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Recent advances in delivery of veterinary 
DNA vaccines against avian pathogens
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Abstract 

Veterinary vaccines need to have desired characteristics, such as being effective, inexpensive, easy to administer, 
suitable for mass vaccination and stable under field conditions. DNA vaccines have been proposed as potential 
solutions for poultry diseases since they are subunit vaccines with no risk of infection or reversion to virulence. DNA 
vaccines can be utilized for simultaneous immunizations against multiple pathogens and are relatively easy to design 
and inexpensive to manufacture and store. Administration of DNA vaccines has been shown to stimulate immune 
responses and provide protection from challenges in different animal models. Although DNA vaccines offer advan-
tages, setbacks including the inability to induce strong immunity, and the fact that they are not currently applicable 
for mass vaccination impede the use of DNA vaccines in the poultry industry. The use of either biological or physical 
carriers has been proposed as a solution to overcome the current delivery limitations of DNA vaccines for veterinary 
applications. This review presents an overview of the recent development of carriers for delivery of veterinary DNA 
vaccines against avian pathogens.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
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1 Introduction
Vaccines have been effective against infectious diseases 
in animals and have successfully controlled and/or eradi‑
cated major animal pathogens. Based on the guidelines 
proposed by the Royal Society’s report on infectious dis‑
eases of livestock in 2002, UK, the characteristics of an 
ideal vaccine are:

• provides broad-spectrum protection against all iso-
lates of the virus in all the affected species, prevent-
ing virus carriage and the possibility of shedding and 
transmission;

• stimulates the level of immunity necessary to drive 
effective and long-lasting immune responses;

• inexpensive to manufacture and simple to adminis-
ter;

• in the case of live attenuated vaccines, reversion to 
virulence has to be avoided;

• has a long shelf life and is heat stable;
• allows discrimination between infected and vacci-

nated animals; and
• provides strong levels of maternal immunity.
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Nevertheless, there is no single vaccine that has all the 
above characteristics. The use of vaccines to control dis‑
ease is based on assessing the risks and evaluating the 
benefits following vaccination. Generally, genetic vac‑
cines are composed of either DNA (as plasmids) or RNA 
(as mRNA) that is taken up and translated into proteins 
by cells of the vaccinated animals. Since there are limited 
reports on RNA vaccines compared to the extensive lit‑
erature on DNA vaccines, genetic vaccines are generally 
referred to as plasmid DNA antigen‑expression systems. 
Genetic immunization, also termed DNA immuniza‑
tion, is a recent vaccine technology utilizing eukaryotic 
expression vectors encoding antigens [1].

Wolff et al. first demonstrated that direct intramuscular 
(IM) injection of plasmid DNA was able to generate the 
expression of the plasmid‑encoded antigen in a murine 
model [2]. To date, DNA vaccines have been success‑
fully licensed for use against West Nile virus in horses 
[3], infectious haematopoietic necrosis in schooled sal‑
mons [4], and canine melanoma in dogs [5], as well as 
Clynav against pancreas disease infection in Atlantic 
salmon [6]. Moreover, the first commercial DNA vaccine 
against H5N1 in chickens has recently been conditionally 
approved by the  United States Department of Agricul‑
ture (USDA), which targets highly pathogenic H5 avian 
influenza [7].

The first DNA vaccine that was studied in poultry in 
1993 was directed against avian influenza virus (AIV) [8]. 
Immunization with DNA vaccines has had some success 
that could be attributed to their advantages over conven‑
tional vaccines. Despite the success of some DNA vac‑
cines in small animal models in veterinary applications, 
there are still limitations in plasmid delivery and lack of 
immunogenicity in large animal models. To improve the 
immunogenicity of DNA vaccines, adjuvants have been 
co‑administered in  vivo with DNA vaccines. It is also 
possible to incorporate an immunomodulatory adju‑
vant into the plasmid and co‑express the adjuvant gene. 
Immunomodulatory genes, including cytokines (IL15, 
IL18) [9], Esat‑1 [10], MDP‑1 [11], HMGB1ΔC [12] or 
HSP70 [13, 14], were found to enhance the humoral and 
cell‑mediated immunity of AIV DNA vaccines. In addi‑
tion, recent advances in the optimization of antigens 
carried in plasmids [15]; novel delivery methods, such 
as electroporation [16] or jet injections [17]; targeting 
of antigens to antigen‑presenting cells (APCs) [18]; and 
co‑delivery with biological [19] and nanoparticle [20] 
carriers have led to a substantial improvement in DNA 
vaccine efficacy in poultry.

Poultry DNA vaccines have been developed against 
several viral, bacterial and protozoan diseases. Promis‑
ing results have been obtained and full protection (100%) 
elicited against poultry diseases, such as AIV in chickens 

and quails, duck Tembusu virus (DTMUV), infectious 
bursal disease virus (IBDV) and Newcastle disease virus 
(NDV) in chickens (Table  1). Based on the data sum‑
marized in Table  1, approximately 76% of poultry DNA 
vaccine studies were trialed in chickens, 13% in ducks, 
9% in turkeys and just 2% in quails (Figure 1A). The effi‑
cacy of poultry DNA vaccines is affected by the age of 
the hosts, number of vaccination(s), vehicles and adju‑
vants, different routes of delivery and immunity against 
different pathogens (Table  1). Low in  vivo efficacy con‑
tributed by factors such as the delivery system has always 
been the challenge for developing DNA vaccine utiliza‑
tion in poultry. Thus, this review is aimed at discussing 
the development of delivery systems for DNA vaccines 
in poultry. The benefits and pitfalls of using each delivery 
system will be discussed.

2  Routes of administration for DNA vaccine 
delivery

Effective DNA vaccine delivery is required to induce a 
strong and long‑lasting immune response that can pro‑
duce high and sustained levels of antigen production at 
targeted sites. Delivery routes of DNA vaccines can be 
generally grouped into those that are mucosal or sys‑
temic. Relative proportions of different administration 
routes of inoculation in poultry were calculated from 
the data summarized in Table  1 and presented in Fig‑
ure 1B. The most extensively used routes for the delivery 
of poultry DNA vaccines include IM (55%), oral (23%), in 
ovo (IO) (11%), eye drop (ED) (4%) and intranasal (IN) 
(3%) (Figure  1B). Although some new delivery methods 
and routes are under development or being tested in 
poultry, conventional IM injection is still considered the 
dominant DNA vaccine delivery route. The majority of 
poultry DNA vaccines (approximately 55%) were applied 
as naked DNA through IM injection into the leg, chest 
or thigh muscles of poultry, and some promising results 
have been obtained. Full protection against a highly vir‑
ulent H5N1 AIV infection was elicited in quails by IM 
immunization of a DNA vaccine encoding the H5 gene 
[21]. Ideally, DNA vaccine delivery should not be invasive 
[22]. However, most of the parenteral routes commonly 
used were needle‑based deliveries and thus might cause 
complications in vaccinated chickens [23]. Compared 
with the parenteral routes, oral administration in poultry 
is faster and much easier to administer for mass applica‑
tion without requiring highly trained manpower and no 
risk of needle‑stick injury or cross‑contamination [24]. 
Oral immunization is able to induce mucosal immune 
responses and was performed as the second most popular 
route, with approximately 23% of poultry vaccinations. 
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IO, which is specific to poultry, is the third most popular 
route of vaccination, at approximately 11% (Figure 1B).

Encapsulation of naked DNA with a carrier has 
been proposed as a solution to improve the controlled 
release of antigens that could increase the efficacy of 
DNA vaccines. Regardless of live, attenuated, killed or 
DNA vaccines, noninvasive vaccinations, including IN 
and oral delivery, could reduce stress, pain and cost of 
vaccinations and increase the safety of vaccination in 
large flocks of birds.

Furthermore, successful IN and oral delivery tend to 
raise better mucosal immunity than the other routes 
against poultry respiratory viruses, such as infectious 
bronchitis virus (IBV) [25], NDV [26], and AIV [19]. 
Thus, the design of carriers should help improve the 
efficacy and stability of DNA vaccines for IN or oral 
delivery. The carrier must be able to resist degradation 

and attack by the immune system and have sufficient 
safety profiles to become a successful delivery system.

3  Vectors for delivery
Regardless of the choice of route, the low efficiency of 
traditional naked DNA vaccines has always been con‑
sidered one of the main obstacles. To overcome this 
problem, improved expression vectors with more effi‑
cient promoters and the use of adjuvants were proposed 
to improve the efficacy of DNA vaccines in poultry. Lee 
et  al. demonstrated that the use of the pCI‑neo HA 
plasmid with the cytomegalovirus (CMV) promoter 
could effectively boost the antibody response against 
influenza virus in chickens [27]. Most of the plasmids 
that have been successfully used for poultry DNA vac‑
cine development were mainly the same as those used 
in mammalian DNA vaccines, and few plasmids, such 
as pCAGGS (antigen transcription is under control of 

A

B C

Chickens
76%

Ducks
13%

Turkeys
9%

Quails
2%

IM
55%

Oral
23%

IO
11%ED

4%
GG
4%

IN
3%

Salmonella 
70%

LAB
20%

Nanoparticle
10%

Figure 1 Different poultry DNA vaccination models, routes and carriers. A Relative proportions of DNA vaccine studies performed in poultry. 
B Relative proportions of different routes of administration in poultry. C Salmonella spp., LAB spp. and nanoparticles play major roles in oral delivery 
of DNA vaccines. IM: intramuscular, IO: in ovo, ED: eye drop, IN: intranasal, GG: gene gun, LAB: lactic acid bacteria.
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the chicken β‑actin promoter), were specifically devel‑
oped and used for poultry applications [28].

Codon optimization is based on the selection of 
codon triplets that have the highest tRNA utilization 
frequency in the cytoplasm, which can increase transla‑
tion rates and mRNA stability. Successful DNA vaccina‑
tion requires high expression of the antigenic gene(s) in 
the host, and this method is usually used to elicit foreign 
protein production [29]. The Kozak sequence plays a sig‑
nificant role in the initiation of a translation process in 
mammalian cells by increasing the chance of ribosome 
recognition of the AUG start codon in the transcription 
process [30].

In addition, the Kozak sequence was also found to 
enhance the expression of a DNA vaccine after immu‑
nization. However, the efficacy of a DNA vaccine with 
the Kozak sequence for both Marek’s disease (MD) and 
AIV was not well supported in two reports [31, 32]. Oli‑
godeoxynucleotides rich in cytosine‑guanosine deoxy‑
nucleotide (CpG) motifs were also found to enhance the 
innate immunity of chickens and effectively protected 
(~80%) against S. typhimurium septicaemia upon chal‑
lenge [33]. In addition to using improved expression 
vectors and promoters, the development of multivalent 
DNA vaccines enhanced cell‑mediated immunity. Sawant 
et  al. constructed a bivalent DNA vaccine simultane‑
ously expressing the HN and F antigens of NDV with the 
chicken immunomodulatory IL‑4 gene. Chickens inocu‑
lated via the IM route displayed an increase in NDV‑spe‑
cific antibodies and cell‑meditated immunity. The DNA 
vaccine conferred protection to 40% of chickens against 
NDV upon challenge [34].

Fusion of the M. tuberculosis HSP70 or Esat‑6 genes 
with the H5 gene of AIV H5N1 was also found to enhance 
the antibody response in chickens [10, 13]. In addition to 
the fusion of two genes, Lim et al. demonstrated that co‑
delivery of N1 and IL‑15 in 2 different plasmids induced 
higher humoral and cell‑mediated immunity in chick‑
ens than vaccination with N1 alone [9]. Coexpression of 
chicken IL‑2 and IL‑7 enhanced the humoral and cell‑
mediated immunity as well as the protective efficacy of 
a VP2‑expressing DNA vaccine against IBDV in chickens 
[35]. In addition, the DNA adjuvant neutral lipid with 
DMSO was reported to be suitable for IO vaccination 
with NDV and IBDV viral proteins [36]. Progress has 
been made towards the development of many mono‑
valent DNA vaccines in poultry medicine, although the 
desirable practical farm DNA vaccine should be effective 
against multiple species. Novel multivalent T cell epitope 
DNA vaccines against four Eimeria species were con‑
structed, and animal experimentation showed effective 
protection against all four species, E. tenella, E. necatrix, 
E. maxima and E. acervuline, in chickens [37].

IO delivery of CpG DNA has been shown to reduce 
bacterial infections with S. enteritidis, S. typhimurium 
and E. coli in chickens [38, 39]. It was found to mediate 
an antiviral response against influenza, which correlated 
with a macrophage response in the lungs [40]. In another 
trial, IO delivery of CpG DNA increased recruitment of 
IgM, KUL01, and CD8 and CD4 T cells at day 1 post‑
hatching in the trachea, lungs, duodenum, large intestine, 
spleen and bursa of chickens [41]. However, these modifi‑
cations could only partially solve the low efficacy of DNA 
vaccines because the APCs were still not specifically tar‑
geted, and the encoded antigens were not delivered to the 
target site to produce sufficient mucosal or organ‑specific 
immunity.

The efficacy of protection conferred by naked plasmids, 
with a few exceptions, was lower than 100%. For example, 
a naked plasmid carrying the F and HN genes of NDV, 
when administered through the IO route, could only con‑
fer protection to 28% of chickens [42]. The efficacy con‑
ferred by other naked plasmids carrying antigens against 
AIV, ILTV, IBV, REV, and DEV was reported to range 
from 50 to 90% protection. However, in another exam‑
ple, a naked plasmid carrying the H5 antigen against AIV 
was able to confer 100% protection when delivered by the 
gene gun (GG) in chickens (Table 1). Park et al. demon‑
strated that priming with a DNA vaccine encoding the 
VP2, VP3, and VP4 antigens through the IO route and 
boosting with IM injection of a killed IBD vaccine com‑
pletely protected chickens against a highly virulent IBDV 
[43].

4  Biological carriers
Bacteria have been described as “tiny programmable 
robot factories” for use in the delivery of DNA vaccines 
against various diseases (viral, bacterial and parasitic) 
[44]. The first report of in vitro gene transfer from bac‑
teria to mammalian cells was reported over 30 years ago 
by Walter Schaffner, where tandem copies of the SV40 
virus genome were transferred into co‑cultured mamma‑
lian cells using laboratory strains of E. coli [45]. Bacteria‑
based DNA delivery systems are able to replicate in the 
host and, by carrying their own immunostimulatory fac‑
tors, could elicit immune responses not only against the 
plasmid‑encoded foreign antigens but also against the 
bacterial carrier itself [46, 47]. Briefly, bacteria as poul‑
try DNA vaccine carriers are divided into gram‑positive 
(non‑pathogenic) and gram‑negative strains (attenuated 
pathogenic bacteria).

4.1  Gram‑negative bacteria as potential carriers for DNA 
vaccines

There are some gram‑negative pathogenic bacteria, 
such as E. coli and Salmonellae species, that have been 
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isolated and used for DNA vaccine delivery in poultry. 
The trafficking of intracellular gram‑negative bacteria 
can be divided into intraphagosomal and intracytosolic 
pathways. With regard to localized infections of bacte‑
ria in host cells, enteropathogenic bacteria are used as 
DNA vaccine carriers, and these can be divided into (1) 
extracellular pathogens, such as E. coli or Yersinia spp. 
(Y. pseudotuberculosis and Y. enterocolitica); (2) intrap‑
hagosomal bacteria, such as Salmonella spp.; and (3) 
intracytosolic bacteria, such as Shigella spp. and Listeria 
monocytogenes (Figure  2) [48–53]. Oral immunization 
of chickens with a DNA vaccine encoding the VP2 gene 
of IBDV carried by a transgenic E. coli DH5α resulted in 
95.4% protection [54].

4.1.1  Salmonella
Salmonella, as a non‑host‑specific intracellular bacte‑
rium, is commensal in poultry and can persist in the gas‑
trointestinal (GI) tract. Different Salmonella  serotypes 
derived from a wide range of hosts can infect poultry 
[55]. Therefore, avian species can be infected by host‑spe‑
cific and non‑host‑specific Salmonella  serotypes. Avian 
systemic salmonellosis is characterized by three separate 
phases: invasion of Salmonella via the GI tract, establish‑
ment of infection in macrophages and subsequent clear‑
ance of the infection by the immune system. Otherwise, 

the birds develop the subclinical phase of salmonellosis 
and die [56].

Salmonella has a close relationship  with poultry and 
has been evaluated as a live carrier for inducing pro‑
tective responses to a wide variety of infections due to 
its ability to improve the efficacy of a vaccine through 
induction of mucosal and internal organ immunity [57]. 
Salmonella can invade, survive and multiply in APCs 
(macrophages), which are the critical characteristics of 
Salmonella as a carrier for vaccine development. Moreo‑
ver, live attenuated Salmonella can release transformed 
plasmids through an unknown mechanism into the 
eukaryotic cytoplasm (Figure  2) [58, 59]. Hence, Sal-
monella is a promising carrier in poultry DNA vaccine 
development.

Salmonella is able to orally infect animals and humans. 
Following ingestion, a proportion of the bacteria can 
resist the low pH of the GI tract and reach the ileum and 
the caecum; then, Salmonella can invade the mucosa by 
multiplication in the sub‑mucosa and in Peyer’s patches 
(PPs). In young birds with an immature immune system, 
extensive replication of bacteria occurs in the caecum 
[60].

Various attenuation methods have been applied to 
reduce the pathogenicity of S. typhimurium, which 
retained their invasive ability and could deliver a heter‑
ologous plasmid into mammalian cells. S. typhimurium 
SV4089, a double mutant  (Dam− and  PhoP−) of wild‑type 

H+ 

Figure 2 Principles of different carriers for DNA vaccine delivery to host cells. (1) Bacterial-mediated delivery. (a) Bacteria, such as L. 
monocytogenes, E. coli, and S. flexneri, carrying a recombinant plasmid invade host cells, escape from the vacuole system, then die in the cytosol and 
release the plasmid [102]. (b) Bacteria, such as Salmonella, first invade the host cells, remain in the vacuole, then die due to metabolic attenuation 
and release the recombinant plasmid into the cytosol [102]. (2) Polycations are able to compress the molecular size of plasmids into compact 
structures by converting the negative charges to positive. The high surface cationic charge of an encapsulated plasmid mediates both size 
condensation and buffering capacity that diminish the requirement for the addition of endosomolytic agents. Buffering leads to osmotic swelling, 
membrane lysis and subsequent plasmid release [103].
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S. typhimurium SL1344, is an attenuated Salmonella 
strain that has been used extensively as a carrier for DNA 
vaccines in different animal models. Studies have shown 
that S. typhimurium SV4089 is not orally pathogenic to 
chickens at a dose level as high as  1010 cfu/mL [61, 62], 
while the oral LD50 of wild‑type SL1344 in chickens 
is ~104 cfu/mL [63]. The live attenuated S. typhimurium 
SV4089 provided a unique alternative in terms of safety 
and in vitro and in vivo stability of transfected plasmids. 
DNA vaccines are inexpensive to produce in large doses 
and are easily detected and monitored after oral inocula‑
tions into the host. Furthermore, attenuated S. typhimu-
rium SV4089 was able to invade and pass through the 
various organs of inoculated chickens, such as the liver, 
spleen, and caecum, without showing evidence of sys‑
temic infection [64].

Attenuated S. typhimurium has been used as a car‑
rier for DNA vaccines against different pathogens in 
poultry. In one study, oral administration of chickens 
with the attenuated S. typhimurium SV4089 contain‑
ing pcDNA3/E. tenella 5401 antigen showed strong 
humoral and cellular immunity, with partial protection 
(55–57.5%) against challenge from E. tenella [62]. Li et al. 
demonstrated that oral administration of chickens with 
the attenuated S. typhimurium SV4089 containing the 
complete polyprotein (VP2/4/3) of IBDV also offered 
73.3% protection against challenge with a virulent IBDV 
[61]. In another study, Jazayeri et  al. showed that a sin‑
gle oral immunization of chickens with  109 cfu/mL S. 
typhimurium SV4089 containing a eukaryote expression 
vector encoding the haemagglutinin (HA) gene of H5N1 
did not produce any clinical manifestations. Orally vac‑
cinated chickens showed anti‑H5 antibody production, 
increased CD4/CD8 T cell levels and mixed proinflam‑
matory/Th1‑like cytokine responses against AIV, which 
was important for viral clearance [19].

In addition to the attenuated S. typhimurium strain 
SV4089, another attenuated S. typhimurium strain, 
SL7207, was also studied as a carrier for DNA vaccines. 
Pan et al. showed that oral vaccination of white leghorn 
chickens with an HA DNA vaccine carried by the attenu‑
ated S. typhimurium SL7207 and boosted with a killed 
H9N2 vaccine was able to confer 100% protection against 
H5N1 following challenge, with no virus shedding or 
clinical signs [65]. Wan et  al. used 1.0 × 1010 cfu/mL S. 
typhimurium SL7207 as a carrier for oral vaccination of 
chickens against avian reovirus (ARV) by using the σC 
protein. The results showed high levels of antibody pro‑
duction as well as protection of 66.7% of chickens against 
ARV challenge [66]. In addition to vaccinating chickens, 
oral DNA vaccination against duck enteritis virus (DEV) 
administered by the attenuated S. typhimurium SL7207 
carrier co‑expressing UL24 (core herpesvirus gene) 

and E. coli heat labile enterotoxin B subunit (LTB) as a 
mucosal adjuvant was able to induce effective systemic 
and mucosal immune responses and showed 60–80% 
protection of the ducklings [67]. Moreover, oral delivery 
of the Salmonella SL7207 strain carrying a DNA vaccine 
(pVAX1‑SME) encoding the envelope proteins prM and 
E of DTMUV displayed strong immunogenicity and pro‑
vided protection to 100% of ducks against DTMUV infec‑
tion. Ducks orally vaccinated with this DNA vaccine were 
protected from lethal DTMUV infection. Oral adminis‑
tration of the DTMUV vaccine provided a fast vaccine 
delivery strategy and was economical for large‑scale clin‑
ical applications [68]. Jiao et al. reported that a DNA vac‑
cine encoding the S1 and N genes delivered by S. enterica 
serovar Typhimurium via the oral and IN routes could 
induce humoral and mucosal immune responses and 
conferred 70% protection against IBV in chickens [25].

4.2  Gram‑positive LAB
LAB (Lactococcus, Streptococcus, and Lactobacillus) are 
nonsporulating, have low G + C content and are non‑
pathogenic food‑grade bacteria. They are an excellent 
candidate for functioning as adjuvants, immunostimu‑
lators and live antigen carriers to deliver antigens and 
cytokines at the mucosal level [69]. Dieye et  al. charac‑
terized L. lactis as a potential vehicle for protein delivery 
(VP2 and VP3), serving as a live mucosal vaccine against 
IBDV in chickens [70].

Moreover, Moeini et al. showed that L. acidophilus car‑
rying the VP1 protein of chicken anaemia virus (CAV)‑
induced neutralizing antibodies and Th1 cytokines 
against CAV in orally vaccinated chickens and suggested 
that Lactobacilli could also be used as a potential carrier 
for oral immunization of chickens [71]. In another study, 
Wang et  al. demonstrated oral vaccinations of chickens 
with a recombinant lactobacillus (LDL17‑pH), which 
expressed avian HA1 protein and could significantly 
increase the specific mucosal anti‑HA1 IgA levels and 
anti‑HA1 serum IgG levels. The chickens were protected 
at a level of 60% against lethal challenge with a H5N1 
virus [72].

5  Physical carriers
Physical approaches are the most commonly employed 
for DNA vaccine delivery. However, physical carri‑
ers need to successfully permeate the cell membrane 
of the target cell and release the DNA vaccine into the 
cytoplasm. The polycation‑based delivery system is a 
promising approach for non‑viral delivery because its 
molecular entity can be modified to fine tune and change 
its physicochemical properties. Since DNA is a large mol‑
ecule (up to 1  μm in length), is negatively charged and, 
as a general rule, the plasma membrane of living cells is 
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proportionately lipophilic and is also negatively charged, 
it is expected that the cell membrane could act as a bar‑
rier for large‑sized polynucleotides. In addition, naked 
DNA associates poorly with the cell membrane [73, 74].

Polycations have been used to address the problems of 
changing the negative charges of nucleotides to positive 
and compressing the molecular size of the plasmid into 
compact structures that are necessary for transfecting 
nucleotides into most types of eukaryotic cells (Figure 2). 
It is likely that an encapsulated DNA with a slightly posi‑
tive charge could interact electrostatically with the cell 
membrane and then be internalized. The adsorption of 
DNA to the surface of positive polymers during electro‑
static interactions plays a major role in improving the 
efficiency of DNA vaccines. More significantly, cationic 
polymers on the nano‑scale have received heightened 
attention because they further enhanced the chemical 
stability of DNA vaccines and induced enhanced immune 
responses since the uptake of nanoparticle carriers with 
DNA vaccines into immune cells, such as dendritic cells 
(DC), was highly effective [75].

One of the cationic nano‑polymers is nano‑polyeth‑
yleneimine (PEI), which is able to electrostatically bind 
plasmid DNA (pDNA) and condense it into positively 
charged molecules, which can be taken up by cells more 
effectively than naked DNA. Among the PEI types, 
branched PEI was found to be more effective and sta‑
ble than linear PEI in delivering the ompA gene to pro‑
tect against Chlamydophila psittaci infection. Branched 
PEI was able to activate both humoral and cell‑mediated 
immunity post vaccination. This effect might be contrib‑
uted by PEI to deliver the DNA that activated APCs, such 
as DCs [76]. However, the vaccination could only help 
to reduce C. psittaci shedding and shorten the period of 
clinical signs in infected chickens but failed to raise suffi‑
cient protection against challenge [76, 77]. In addition to 
PEI, poly(lactide‑co‑glycolide) (PLGA) was also found to 
be effective, as it could prolong and promote sustainable 
release of DNA, which was taken up by APCs. Both PEI 
and PLGA were found to be effective in delivering the 
VP2 gene of IBDV and elicited both humoral (IgG) and 
cell‑mediated immunity (CD4/CD8). Negash et  al. used 
PLGA‑PEI macroparticles adsorbed with a recombinant 
plasmid carrying the VP2 gene and showed that immuni‑
zation of chickens could improve the efficacy of the IBDV 
DNA vaccine to prevent both morbidity and mortality in 
up to 80% of birds [78].

Other biomaterials, such as chitosan, have also been 
used as carriers for poultry DNA vaccines. White leg‑
horn chickens were used as a model for IN immuniza‑
tion with chitosan/DNA nanoparticles, which carried 
the FlaA gene of C. jejuni. They produced significantly 
increased levels of IgG antibodies against C. jejuni and 

intestinal mucosal antibodies (IgA) [79]. Meanwhile, 
Zhang et  al. successfully prepared spherically shaped 
chitosan nanoparticles with mean diameters between 
100 and 200  nm and a positive surface charge, which 
could protect DNA against DNase I degradation. Plas‑
mid DNA containing the HN and chicken IL‑2 genes 
encapsulated with chitosan nanoparticles showed 
improved DNA vaccine efficacy and elicited haemag‑
glutination inhibition (HI) antibody titres and IFN‑γ 
against NDV challenge in chickens [80]. Recently, Gong 
et al. also successfully developed chitosan nanoparticles 
(spherical shape and approximately 200 nm) to encap‑
sulate a ptfA‑DNA vaccine against  Pasteurella mul-
tocida, with an encapsulation efficiency of 95.3%, and 
the formulation effectively resisted DNase degradation. 
IM vaccination of the encapsulated ptfA‑DNA vaccine 
into 4‑week‑old chickens induced higher antibody con‑
centrations and lymphocyte proliferation than naked 
DNA and conferred 68% protection, compared to the 
56% achieved by naked DNA [81]. IN and IM immu‑
nizations of a DNA vaccine encoding the F antigen of 
NDV encapsulated with chitosan nanoparticles induced 
100% and 80% protection in chickens, respectively [26].

In addition to higher solubility and penetration into 
the cell, nanoparticles also provided the flexibility to 
be conjugated with other nanomaterials to further 
increase the specificity and efficacy of delivery. Moreo‑
ver, Jazayeri et  al. prepared green silver nanoparticles 
(nanoAg) with poly‑ethylene glycol for delivery of the 
H5 gene of AIV into primary duodenal chick cells. 
The results demonstrated that the nanoAg were able 
to completely encapsulate the DNA, protected the H5 
gene against DNase I and transferred the complex into 
primary cells as early as 1  h after transfection [82]. 
Moreover, single oral administration of DNA/H5 plas‑
mid encapsulated in nanoAg in chickens induced anti‑
bodies and cell‑mediated immune responses as well as 
enhanced cytokine production [20].

Biodegradability, increased immunogenicity, flex‑
ibility in conjugation with other molecules, includ‑
ing antibodies to specify the target delivery, and no 
involvement of live organisms (viruses or bacteria) in 
physical carriers have supported their potential to over‑
take biological carriers in the delivery of DNA vaccines. 
However, their cytotoxicity, safety (induction of non‑
specific inflammation/allergic reaction) and capacity 
of DNA loading need to be further evaluated not only 
in  vitro but also in field trials for veterinary vaccine 
delivery studies [83]. Currently, the most commonly 
used oral DNA vaccine delivery vehicles in poultry vac‑
cination involve Salmonella species (70%), LAB (20%) 
and nanoparticles (10%) (Figure 1C).
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6  Conclusions
DNA vaccination provided a new and valuable 
approach to the development of poultry vaccines and 
offered advantages in flexibility of design, speed, sim‑
plicity of production, and the ability to elicit both cel‑
lular and humoral immune responses. DNA vaccines 
against influenza in poultry have been in develop‑
ment since 1993, and recently, the USDA condition‑
ally approved the first DNA vaccine against H5N1 for 
chickens. DNA vaccines are amendable for stockpil‑
ing to control future influenza H5N1 outbreaks. The 
pandemic AIV strains have undergone antigenic shift 
or drift, which allows them to avoid immunity elicited 
by the poultry influenza vaccines. Recent AIV vac‑
cine development studies have indicated the need for 
additional systemic vaccine challenge studies against 
highly pathogenic AIV. Moreover, full protection has 
been demonstrated against poultry diseases, such 
as DTMUV, IBD, and ND. DNA vaccines also suffer 
from several pitfalls where in  vivo efficacy and stabil‑
ity are still problems. Additionally, a single DNA vac‑
cination in poultry is often insufficient to induce robust 
humoral and cell‑mediated immunity as well as confer 
full protection. Therefore, booster immunization is 
often required. Both biological and physical carriers, 
with their appropriate antigens and adjuvants, offer the 
possibility to overcome the disadvantages of DNA vac‑
cines. Although DNA vaccines carrying different anti‑
gens have been delivered by different types of carriers 
and adjuvants, very few have been evaluated by chal‑
lenges with the pathogens in question. Thus, additional 
in vivo field trials should be carried out to identify the 
efficiency and safety of the currently available carriers, 
antigens, and adjuvants to combat infectious diseases 
of veterinary pathogens.
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