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Abstract 

Farm animals have been suggested to play an important role in the epidemiology of Clostridium difficile infection (CDI) 
in the community. The purpose of this study was to evaluate risk factors associated with C. difficile dissemination in 
family dairy farms, which are the most common farming model in the European Union. Environmental samples and 
fecal samples from cows and calves were collected repeatedly over a 1 year period on 20 mid-size family dairy farms. 
Clostridium difficile was detected in cattle feces on all farms using qPCR. The average prevalence between farms was 
10% (0–44.4%) and 35.7% (3.7–66.7%) in cows and calves, respectively. Bacterial culture yielded 103 C. difficile isolates 
from cattle and 61 from the environment. Most C. difficile isolates were PCR-ribotype 033. A univariate mixed effect 
model analysis of risk factors associated dietary changes with increasing C. difficile prevalence in cows (P = 0.0004); 
and dietary changes (P = 0.004), breeding Simmental cattle (P = 0.001), mastitis (P = 0.003) and antibiotic treatment 
(P = 0.003) in calves. Multivariate analysis of risk factors found that dietary changes in cows (P = 0.0001) and calves 
(P = 0.002) increase C. difficile prevalence; mastitis was identified as a risk factor in calves (P = 0.001). This study shows 
that C. difficile is common on dairy farms and that shedding is more influenced by farm management than environ-
mental factors. Based on molecular typing of C. difficile isolates, it could also be concluded that family dairy farms are 
currently not contributing to increased CDI incidence.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Clostridium difficile is a spore forming Gram positive 
anaerobe, which causes hospital and antimicrobial-asso-
ciated intestinal disease in humans and some animal spe-
cies. The incidence, severity, and recurrence rates of C. 
difficile infections in humans are increasing [1–6]. Recent 
prevalence studies suggested that farm animals can be 
the source for human infection [7–10], which has not 
been scientifically confirmed [11].

Antibiotic treatment, hospitalization, change of diet 
and neonatal period were suggested risk factors for C. 
difficile perpetuation in farm and companion animals 
[12–21]. Most studies investigating the epidemiology 

of C. difficile in bovines were performed on large scale 
intensive dairy and/or beef operations [8, 11, 22, 23], 
which is not reflective of the European agriculture. These 
studies mostly investigated the risk of age [11, 22, 23] or 
age and antibiotic use [8] for C. difficile shedding with 
feces, many times excluding several possible farm man-
agement and environment related risk factors [24].

Family farming is the most common operating farm-
ing model in the European Union (EU) [25]. It is strongly 
supported by the European commission and the majority 
of member EU states, because of its positive contribution 
to the socio-economic and environmental sustainability 
of rural areas [25]. They directly supply the local com-
munity and the market in general with products of ani-
mal and non-animal origin, within a rich epidemiological 
environment comprised of people, pet animals, farm ani-
mals, wild animals and vermin. To date, there are no 
studies investigating the epidemiology of C. difficile in 
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such an environment. The purpose of this study was, 
therefore, to determine the prevalence of C. difficile, to 
characterize C. difficile isolates and to determine risk fac-
tors for C. difficile perpetuation within the most common 
operational farming model in Europe.

Materials and methods
This study underwent ethical review and was given 
approval by the National Animal Care Committee at the 
Ministry of Agriculture, Forestry and Food–Veterinary 
administration.

Animal samples
Twenty family dairy farms (Table 1) located in the Slove-
nian Prealps were included in this study. The average milk 
yield was 6605.2  L milk/cow/year (3727.32–8876.64  L 
milk/cow). Diseases recorded and treated on the farms 
were mostly mastitis, pneumonia, diarrhea, displaced 
abomasum or other gastrointestinal diseases, ketosis and 
endometritis/metritis. During the study every herd was 
checked for infectious diseases, such as paratuberculo-
sis, listeriosis, bovine viral diarrhea and infectious bovine 
rhinotracheitis (Table 1).

Products from farms included in this study are mostly 
sold within the local community, whereas surplus milk 

and meat are sold to different dairy and meat processing 
plants in Slovenia, Austria and north-east Italy.

Calves were categorized into three age groups at the 
time of each sampling (age group one: 0–21  days; age 
group two: 22–56  days; age group three: 57–180  days), 
based on their nutritional and digestive physiology [26]. 
Feces were sampled individually from cows and calves 
under the age of 6  months in exactly 2  week intervals 
for a period of 1 year (27 sampling days from November, 
2011–November 2012). For all the farms, the same sam-
pling protocol was followed. Samples were taken from 
the rectum using clean latex gloves (Shield, UK). Cow and 
calf fecal samples from each farm were pooled separately 
in the laboratory within 24 h after collection: One gram 
of fecal sample from each individual was used. Pooled 
samples were then diluted with sterile saline solution in a 
1:3 ratio. The aliquot of 2 mL of every pooled sample, and 
individual samples from all calves were stored in 2  mL 
sterile vials (Eppendorf Tubes®, Germany) at −70 °C for 
future analysis.

Heifers and bulls over 6 months of age were excluded 
from the study because of their limited contact with 
humans. They are not subjected to significant stress fac-
tors of production animals and are usually not used to 
human handling.

Table 1 Dairy farm characteristics and health status

BVD: Bovine viral diarrhea, IBR: Infectious bovine rhinotracheitis, Free: Free range.

Farm characteristics Health status

Farm Housing type Cattle type Farm location No. dairy cows Paratuberculosis Listeriosis BVD IBR

Farm 1 Free + Grazing Holstein–Friesian Rural 17–21 – – – –

Farm 2 Tie Holstein–Friesian Rural 11–13 – – – +
Farm 3 Tie Holstein–Friesian Village 10–13 – – – +
Farm 4 Tie Holstein–Friesian Village 23–27 – + – –

Farm 5 Free Holstein–Friesian Village 21–24 – + – –

Farm 6 Tie Holstein–Friesian Village 14–18 – – – –

Farm 7 Free Holstein–Friesian Village 23–26 – – – –

Farm 8 Tie Holstein–Friesian Village 29–33 – + – +
Farm 9 Tie Holstein–Friesian Village 16–19 – – – –

Farm 10 Tie Holstein–Friesian Village 16–20 – + + +
Farm 11 Tie + Grazing Simmental Rural 14–16 – – – –

Farm 12 Tie Holstein–Friesian Rural 27–33 – + – –

Farm 13 Tie Mixed Rural 16–18 – – – –

Farm 14 Tie Simmental Town 11–18 – + – –

Farm 15 Tie Simmental Town 13–15 – – – –

Farm 16 Tie Simmental Town 13–15 – – – –

Farm 17 Free Simmental Village 31–40 – + – –

Farm 18 Tie Simmental Rural 11–14 – + – –

Farm 19 Free Holstein–Friesian Village 32–37 – + – –

Farm 20 Tie Simmental Rural 9–11 – + – –

Total (%) 9–40 0/20 (0%) 10/20 (50%) 1/20 (5%) 4/20 (20%)
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Environmental samples
Environmental samples were collected from every farm 
during the meteorological autumn, winter, spring and 
summer. Manure, silage/hay, water from drinking bowls 
and soil samples from around the barn were collected 
in sterile 10–50  mL tubes (Sarstedt, Germany). Sam-
ples from other domestic animals present on the farm 
were collected with sterile swabs (Deltalab, Spain). Barn 
flies (Stomoxys calcitrans) and Barn swallow droppings 
(Hirundo rustica) were sampled only once during the 
summer. Barn flies were captured alive with hands, using 
clean latex gloves (Shield, UK) and stored in 10 mL ster-
ile tubes (Deltalab, Spain). Barn swallow droppings were 
collected from surfaces under the nests within the barn 
using sterile swabs (Deltalab, Spain).

Detection of Clostridium difficile
All pooled fecal samples were used for molecular detec-
tion of C. difficile 16S rDNA gene. Samples were pro-
cessed within 2  days after collection. For total DNA 
isolation, SmartHelix™ First DNAid kit (IFB, Slovenia) 
was used as described previously [27]. Clostridium dif-
ficile 16S rDNA gene was detected using an improved 
quantitative PCR (qPCR) that has the lowest detection 
(7.72 CD  cells/g feces) and quantification limit (77.2 
CD cells/g feces) published to date [27]. Calf fecal sam-
ples were analyzed individually when pooled fecal sam-
ples tested positive on qPCR.

Pooled fecal samples from cows and individual calf 
fecal samples, which were positive for C. difficile 16S 
rDNA gene, were then cultured for C. difficile [7]. Sam-
ples were inoculated into cyloserine-cefoxitin fructose 
enrichment broth (Oxoid, UK) supplemented with 0.1% 
sodium taurocholate (Sigma, Aldrich) and cultured for 
1 week in anaerobic conditions. Thereafter, 1 mL of inoc-
ulated broth from each sample and 1 mL of ethanol were 
mixed and left for 0.5 h at 20–25 °C. Samples were later 
inoculated onto standard selective medium enriched 
with cycloserine and cefoxitin (C. difficile agar base and 
C. difficile selective supplement; Oxoid, UK) and left 
to incubate for 48  h anaerobically at 37  °C. Preliminary 
identification of isolates was based on typical odor and 
morphologic criteria. One gram per sample, a swab or 
one mL of water sediment was used for culture. Environ-
mental samples were cultured as described above.

Molecular characterization of Clostridium difficile
Clostridium difficile isolates recovered from fecal and 
environmental samples were characterized by PCR-
ribotyping and toxinotyping. PCR-ribotyping was per-
formed with primers for intergenomic region 16S-23S 
[28]. Amplification with PCR and electrophoresis of the 
PCR products on 3% agarose gel were done according 

to Janezic et  al. [29]. PCR ribotypes were named using 
standard Cardiff/Leeds nomenclature (3-digit code). If 
reference strains were unavailable, the PCR ribotype was 
named using keys designated by internal nomenclature. 
Toxinotyping was performed using subsequent restric-
tion PCR fragments for A3 (part of C. difficile toxin gene 
A, tcdA) and B1 (part of C. difficile toxin gene B, tcdB) 
[30], while the gene for the binary toxin was detected 
using the protocol described by Stubbs et al. [31].

Parasite burden on farms
Parasitological evaluations of pooled fecal samples from 
cows and calves were performed every month during the 
sampling period using standard flotation and sedimenta-
tion techniques [32].

Data collection and statistical analysis
Information regarding feeding regimens, diseases, and 
treatments were obtained from farmers, farm veterinary 
services, and the Central Husbandry Register. Heat index 
[33] was obtained from the nearest National Meteorolog-
ical Service weather station (Ljubljana, Slovenia—14°5′E, 
46°1′N). A mean value for heat index was calculated over 
7 days prior to each sampling day.

The outcome in this study was the presence of C. dif-
ficile (present, not present) in four subgroups: (1) 
cows, (2) calves aged 0–21  days (first group), (3) calves 
aged 22–56  days (second group) and (4) calves aged 
57–180  days (third group). The following risk factors 
were considered for each subgroup: Intestinal parasites, 
dietary change (a change from conserved to fresh feed), 
heat index, breed (Holstein–Friesian and Simmental), 
antibiotic treatment, other treatment (non-antibiotic 
treatment prescribed by the veterinarian), gastrointestinal 
disease, mastitis, other diseases, and meteorological sea-
son (Tables 4 and 5). The absence of a risk factor was con-
sidered as a reference category for odds ratio; a reference 
category for the outcome “Breed” was Holstein–Friesian.

The analyses were performed at the farm level. First, 
the univariate assessment of the association between 
each risk factor and different outcomes was performed 
by means of logistic regression where farm was included 
as the random effect. The week of sampling was included 
in each model as a fixed effect to adjust for the possible 
confounding effect of time. The variable was treated as 
continuous and a possible non-linear association was 
modelled using restricted cubic splines, however none 
of the models showed a significant effect of the non-lin-
ear term as judged by the likelihood ratio test (p > 0.05); 
therefore, only results for the linear association are 
reported. P-values were adjusted with the Benjamini-
Hochberg method (P.bh) to control the false discovery 
rate. Significance level was set to 0.05 for the adjusted  
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p values. When estimating the association between heat 
index and the outcomes a non-linear relation was mod-
eled using restricted cubic splines. None of the mod-
els showed a significant effect of the non-linear term as 
judged by the likelihood ratio test; therefore, only results 
for the linear association are reported.

Following the univariate assessment, multivariate 
models were built for each outcome. Backward selec-
tion with a Bayes Information Criterion (BIC) cutoff 
value set to two was used for variable exclusion in ran-
dom effects logistic regression models. These results 
were also verified using penalized random effects logistic 
regression where the penalization coefficient was deter-
mined through BIC. The variables selected by the two 
approaches were very similar; therefore, only results for 
the backward selection are reported.

Statistical analysis was performed using R language for 
statistical computing (R version 3.0.1) [34].

Results
Clostridium difficile prevalence
Between farm prevalence. Clostridium difficile was 
detected in fecal samples from all farms on at least one 
sampling day (100%). Throughout the year farms were 
positive for C. difficile on an average of 39.8% of sampling 
dates (whether calves, cows or both). Clostridium difficile 
was identified on each sampling day on at least 3 (15%) 
and no more than 14 farms (70%).

Cow prevalence
Fifty-four (54/540; 10%) pooled cow fecal samples were 
positive for C. difficile with qPCR, which ranged from 
0–44.4% per farm. Bacterial culture identified C. difficile 
from only one pooled cow fecal sample.

Calf prevalence
In calves (n = 2442) C. difficile 16S gene was detected in 
182 pooled samples (182/511, 35.6%), which ranged from 
3.7–66.7% per farm. Clostridium difficile was identified 
with qPCR in 243 individual calf samples (243/2442, 
10%). Bacterial culture yielded 102 C. difficile isolates 
from 101 calves (Table 2).

Environmental samples
Clostridium difficile was also isolated from 11 winter, 
16 spring, 16 summer and 18 autumn environmental 
samples (Table  3). However, two samples (one from the 
summer and one from the autumn), which were con-
firmed positive for C. difficile, were later lost during fur-
ther culture processing. From other domestic animals 
on sampled farms, only poultry was found positive for 
C. difficile. Stable flies from two farms were found posi-
tive for C. difficile; only one isolate was then successfully 

cultured. No C. difficile was isolated from fecal droppings 
from Barn swallows sampled during their peak breeding 
season.

Molecular characterization
Overall from 103 C. difficile strains 16 PCR-ribotypes 
and 4 toxinotypes were cultured from cows and calves. 
In cows, only a toxin negative PCR-ribotype 071 was cul-
tured, which was also identified in calves from the same 
farm. The most predominant C. difficile strain in calves 
was PCR-ribotype 033 (toxinotype XIa; 75.5%). PCR-
ribotypes 071, SLO 084 and SLO 116 were toxin nega-
tive, whereas ribotype 023 was toxinotype IV. All other 
ribotypes (001/072, 002, 003, 005, 012, 014/020, 018, 
077, SLO 029, SLO 036, SLO 195 new) were toxinotype 
0 (Table 2).

Sixty-two C. difficile strains grouped into 19 differ-
ent PCR-ribotypes (one new) and 6 different toxinotypes 
(toxin negative, 0, IV, V, XIa and XIc-new) were identified 
in the environment (Table  3). The most predominant C. 
difficile types were SLO 060 and 033 (toxinotype XIa,c). 
Toxin negative PCR-ribotypes were SLO 057, SLO 116 
and SLO 196, whereas PCR-ribotype 023 was toxinotype 
IV and PCR-ribotype 045 was toxinotype V. All other 
ribotypes (001/072, 002, 003, 012, 014/020, 018, 077, 081, 
SLO 025, SLO 036, SLO 053, SLO 063) were toxinotype 0.

PCR-ribotype 001/072 was found in manure, soil and 
silage, while PCR-ribotype 014/020 was recovered from 
manure, soil and water samples.

Two strains of C. difficile were recovered from an adult 
rooster (PCR-ribotype/toxinotype; 045/V and SLO 060/
XIa) and one new strain was isolated from a two-week-
old rooster (SLO 196/toxin negative). Stable flies were 
infected with C. difficile PCR-ribotype/toxinotype 033/
XIc (new toxinotype), which was also present in manure 
and soil samples.

Parasite burden between farms
Parasites identified in pooled fecal samples were: Stron-
gylida (65%), Paramphistomum cervi (30%), Nematodirus 
sp. (55%), Strongyloides (15%), Eimeria sp. (100%), Mon-
ezia sp. (40%) and Fasciola hepatica (5%).

Univariate analysis of risk factors
In cows (Table  4), the only risk factor associated with 
C. difficile prevalence after adjusting for time of sam-
pling were dietary changes (OR 5.0; 95% CI 2.0–12.1; 
P = 0.0004; P.bh = 0.007).

In the first age group of calves (Table  5) risk factors 
increasing C. difficile prevalence were dietary changes 
(OR 5.08; 95% CI 2.3–77.9; P = 0.004; P.bh = 0.04) and 
breeding Simmental cattle (OR 5.3; 95% CI 1.9–14.7; 
P = 0.001; P.bh = 0.03).
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Table 3 Clostridium difficile isolates from environmental samples and their molecular characterization

Environmental 
samples

C. difficile culture results C. difficile strain characterization

Winter Spring Summer Autumn All year Ribotypes Toxinotypes

Manure 4/20 (20%) 7/20 (35%) 5/20 (25%) 7/20 (35%) 23/80 (28.7%) 001/072, 002, 
014/020, 023, 033, 
077, SLO 036, SLO 
053, SLO 060

0, IV, XIa, XIc (new)

Soil 5/20 (25%) 8/20 (40%) 7/20 (35%) 8/20 (40%) 28/80 (35%) 001/072, 012, 
014/020, 018, 023, 
033, 081, SLO 025, 
SLO 057, SLO 060, 
SLO 063

0, IV, XIa, XIc (new), 
tox-

Silage/hay 0/20 (0%) 1/20 (5%) 0/20 (0%) 2/20 (10%) 3/80 (3.75%) 001/072, 003, SLO 
116

0, tox-

Water 1/20 (5%) 0/20 (0%) 1/20 (5%) 1/20 (5%) 3/80 (3.75%) 014/020, SLO 036 0, XIa

Other animals on 
farms

1 (2 strains)/32 
(3.1%)–adult 
rooster

0/33 (0%) 1/24 (4.2%)–rooster 
2 weeks

0/26 (0%) 2/115 (1.7%) 045, SLO 060, SLO 
196 (new)

V, XIa, tox-

Barn swallows 
(Hirundo rustica)

/ / 0/20 (0%) / 0/20 (0%)

Stable flies (Sto-
moxys calcitrans)

/ / 2/20 (10%) / 2/20 (10%) 033 XIc (new)

Total 11 (12)/112 (9.8%) 16/113 (14.2%) 16/144 (11.1%) 18/106 (17%) 61/475 (12.8%)

Table 4 Risk factors associated with the prevalence of C. difficile in cows and third age group of calves (57–180 days)

CI: 95% confidential intervals.

P.bh: P values adjusted with Benjamimi and Hochberg method.

Age group Cows Calves 57–180 days

Risk factors Odds ratio CI, low CI, up P value P.bh Odds ratio CI, low CI, up P value P.bh

Intestinal parasites cows 0.67 0.27 1.67 0.397 0.685 1.11 0.45 2.73 0.805 0.899

Intestinal parasites calves 0.97 0.47 1.98 0.937 0.976 1.12 0.53 2.37 0.760 0.899

Dietary change 5.00 2.06 12.11 0.001 0.007 2.84 1.10 7.35 0.030 0.289

Heat index 0.95 0.91 0.99 0.046 0.323 0.98 0.93 1.02 0.423 0.899

Breed 1.80 0.58 5.57 0.304 0.685 2.82 1.23 6.47 0.014 0.268

Antibiotic treatment: cows 1.72 0.86 3.43 0.118 0.323 1.26 0.59 2.69 0.545 0.899

Other treatment: cows 1.85 0.91 3.74 0.087 0.323 1.16 0.51 2.60 0.715 0.899

GI diseases: cows 1.60 0.54 4.68 0.390 0.685 0.86 0.18 4.18 0.862 0.909

Mastitis 1.30 0.58 2.88 0.513 0.750 1.16 0.48 2.78 0.736 0.899

Other diseases: cow 3.38 0.72 15.73 0.119 0.323 0.00 0.00 ∞ 1.000 1.000

Antibiotic treatment: calves 0.64 0.19 2.11 0.468 0.741 0.56 0.12 2.64 0.472 0.899

Other treatment: calves 1.18 0.46 3.02 0.723 0.858 1.26 0.44 3.61 0.664 0.899

GI diseases: calves 0.00 0.00 ∞ 0.976 0.976 1.55 0.16 14.32 0.696 0.899

Other diseases: calves 1.40 0.42 4.66 0.5764 0.782 1.33 0.35 5.06 0.669 0.899

Meteorological season-winter vs 0.060 0.323 0.230 0.899

 Spring 1.20 0.48 3.00 0.693 0.858 1.52 0.57 4.01 0.395 0.899

 Autumn 0.55 0.14 2.10 0.391 0.685 0.58 0.14 2.36 0.451 0.899

 Summer 0.32 0.09 1.14 0.079 0.323 0.64 0.17 2.34 0.503 0.899
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Antibiotic treatment (OR 3.1; 95% CI 1.4–6.6; 
P = 0.003; P.bh = 0.03) and mastitis (OR 3.4; 95% CI 1.5–
7.9; P = 0.003; P.bh = 0.03) increased C. difficile preva-
lence in the second age group of calves (Table 5).

No risk factors associated with the C. difficile preva-
lence in the third age group of calves (Table 4) were iden-
tified after adjusting for time of sampling.

Multivariate analysis of risk factors
In cows, dietary changes were associated with the preva-
lence of C. difficile (OR 5.8; 95% CI 2.4–14.4; P = 0.0001). 
Similarly, in the first age group of calves, dietary changes 
were associated with the prevalence of C. difficile (OR 
17.2; 95% CI 2.8–106.0; P =  0.002). Mastitis was iden-
tified as a risk factor in the second group of calves (OR 
1.6; 95% CI 0.7–3.4; P  =  0.001). Dietary changes also 
increased the prevalence of C. difficile in the third group 
of calves (OR 2.8; 95% CI 1.0–7.4; P = 0.03) (Table 6).

Parasites were not shown to be a risk factor, which 
would directly influence the prevalence of C. difficile. 
However, they were identified to influence risk factors, 
which increased the prevalence of C. difficile in the mul-
tivariate analysis (Table 6).

Discussion
This study investigated the role of family farming on the 
ecology and epidemiology of C. difficile, which could be 

associated with the community-acquired CDI [7–10]. 
Dietary changes were the most prominent risk fac-
tor associated with the prevalence of C. difficile. The 
Clostridium difficile ribotypes identified in this study 
suggest that family dairy farming in Europe is an unlikely 
source for CDI.

Community-acquired CDI is a significant medical 
problem in human medicine. Animal contact is sug-
gested as a potential risk factor for the development of 
community-acquired CDI [35, 36], because of the high 
prevalence of C. difficile in pigs, cattle and poultry on 
large scale intensive farms [8, 11, 20, 21, 35–38]. Inten-
sive farming management subjects animals to a substan-
tial stress, which increases the likelihood for pathogen 
transmission [39]. Human animal interaction in large 
intensive farms is reduced to a minimum and animals 
in intensive production have limited contact with other 
animal species that could harbor or transmit pathogenic 
organisms. Most likely transmission of a pathogen from 
large intensive farms, therefore, is through a food chain. 
Farming management on smaller family farms is less 
stressful for animals and has smaller negative impact on 
the environment [40]. Such farms are also more inter-
linked within the community, and a direct or indirect 
transmission of pathogens between animals, and animals 
and humans, is possible, including food chain transmis-
sion [41].

Table 5 Risk factors associated with the prevalence of C. difficile in calves—First (0–21 days) and second (22–56 days) age 
group

CI: 95% confidential intervals, P.bh: P values adjusted with Benjamimi and Hochberg method.

Age group Calves 0–21 days Calves 2–56 days

Risk factors Odds ratio CI, low CI, up P value P.bh Odds ratio CI, low CI, up P value P.bh

Intestinal parasites cows 0.61 0.27 1.37 0.237 0.612 1.18 0.50 2.82 0.694 0.879

Intestinal parasites calves 0.71 0.36 1.38 0.322 0.612 1.71 0.83 3.52 0.143 0.543

Dietary change 13.27 2.26 77.93 0.004 0.039 1.19 0.31 4.52 0.793 0.941

Heat index 1.00 0.96 1.04 0.866 0.951 1.00 0.96 1.05 0.668 0.879

Breed 5.27 1.88 14.76 0.002 0.029 2.77 0.87 8.83 0.083 0.395

Antibiotic treatment: cows 1.94 0.54 1.02 0.929 0.951 6.62 1.45 3.10 0.003 0.032

Other treatment: cows 1.56 0.79 3.06 0.197 0.612 2.60 1.21 5.59 0.014 0.088

GI diseases: cows 2.69 0.34 0.96 0.951 0.951 1.38 0.39 4.82 0.608 0.879

Mastitis 1.09 0.51 2.29 0.819 0.951 3.48 1.52 7.94 0.003 0.032

Other diseases: cow 7.57 0.38 1.70 0.486 0.768 1.16 0.20 6.69 0.865 0.966

Antibiotic treatment: calves 1.03 0.41 2.54 0.943 0.951 1.94 0.72 5.20 0.188 0.556

Other treatment: calves 1.14 0.50 2.57 0.745 0.951 3.98 0.59 1.54 0.371 0.767

GI diseases: calves 1.76 0.38 8.08 0.463 0.768 0.00 0.00 ∞ 0.988 0.994

Other diseases: calves 0.54 0.16 1.76 0.311 0.612 1.00 0.31 3.22 0.994 0.994

Meteorological season—winter vs 0.089 0.423 0.383 0.767

Spring 2.02 0.84 4.84 0.114 0.431 0.71 0.27 1.87 0.498 0.859

Autumn 1.66 0.63 4.36 0.300 0.612 0.61 0.20 1.90 0.404 0.767

Summer 3.35 1.22 9.18 0.018 0.116 1.27 0.40 4.02 0.682 0.879
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Several longitudinal studies investigated the prevalence 
of C. difficile in different domestic animal species dur-
ing different ages or production stages, spanning over a 
period of 1 month to a year [11, 21–23, 38, 42]. The farm 
prevalence in this study varied from 3.7 to 74.1%; all 
farms were positive on at least one sampling day. Other 
studies also suggest transient shedding patters of C. dif-
ficile [11, 42]. A prevalence of 10% in cows was found in 
this study. This is more than in large intensive dairy farms 
where prevalence of 0.95 [10], 1.5 [43], 2.4 [44] and 4.5% 
[45] were reported based on a single sampling interval. 
As expected, calves (35.7%) had much higher C. difficile 
prevalence than cows in this study. Studies reporting 
prevalence of C. difficile in calves reported prevalence 
from 6 to 22% [10, 22–24, 43, 46, 47], and even 56% in 
calves less than 7  days old [36]. The use of qPCR as a 
screening method made C. difficile detection more sensi-
tive [27], which most likely accounted for the higher C. 
difficile prevalence in this study compared to other stud-
ies. Several sampling stages over a prolonged period are 
also more likely to identify bacteria in the investigated 
population.

Clostridium difficile bacterial culture results in this 
study, however, are more in line with previously pub-
lished data. Considering the results of a bacterial culture, 
the prevalence in cows and calves would be 0.2% (1/540 
pooled samples) and 4.1% (101/2442 individual samples), 
respectively. Results based on the bacterial culture indi-
cated lower C. difficile prevalence than that reported in 
studies investigating animals on large intensive farms [8, 
10, 22, 23, 37, 48, 49].

Sixteen PCR-ribotypes were identified from cattle 
samples and 19 from environmental samples. Eleven 
PCR-ribotypes were found in both, cattle and the envi-
ronment. Two new PCR-ribotype strains (SLO 195, SLO 

196) and a new toxinotype (XIc) were identified. PCR-
ribotype 033 was the most frequently determined PCR-
ribotype in this study, which has often been reported in 
calves and humans, but has not been linked to the com-
munity-acquired CDI [7, 10, 23, 43, 46, 50, 51]. Other 
PCR-ribotypes found were associated with CDI includ-
ing ribotypes 001/072, 002, 012 and 014/020 [10, 29, 52, 
53]. PCR ribotype 014/020 was previously isolated from 
meat products in Canada [54, 55]. PCR ribotype 078, 
which is closely associated with the rising incidence of 
community-acquired CDI [5, 10, 52] and has been iden-
tified on large cattle farms [8, 23, 48–50, 56], has not 
been detected in this study. It has been suggested that 
the exposure to less toxigenic strains of C. difficile such 
as PCR-ribotype 033 may help protect people or animals 
against more toxigenic strains and decrease the incidence 
of community-acquired CDI [57, 58].

The most important risk factor influencing the preva-
lence of C. difficile in this study were dietary changes. A 
similar result was found in horses [5, 13, 18] but not in 
other farm animals. Breeding/rearing Simmental cattle 
increased the risk for C. difficile shedding in the first age 
group of calves. They were at least five times more likely 
to shed C. difficile than Holstein–Friesian calves in the 
same age group. We were not able to identify the reason 
for this prevalence difference. Most C. difficile ribotypes 
identified in Simmental cattle were not regarded as dan-
gerous for CDI, which could competitively reduce the 
presence of more dangerous strains of C. difficile in the 
environment and potentially make them a safer breed of 
cattle [57, 58].

The prevalence of C. difficile in cows was not associ-
ated with the presence of diseases, nor with antibiotic 
and non-antibiotic treatment, which is in agreement 
with previous studies [24, 48, 49]. Clostridium difficile 

Table 6 Multivariate analysis

Calves first age group: 0–21 days; Calves second age group: 22–56 days; Calves third age group: 57–180 days.

Outcome Regression coefficient Odds ratio CI, low CI, up P value

Cows Intercept −2.490 <0.0001

Dietary change 1.772 5.881 2.401 14.405 0.0001

Intestinal parasites cows −0.448 0.639 0.248 1.644 0.3531

Calves Intercept −0.437 0.2357

First age group Dietary change 2.849 17.263 2.810 106.027 0.0021

Intestinal parasites calves −0.430 0.650 0.330 1.282 0.2145

Calves Intercept −1.909 <0.0001

Second age group Mastitis 1.407 4.083 1.729 9.639 0.0013

Intestinal parasites calves 0.488 1.629 0.773 3.432 0.1991

Calves Intercept −2.576 <0.0001

Third age group Dietary change 1.037 2.819 1.073 7.407 0.0354

Intestinal parasites calves 0.061 1.062 0.502 2.246 0.8739
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prevalence in the second age group of calves, however, 
was sensitive to the antibiotic treatment in cows, as well 
as to the presence of mastitis on the farm. Possible reason 
for this finding is the shift in rumen microbiota in calves 
after the age of 3 weeks [26]. Another reason is a greater 
likelihood of the second age group of calves to be fed 
waste milk [59].

Gastrointestinal diseases were not linked to increased 
prevalence of C. difficile in cows or calves. Most animals 
included in the gastrointestinal disease group in this 
study had diarrhea. Diarrhea was [19, 37] or was not [24, 
60–62] identified as a risk factor in other studies. Intes-
tinal parasites have contributed to the potency of risk 
factors identified in the multivariate analysis. Interaction 
between intestinal pathogens is often the culprit for the 
development of gastrointestinal diseases in individuals 
and the population [63, 64] and warrants detailed investi-
gation in the population.

Environmental temperatures and humidity are con-
sidered significant stress factors for production animals, 
which can influence the presence of C. difficile in feces 
[65–68]. Rodriguez-Palacios et al. [55] reported a positive 
association between C. difficile isolation in meat prod-
ucts in Canada with the months of January and Febru-
ary. In calves aged less than 1 month it was more likely to 
isolate C. difficile from their feces during the months of 
May, June and July when compared to August [24]. In the 
present study meteorological season and heat index did 
not influence the prevalence of C. difficile.

It is always important to be familiar with factors, which 
may influence the epidemiology of the disease and the 
biology of the etiological factor. This study provides sig-
nificant information with regards to the epidemiology 
of C. difficile on the most prominent farming model 
in Europe. The results of this study indicate that it is 
unlikely that mid-size family dairy farms in Europe har-
bor highly pathogenic C. difficile strains, which are found 
to cause disease in animals and humans. The predomi-
nant presence of the benign C. difficile PCR-ribotype 033 
may even have a protective rather than pathologic role in 
the pathogenesis of the disease.
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