USA). The concentrations of testosterone 
and LH were calculated by the equation developed from 
the values of standards provided with the respective kits.

RNA isolation, reverse transcription, and relative gene 
expression/quantitative real time PCR
Quantitative RT-PCR (qRT-PCR) was performed to 
determine the mRNA expression levels of selected 
genes. Chicken GAPDH gene was used as endogenous 
control. The primers used in the present study are 
described in Table 1.

Total RNA was extracted from the frozen tissue sam-
ples using TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA) following the manufacturer’s protocol. The qual-
ity and purity of the extracted RNA were examined 
spectrophotometrically (NanoDrop spectrophotom-
eter Thermo Fisher Scientific, Waltham, MA, USA) by 
determining the ratio of absorbance at 260 to 280 nm. 
Samples with a 260/280 ratio of 1.8–2.0 were selected 
for reverse transcription. Purified RNA was dissolved 
in RNase-free water and immediately used as templates 
in reverse transcription. Briefly, 1 μg of total RNA was 
mixed with 2 μL gDNA wiper Mix and 0.5 μL of ran-
dom hexamers, and the total reaction volume was 
brought to 8 μL by adding RNase free ddH2O. The mix-
ture was heated at 42 °C for 2 min and then transcribed 
to cDNA with HiScript II (Catalogue # R233; Vazyme 
Biotech Co., Ltd. China) at 55 °C for 15 min and 85 °C 
for 2 min. The prepared cDNA samples were stored at 
− 25 °C until analysis.

Real-time qRT-PCR was performed using SYBR Pre-
mix (Dongsheng Biotech, Guangzhou, China) and a 
CFX96 Touch Real-Time PCR Detection System (Bio-
Rad, USA). A final volume of 20 µL was used for qRT-
PCR. The PCR cycles were as follows: 94 °C for 3 min, 
followed by 40 cycles of 95  °C for 15 s, 60  °C for 15 s, 
and 72 °C for 20 s. The melting temperature of the final 
double-strand DNA product was determined by inter-
calated SYBR Green at the end of the reaction. PCR 
efficiencies were above 1.85, and amplifications gen-
erated single expected amplicons with single, sharp 
fusion curves. All experiments were performed in trip-
licate. The changes in mRNA levels were presented as 
fold expression and calculated using the 2−ΔΔCT method 
[32].

Statistical analysis
The data was analysed by a two-way ANOVA with chal-
lenge and time points as the main effects [33], and Graph 
Pad Prism 6.0 software (GraphPad Software, Inc., CA, 
USA) was used to generate the graphs. The graphical 
results were expressed as mean ± standard deviation. 
Results with P < 0.05 were considered statistically signifi-
cant. When a significant main effect was observed, the 
Tukey test was used to compare the differences among 
groups.
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Results
Histopathological findings
The normal progression of spermatogenesis involves the 
formation of mature spermatids (yellow arrows pointing 
various stages) with few attached to Sertoli cells, and few 
mature spermatids were present in the lumen of seminif-
erous tubules of the control birds. These were admixed 
with scant proteinaceous matrix substance and few 
sloughed cells in the lumen in control roosters at 3 and 
5 dpi (Figures 1A and C). The seminiferous tubules were 
separated by fine fibrovascular stroma.

At 3 dpi, the main microscopic lesions in roosters 
consisted of multifocal, individual spermatogonia at the 
basal layers of the seminiferous tubules, individualized 
and shrunken with pyknotic nuclei (blue arrow heads; 
Figure 1B). Numerous spermatogenic columns were dis-
organized and shortened with numerous necrotic cells 
filling the lumen admixed with scant spermatids. The 
number of Sertoli cells decreased, and there were fewer 
attached, late stage spermatids.

The histological study of rooster testes at 5 dpi (Fig-
ure  1D) indicated multifocal, disorganized, and seg-
mented spermatogenic columns, and there were fewer 
cells, which were replaced by necrotic cells (brown arrow 
heads), lipid vacuoles, and proteinaceous homogenous 

material. Sertoli cells were rare, and few spermatids 
were present in the lumen. In most severely affected 
tubules, only a single layer of spermatogonia remained 
in the basal layer. The interstitium mildly expanded with 
oedema. Few multinucleated cells were observed in the 
lumen, and few of them were necrotic (Figure 1D).

Quantification of viral RNA
Virus titres were determined by isolation of RNA from 
the testicular tissue. Chicken embryos did not die after 
inoculation of tissue homogenates from the control birds. 
However, all the embryos died after inoculation of eggs 
with testes homogenates of NDV-infected birds at 5 dpi. 
Viral RNA expression was analysed by qRT-PCR. There 
was a significant increase in the level of NDV M gene 
expression at 5 dpi. There were approximately 15,000 
copies at 5 dpi compared to the control group (Figure 2).

Effect of NDV on the sex hormones and receptors
The plasma concentration of testosterone significantly 
(P < 0.05) decreased in the NDV-infected roosters 
compared to the control group at 1, 3, and 5 dpi (Fig-
ure  3). There was a non-significant interaction between 
the infection and dpi for testosterone. A decrease in 
the plasma concentrations of LH was observed in the 

Table 1  Primer sequences used for quantitative PCR 

Gene type Forward primer (5′–3′) Reverse primer (5′–3′) Amplicon 
size (bp)

Gen Bank accession number

ZJ1 M gene ATG​GAC​TCA​TCC​AGG​ACA​ATC​
GGG​CT

TTA​TTT​CCT​GAA​AGG​ATT​GTA​TTT​
AGC​AAT​GG

1095 AF431744.3

ZJ1 M gene TAC​TTT​GAT​TCT​GCC​CTC​CCTT​ TAA​GCA​GAG​CAT​TGC​GGA​AGA​ 255 AF431744.3

CXCLi2/IL-8 CAT​CAT​GAA​GCA​TTC​CAT​CT CTT​CCA​AGG​GAT​CTT​CAT​TT 205 NM_205498.1

CXCLi1 CCG​ATG​CCA​GTG​CAT​AGA​G CCT​TGT​CCA​GAA​TTG​CCT​TG 191 NM_205018.1

TLR3 ACA​ATG​GCA​GAT​TGT​AGT​CACCT​ GCA​CAA​TCC​TGG​TTT​CAG​TTTAG​ 189 XM_025149682.1

TLR7 TGT​GAT​GTG​GAA​GCC​TTT​GA ATT​ATC​TTT​GGG​CCC​CAG​TC 219 XM_015273651.2

MDA-5 GGA​CGA​CCA​CGA​TCT​CTG​TGT​ CAC​CTG​TCT​GGT​CTG​CAT​GTT​ATC​ 79 NM_001193638.1

IFN-α GGA​GTT​TTG​AGG​AGG​GTG​GG CGC​GTC​TTC​CTT​CCT​CCT​TT 175 XM_004937092.3

IFN-β AAC​ACT​GGA​TTG​ACC​GCA​CA GTC​CCA​GGT​ACA​AGC​ACT​GT 200 NM_001024836.1

IFN-γ TGA​GCC​AGA​TTG​TTT​CGA​TG CTT​GGC​CAG​GTC​CAT​GAT​A 152 NM_205149.1 

Androgen receptor (AR) AGT​GCC​AGC​CCA​TCT​TTC​TC CCT​TTG​CCC​ACT​TGA​CGA​C 159 NM_001040090.1 

LH receptor (LHR) ACT​CCT​GCG​CAA​ACC​CAT​TC CTC​GGC​TCT​TAC​AGC​AAC​CT 99 NM_204936.1

StAR TTC​AGC​GAG​ATG​GAG​ATG​TCC​ GGA​ACA​CCT​TAC​CCA​CGT​CC 160 NM_204686.2 

3b-hydroxysteroid dehydroge-
nase (3βHSD)

GGG​CAA​GAC​TGA​GGT​GAA​AATC​ TGT​GTG​GAT​GAC​GAG​CGA​G 94 XM_015294370.2

Gallus gallus hydroxysteroid 
17-beta dehydrogenase 4 
(17βHSD4)

CGC​TGG​AGG​AGG​TTT​GGG​ TGG​GTA​CTG​CTT​TCC​CTC​CA 167 NM_204943.1

Cholesterol side-chain cleavage 
enzyme, P450scc

GTT​GGG​TGT​CTA​CGA​GAG​CG TTG​CGG​TAG​TCA​CGG​TAT​GC 126 NM_001001756

β-actin GGT​CAT​CAC​CAT​TGG​CAA​TG CCC​AAG​AAA​GAT​GGC​TGG​AA 66 L08165

GAPDH CCA​TCA​CAG​CCA​CAC​AGA​AGAC​ TGG​ACG​CTG​GGA​TGA​TGT​T 93 NM_204305
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NDV-infected birds, but these levels were only statisti-
cally significant at 3 and 5 dpi (Figure  3). The plasma 
LH concentrations decreased in the NDV-infected birds 
compared to the control birds, particularly at 3 and 5 dpi. 
The interaction effects of dpi and NDV infection were 
non-significant.

The relative mRNA expression levels of the androgen 
receptor (AR) and LH receptor (LHR) in the testicular 

tissue are shown in Figure 3. The mRNA expression levels 
of AR were significantly (P < 0.05) decreased in the tes-
ticular tissue of the NDV-infected birds, but this decrease 
was more pronounced at 5 dpi. LHR expression in the 
control birds was significantly (P < 0.05) higher than that 
in the-NDV infected birds (Figure 3).

Effect of NDV infection on mRNA expression 
of steroidogenesis related protein and enzymes
To verify the results of the plasma hormones, expression 
analysis of P450scc, StAR, and 3βHSD was performed by 
qRT-PCR. NDV infection decreased the mRNA expres-
sion of P450scc in the NDV-infected group (P < 0.05) 
compared to the control group. Similarly, decreased 
expression of the 3βHSD was observed in infected birds 
at 3 and 5 dpi, as compared to non-infected birds (Fig-
ure  4). This decrease was more pronounced at 5 dpi 
than at 3 dpi. Experimental infection of roosters with 
NDV also decreased the expression (P < 0.05) of StAR 
in the testes compared to roosters in the control group. 
Although decreased expression was observed at both 3 
and 5 dpi, it was lower at 5 dpi (Figure 4).

Figure 1  Photomicrograph of NDV induced histopathological changes in the testis of control and NDV infected white leghorn roosters. 
Normal progression of spermatogenesis (yellow arrows pointing various stages), with the formation of mature spermatids, few are attached with 
Sertoli cells, and small numbers of mature spermatids were present in the lumen of seminiferous tubules of control birds, at 3 and 5 dpi (A and C). 
Panel B illustrates the shortening of the adluminal compartment of seminiferous epithelium, decrease in number of Sertoli cells, individualized, 
shrunken spermatogonia with pyknotic nuclei (blue arrow heads), at 3 dpi. The inset shows individualised spermatogonia. Histology of testis 
at 5 dpi, denotes multifocal, and segmented, spermatogenic columns, necrotic cells (brown arrow heads), lipid vacuoles and proteinaceous 
homogenous material. Sertoli cells were rare and small numbers of spermatids were present in the lumen (D).

Figure 2  Relative quantity of Viral RNA in the testis of roosters. 
Graphs are denoted as mean ± standard deviation. The data were 
analysed by two-way ANOVA test, with challenge and time points as 
the main effects.
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NDV infection upregulated the mRNA levels of PRRs
We compared the mRNA expression levels of PRRs, 
including toll-like receptor TLR 3, TLR7, and melanoma 
differentiation-associated protein 5 (MDA5) in the tes-
ticular tissue of NDV-infected and control birds at 3 
and 5 dpi. Compared to roosters in the control group, 
the expression levels of TLR3 and TLR7 in the testes of 
NDV-infected birds were significantly upregulated at 
5 dpi, but these upregulations were only significant for 
TLR3 at 3 dpi (Figure  5). As shown in Figure  5, MDA5 
was significantly upregulated in the NDV-infected group 
at 3 dpi compared to the control group. The upregulation 
of MDA5 in the NDV-infected group at 5 dpi was not sig-
nificantly higher than that in the control.

Differential expression of innate immune genes
Interferons (IFNs) are the most potent innate immune 
molecules to control and surpass viral replication and 
modulate innate immune responses to protect the host 
from viral pathogens. Therefore, we compared the 
expression of IFNs, including IFN-α, IFN-β, and IFN-γ, in 
the testes of roosters from the control and NDV-infected 
groups at 3 and 5 dpi (Figure 6). The expression of IFN-α, 

IFN-β, and IFN-γ was upregulated at 3 dpi, but these 
upregulations were only significant at 5 dpi (Figure  6). 
The expression levels of IL-8, CXCLi1, and iNOS were 
also examined by qRT-PCR. NDV infection significantly 
increased the expression of IL-8 at 5 dpi. NDV infection 
significantly (P < 0.05) increased the expression of iNOS 
in the infected roosters. The mRNA expression levels in 
the testes of NDV-infected birds peaked at 5 dpi. How-
ever, the expression of CXCLi1 decreased at 3 dpi in 
the testes of NDV-infected birds and increased at 5 dpi 
(Figure 6).

Discussion
In the present study, we investigated the effects of NDV 
infection on the expression of PRRs, innate immune 
genes, enzymes involved in steroidogenesis, reproduc-
tion hormones levels, and histopathology of testes in 
SPF roosters. Many studies have attempted to explain 
the modulation of innate immune genes and histologi-
cal structure in different organs and organ systems, 
including the digestive system, respiratory system, 
spleen, nervous system and female reproductive system 
[14, 24–28]. However, to the best of our knowledge, an 

Figure 3  Plasma concentrations of testosterone and luteinizing hormone and expression of their receptors in the control and NDV 
infected white leghorn roosters. Plasma levels of steroids were determined by enzyme-linked immunosorbent assay and expression analysis 
were performed by qPCR. Data are presented as mean ± standard deviation. The data were analysed by two-way ANOVA test, with challenge and 
time points as the main effects.
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attempt has never been made to study the fate of NDV 
infection in the testes of roosters.

Innate immune responses are the first line of defence 
of the host against invading pathogens and play a criti-
cal role in the determination of disease. Viruses are rec-
ognized by the PRRs, including TLRs, cytosolic retinoic 
acid inducible gene I (RIG-I)-like receptors, and MDA5 
[34, 35]. In this study, increased expression of TLR3, 
TLR7, and MDA5 was noted in the testicular tissues of 
NDV-infected roosters. In NDV infection, upregulation 
of TLR3, TLR7, and MDA5 was noted in the DF-1 cells 
and different tissues [14, 36–39], which is in accordance 
with the results of the present study. Overexpression 
of TLR activates the MyD88-dependent pathway to 
produce cytokines, MHC molecules, and chemokines, 
leading to effective immune responses to clear invading 
pathogens [40, 41]. In this study, increased expression 
of CXCLi1 and IL-8 was noted in the testes of NDV-
infected roosters. Upregulation of CXCLi1 and IL-8 
might trigger immune cells at the infection site.

IFNs are part of the arsenal of the innate immune sys-
tem against viruses [42]. Increased expression of IFNs 
has been noted in NDV infection [14, 36, 43, 44]. IFN 
production stimulates neighbouring cells to increase 
the expression of IFN-stimulated genes, leading to an 
antiviral state to inhibit virus replication [45]. Increased 
expression levels of IFN-α, IFN-β, and IFN-γ were noted 
in the testes of NDV-infected birds in the present study.

The ratio of roosters to laying hens is low, but roosters 
are equally important to produce fertile eggs and the sub-
sequent performance of chicks. Different factors, such as 
nutrition [46–48], age [49, 50], hormones [51, 52], and 
infectious diseases [53–56], can affect the reproductive 
performance of roosters. Spermatogenesis is controlled 
by an array of pathways, especially by those including 
reproductive hormones. It takes place in the seminifer-
ous epithelium and is controlled by the activity of Sertoli 
cells and their interaction with germ cells, testosterone, 
FSH, LH, oestradiol, and progesterone. In this study, 
decrease in the plasma levels of testosterone and LH in 
NDV-infected birds is indicative of disruptive effect of 

Figure 4  The effects of NDV infection on the mRNA expression of steroidogenesis related key protein StAR and enzymes P450scc, 
3βHSD, and 17βHSD4 in rooster testis. Data are presented as mean ± standard deviation. The data were analysed by two-way ANOVA test, with 
challenge and time points as the main effects. StAR: Steroidogenic acute regulatory protein; P450scc: Cholesterol side-chain cleavage enzyme; 
3βHSD: 3β-hydroxysteroid dehydrogenase.
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NDV on spermatogenesis. Decreased levels of testoster-
one have been shown to be associated with decreased 
fertility in roosters [52, 57].

In this study, examination of the viral load showed 
that NDV replicates in the testes of SPF roosters. 
Severe histological lesions were noted in the testes of 
NDV-infected roosters at 5 dpi than at 3 dpi, which 
may have been due to more viral copies. The optimum 
level of reproductive hormones ensures the spermato-
genesis, however, disorganized spermatogenic columns 
and fewer cells with replacement by necrotic cells, lipid 
vacuoles, and proteinaceous homogenous material in 
the infected roosters are well correlated with the viral 
load and lowered level of reproductive hormones. The 
presence of rare Sertoli cells, few spermatids in the 

lumen, and severely affected tubules, only a single layer 
of spermatogonia remained in the basal layer could be 
explained with the fact that testosterone and FSH levels 
were lowered in the NDV infected birds. These micro-
scopic lesions may have disturbed the plasma hormone 
levels, as the affected cells were associated with the 
production of testosterone.

Testosterone is produced from cholesterol through 
a series of reactions catalysed by different enzymes and 
proteins. The key enzymes and proteins involved in the 
synthesis of testosterone are P450scc, 3βHSD, and StAR 
[58]. In the Leydig cells, translocation of cholesterol 
from the outer to the inner mitochondrial membrane is 
regulated by StAR [59]. Then, conversion of cholesterol 
to pregnenolone is catalysed by P450scc [59]. StAR and 
P450scc are the rate limiting factors in pregnenolone syn-
thesis. Then, pregnenolone, a precursor for the synthesis 
of diverse steroids, moves to the smooth endoplasmic 
reticulum and is converted to dehydroepiandrosterone 
and then androstenedione by 3βHSD. The final conver-
sion of androstenedione to testosterone is catalysed by 
17βHSD [60]. In the current study, NDV infection signifi-
cantly downregulated the expression of StAR, P450scc, 
and 3βHSD. These results indicate that decreased mRNA 
expression of StAR, P450scc, and 3βHSD may have been 
the cause of decreased biosynthesis of hormones because 
the synthesis and levels of testosterone are closely associ-
ated with the expression of StAR, P450scc, and 3βHSD 
[58, 60]. Steroid synthesis is regulated by steroidogenic 
factor-1 [61].

LH stringently controls steroidogenesis. In the present 
study, NDV infection decreased expression of LHR and 
AR and the plasma levels of LH and testosterone. In addi-
tion to steroidogenesis, depletion of AR in murine Ley-
dig cells inhibits spermatogenesis in the spermatid stage, 
decreases plasma testosterone levels, and reduces several 
key steroidogenic enzymes, including 17βHSD, 3βHSD, 
and P450scc [62]. Therefore, the decreased expression of 
steroidogenic enzymes in NDV-infected birds may have 
been due to decreased expression of LHR and AR.

In conclusion, our results demonstrate that NDV 
replicates in the testicular tissue, increases the expres-
sion of PPRs, upregulates the innate immune response, 
induces histological lesions, and inhibits steroidogenesis 
and spermatogenesis. These observations suggest that 
decreased plasma levels of testosterone and LH may be 
due to decreased expression of LHR and AR and steroi-
dogenic enzymes in NDV-infected roosters. These find-
ings also explain the possible reduction in the fertility 
and hatchability in NDV infected breeder flocks.

Figure 5  Relative quantity of mRNA expression of Pattern 
recognition receptors in the testis of control and NDV infected 
birds. Graphs are denoted as mean ± standard deviation. The data 
were analysed by two-way ANOVA test, with challenge and time 
points as the main effects.
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