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Abstract 

Sheep scab, caused by infestation with the mite Psoroptes ovis, is highly contagious, causing intense pruritus and rep-
resents a major welfare and economic concern. Disease control strategies rely upon chemotherapy, however, sustain-
ability is questionable due to issues of chemical residues, eco-toxicity and acaricide resistance. Control by vaccination 
is supported by demonstration of protective immunity in sheep previously infested with P. ovis. We identified vaccine 
candidates for P. ovis based on: (1) antigens selected by their interaction with host signalling pathways and the host 
immune-response; and (2) those shown to be either immunogenic or involved in mite feeding. This resulted in the 
development and validation, in repeated immunisation and challenge trials, of a seven recombinant protein sub-unit 
cocktail vaccine. Sheep were inoculated on three occasions, 2 weeks apart, along with QuilA adjuvant. Vaccination 
resulted in highly significant reductions in both lesion size (up to 63%) and mite numbers (up to 56%) following chal-
lenge. Mean lesion size in vaccinates was significantly smaller than controls from 1 week post infestation (wpi) until 
the end of the experiment at 6 wpi. All antigens elicited serum IgG responses following immunisation and prior to 
infestation, whereas controls did not produce antigen-specific IgG during the pre-infestation period. Vaccinated ani-
mals showed an amnestic response, with levels of antigen-specific IgG against muGST, Pso o 1 and Pso o 2 increasing 
following infestation. This vaccine represents the greatest reduction in lesion size to date with a sheep scab vaccine, 
providing encouragement for future production of a commercially-viable means of immunoprophylaxis.

© 2016 Burgess et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Psoroptic mange (sheep scab) caused by infestation with 
Psoroptes ovis, is highly contagious, causes intense pru-
ritus and is a major welfare and economic concern [1, 
2]. Currently, disease control relies on chemotherapy; 
however issues with chemical residues, eco-toxicity and 
acaricide resistance have raised concerns about the sus-
tainability of this strategy and alternative means of con-
trol are desperately needed [3]. The concept of control 
by vaccination is supported by the demonstration of 
partial immunity in sheep following previous infestation 
with P. ovis [4–6]: During primary infestation an initial 
“lag phase”, with small numbers of mites and tight, focal 
lesions, is followed by a more rapid “growth phase”, with 
increasing mite numbers and expanding lesions. When 

this primary infestation is resolved (e.g. by treatment) 
and sheep are later re-infested, there is an extended lag 
phase, with lower mite numbers and reduced lesion 
sizes. Mite-specific IgG responses are similar in pri-
mary and secondary infestations but a more rapid induc-
tion of mite-specific IgE antibodies occurs in secondary 
infestations, suggesting that immediate hypersensitivity 
responses may contribute to immunity [4, 5, 7].

Attempts to vaccinate sheep against P. ovis using mite 
extracts have shown promise, with a 13-fold reduction 
in mite numbers and  >65% reduction in lesion size in 
vaccinated sheep compared to controls [8]. Similarly, P. 
ovis extracts induce protection against mite challenge in 
cattle [9]. However, sub-fractionation of these complex 
extracts failed to identify the protective components 
involved. Furthermore, the practicality of a vaccine based 
on native P. ovis antigens is limited due to an inability 
to culture P. ovis in  vitro, meaning that native antigen 
extracts would be prohibitively expensive to produce. 
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We have adopted a “rational approach” to recombinant 
sub-unit vaccine design [10–14] in which host signalling 
pathways involved in the initial cutaneous pro-inflam-
matory response to P. ovis, upon which the mite relies 
to initiate its feeding and survival, were elucidated. This 
allowed identification of mite factors triggering these 
pathways, which could then be targeted by immunisation 
thus inhibiting mite survival. As the host:parasite inter-
action in sheep scab is complex, we hypothesised that 
incorporating multiple mite antigens into the vaccine, 
and thus targeting a number of host inflammatory path-
ways simultaneously, would be most likely to succeed. 
Similar multiple antigen approaches have been used in 
the development of effective vaccines against other para-
sites including the nematodes Necator americanus and 
Teladorsagia circumcincta [15, 16].

In this study we employed a recombinant sub-unit 
cocktail vaccine, using seven P. ovis proteins, four of 
which were identified through the approach described 
above (Pso o 1; Pso o 2; Pso o 3 and cyclophilin) with 
three additional antigens identified as either homologues 
of known allergens (Pso o 10); proteins upregulated dur-
ing feeding (cathepsin L) or by immuno-screening of P. 
ovis cDNA libraries (mu class glutathione-S-transferase 
(muGST)) [10–14, 17–22]. Efficacy was tested across 
repeated trials in sheep using a P. ovis challenge model.

Materials and methods
Recombinant protein production
The vaccine was composed of seven recombinant pro-
teins as described in Table 1 [14, 18–24]. Pso o 1, Pso o 

10, cyclophilin and muGST were soluble in phosphate 
buffered saline (PBS), whilst Pso o 2, Pso o 3 and Cath-
epsin L were insoluble. Soluble and insoluble Escheri-
chia coli-expressed proteins were induced and purified 
by nickel-affinity chromatography as described previ-
ously [24] and then dialysed against Dialysis Buffer (DB: 
20 mM sodium phosphate, 0.5 M NaCl, pH 7.4) contain-
ing 2 M urea when purifying insoluble proteins. Protein 
concentrations were measured using a modified BCA 
protein assay (Pierce, UK) with BSA standards. Pso o 1 
was expressed in Pichia pastoris, strain X-33 as described 
previously [21]. After purification, all antigens were 
stored at 4  °C, except for Pso o 1, which was stored at 
−20 °C.

Immunisation and challenge protocols
Trial 1
Thirty sheep scab-naive (animals bred and reared on the 
MRI farm with no signs of scab observed prior to the 
start of the study) Texel crossbred lambs (~6  months 
old) were used in the study as this allowed us to ensure 
that they had no previous exposure to sheep scab. Lambs 
were randomly allocated into two equal-sized groups 
(“vaccine” and “control”) with each group of lambs 
housed in a separate pen. Lambs in the vaccine group 
were immunized on three occasions 2 weeks apart with 
350 µg of recombinant protein cocktail (50 µg of each of 
the 7 P. ovis antigens) plus QuilA adjuvant (Brenntag Bio-
sector). PBS-soluble proteins were administered together 
with 5 mg QuilA as a single sub-cutaneous injection into 
the lateral neck region, whilst insoluble proteins were 

Table 1  Details of the recombinant P. ovis antigens used in the vaccine cocktail

a  Pso o 1, Pso o 10, cyclophilin and muGST were soluble in PBS, whilst Pso o 2, Pso o 3 and cathepsin L were formulated in Dialysis Buffer (DB).
b  Predicted molecular weight in kilo Daltons.
c  Not yet assigned.
d  Unpublished data.
e  Pso o 3 identified as a homologue of the house dust mite allergen Der p 3 in an EST from a P. ovis cDNA library. The following primer sequences were used to 
amplify the coding region of Pso o 3, from cDNA derived from mixed stage P. ovis as described in [20], downstream of the predicted signal peptide sequence, 
and to allow subcloning into the expression vector (restriction sites underlined) :Pso o 3-For 5′ GATCCGAATTCGGCATATCGAATGTTTCCACTTCC3′, Pso o 3-Rev-5′ 
CCGCAAGCTTTACGATTCCGACAATCGTTTTAC3′.
f  P. ovis cyclophilin identified as an EST from a P. ovis cDNA library. The following primer sequences were used to amplify full length P. ovis cyclophilin from cDNA 
derived from mixed stage P. ovis as described in [20] : Cyclophilin-For 5′ATGTCAACATGGACCCAAATTCAA′3, Cyclophilin-Rev 5′TTACATTTCACCACATTGTGATATGAT3′. 
Cyclophilin was subsequently expressed in E. coli, confirmed by matrix assisted laser desorption ionisation mass spectroscopy and its peptidyl prolyl cis–trans 
isomerase (PPIase) activity confirmed by a coupled enzyme assay as described in [41].

P. ovis antigen Accession No. Reference Soluble in PBSa Molecular weight (kDa)b Expression system

Cathepsin L BQ834906.1 [23] No 25 E. coli BL21-Codon Plus—pET-22b(+)

muGST AM991140.1 [14] Yes 25 E. coli BL21-Codon Plus—pET-22b(+)

Pso o 1 AM269885.1 [21] Yes 25 P. pastoris-X-33-pPICZαC

Pso o 2 AF187083.1 [24] No 14 E. coli BL21-Codon Plus—pET-22b(+)

Pso o 3 c d, e No 25 E. coli BL21-Codon Plus—pET-22b(+)

Pso o 10 AM114276.1 [20] Yes 37 E. coli BL21-Codon Plus—pET-22b(+)

Cyclophilin AAP03083.1 d, f Yes 38 E. coli BL21-Codon Plus—pET-SUMO
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administered via sub-cutaneous injection into the oppo-
site side of the neck in DB with 5 mg QuilA. Lambs in the 
adjuvant-only control group were immunized at the same 
time and via the same routes with equivalent quantities 
of PBS, DB and QuilA. Two weeks after the final immu-
nisation all lambs were infested, between the withers, 
with ~50 mixed-stage P. ovis mites. Lesion development 
was assessed weekly and blood samples were collected 
from all lambs immediately prior to each injection, 1 day 
pre-infestation and then weekly throughout a six-week 
infestation period, which is the maximum duration of 
infestation permitted to remain within the appropriate 
UK Home Office severity limits. At post mortem (pm), 
6  weeks post infestation, 3 skin strips (approximately 
5  cm  ×  1  cm) at the leading edge of the lesion were 
removed from each lamb for enumeration of mites.

Trial 2
Trial 2 was similar to Trial 1, with two exceptions: 10 
lambs per group were used and 5 skin strips were taken 
at pm. Both trials were performed under the regulations 
of the UK Animal Procedures Act (1986) and a UK Home 
Office Project License. Experimental design and statisti-
cal power calculations were performed by Biomathemat-
ics and Statistics Scotland (BioSS) and were approved by 
the Moredun Research Institute Experiments and Ethics 
Committee (Approval Number: Trial 1 =  E55/11; Trial 
2 = E02/13).

Assessment of lesion size and mite numbers
The lesion area was measured weekly following infesta-
tion by multiplying the length and width of the lesion 
at the broadest point. Mite numbers were estimated by 
counting parasites on skin strips from the leading edge 
of each lesion at pm and expressed as mites per cm. An 
estimate of the total number of mites at the leading edge 
of the lesion was also determined by multiplying the 
mite count value by the total lesion perimeter [2 × lesion 
length (cm) + 2 × lesion width (cm)] for each animal.

Quantification of antigen‑specific IgG
Recombinant antigen-specific IgG levels in serum across 
the pre- and post-infestation period were assessed for all 
vaccine antigens by ELISA as described previously [24] 
with the following exceptions: ELISA for Pso o 3 used a 
horse-radish peroxidase (HRP)-conjugate of polyclonal 
antibodies raised in pig against sheep IgG (Dako, UK). 
ELISA for Pso o 2 was as described in [24] but the antigen 
was diluted in ddH2O rather than carbonate buffer. The 
responses for each antigen were assessed for each sam-
ple in triplicate. OD450nm values were corrected against a 
reagent blank (no sample control), and all plates incorpo-
rated positive (pooled 6 wpi sera) and negative (pre-bleed 

from sheep scab naïve lambs) serum controls to account 
for inter- plate variation.

Statistical analyses
Estimated lesion sizes (cm2) were square root trans-
formed and compared using a linear random coefficients 
model. The model incorporated fixed effects of trial, 
treatment group, linear and quadratic effects of time (in 
weeks as a covariate) and a treatment by time interaction, 
and random effects of intercept and time-specific slope 
for each lamb. Mite counts, recorded from skin strips 
from each lamb, were assumed to follow a Poisson dis-
tribution and modelled using a generalised linear mixed 
model (GLMM) with the logarithmic link function. The 
model included fixed effects of treatment group, trial 
and a treatment by trial interaction, an offset variable of 
the logarithm of skin strip length and a random effect of 
lamb with dispersion parameter estimated to account for 
the over-dispersion in mite count data. Estimates from 
this model were used to calculate the total number of 
mites by combining the estimated lesion perimeters. Mite 
numbers were not log transformed for statistical analy-
sis, however, to present the data graphically in Figure 2, 
the log-scale was used to assist data presentation. The 
data for antibody levels were square root transformed 
and analysed by an additive linear mixed model, which 
included fixed effects of treatment, trial and a treatment 
by trial interaction. Separate smoothing curves were used 
for the non-linear relationship of the antibody response 
with time by treatment. The model also incorporated a 
first-order autoregressive correlation structure between 
observations at the 13 time points within the same ani-
mal and heterogeneity in variance for each trial. All sta-
tistical analyses were carried out using R software version 
3.0.1 using relevant libraries (base, lme4, mgcv) [25].

Results
Lesion size
All lambs across both trials developed a single sheep 
scab lesion, originating from the site of challenge. Lesion 
measurements were based on these single and no addi-
tional lesions were detected during the infestation 
period. Figure  1 shows the estimated mean lesion size 
(transformed data, cm) for vaccine and control groups 
along with the observed lesion size for each animal at 
each wpi (across both trials). The mean lesion size, irre-
spective of treatment groups, did not differ between trials 
(p = 0.641) so the model excluding trial effect is reported. 
The increase in lesion size with time had a curvilinear 
relationship (p < 0.001). The mean lesion size increased 
over time for both vaccine and control groups though 
the rate of increase (cm/wpi) for the control group 
(8.08 cm ± 0.36) was significantly (p < 0.001) higher than 
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in the vaccine group (5.20 cm ± 0.36). Mean lesion sizes 
(95% lower, upper confidence interval (CI)) in the vac-
cine and control groups were 52.68 (39.22, 68.13) and 
106.46 (86.90, 128.00) cm2, respectively at 1 wpi, increas-
ing to 1105.72 (900.77, 1331.64) and 2574.47 (2256.23, 
2913.69) cm2 for the vaccine and control groups at 6 wpi, 
respectively. Based on these measurements, lambs in the 
vaccine group showed, on average, a  >57% reduction in 
lesion size by 6 wpi compared with the control group, 
with a maximum reduction of 63% in lesion size at 3 wpi.

Mite numbers
The mean mite counts in Trial 2 were significantly higher 
than in Trial 1 (p < 0.001) regardless of treatment group. 
However, in both trials, the vaccine group had signifi-
cantly lower mean mite counts compared with the con-
trol group (Figure  2, p =  0.002). Estimated mean (95% 
lower, upper CI) mite counts per cm of skin for the vac-
cine group were 8 (6, 10) and 17 (13, 21) during Trial 1 
and 2, respectively. In the control group, estimated mean 
mite counts were 12 (9, 15) and 26 (20, 34) in the two tri-
als respectively. Accounting for the increased mean lesion 
perimeter at the leading edge of the lesion for the con-
trol group (202.80 cm) compared with the vaccine group 

(138.56 cm) across both trials, the estimated total mean 
(95% lower and upper CI) mite numbers for the vaccine 
and control groups for Trial 1 were 1055 (835, 1333) and 
2414 (1915, 3048), respectively. Corresponding estimates 
for Trial 2 were 2292 (1767, 2976) and 5251 (4045, 6811), 
respectively. Across both trials the vaccinated lambs on 
average had a  >56% reduction in total mite numbers at 
the leading edge of the lesion compared with the control 
group.

Serum IgG responses to recombinant P. ovis antigens
The antibody responses to all seven recombinant anti-
gens for vaccine and control groups in Trial 2 are shown 
in Figure  3. All vaccinated animals generated an IgG 
antibody response to the seven antigens. The vaccine 
group had statistically significantly higher antibody lev-
els to all antigens compared with the control group dur-
ing both pre- and post-infestation periods. IgG levels for 
most vaccine antigens peaked at 7–14 days after the final 
immunisation and then declined. By 4 wpi, increased 
antigen-specific serum IgG levels were observed for the 
muGST, Pso o 1 and Pso o 2 indicating a potential amnes-
tic response to these antigens. Serum from control ani-
mals had no measurable vaccine antigen-specific IgG 

Figure 1  Lesion development over a 6 week period post-infestation with P. ovis across repeated vaccine trials. Lambs were infested 
with ~50 mites following immunisation with a seven recombinant protein cocktail vaccine with QuilA adjuvant (vaccine) or adjuvant only (control). 
Data on lesion size are presented on the transformed scale (cm, square root of lesion size). The plot shows observed lesion size of each lamb of vac-
cine (triangles) and control (circles) groups, estimated mean lesion size of vaccine (solid line) and control (dashed line) groups and corresponding 
95% CIs envelop (shaded region).
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prior to infestation, but did contain Pso o 2-specific IgG 
by 3 wpi and Pso o 1- and muGST-specific IgG by 6 wpi 
demonstrating that these antigens were recognised by the 
host immune response during exposure to P. ovis mites, 
following infestation.

Discussion
The data presented here demonstrate the efficacy of 
a recombinant subunit sheep scab vaccine based on a 
cocktail of seven P. ovis antigens. When administered to 
lambs, the vaccine resulted in highly significant reduc-
tions in both lesion size (57%) and mite numbers (56%) 
following challenge in repeated protection trials. The 
lesions in the immunised lambs were significantly smaller 
than in matched control animals from 1 wpi until the 
end of the experiment at 6 wpi. In sheep scab, disease is 
transmitted via direct contact or fomites, so even mod-
est decreases in lesion size and the concomitant reduc-
tions in mite numbers may limit disease spread [26–29]. 
All vaccine antigens elicited serum IgG responses follow-
ing immunisation whereas animals in the control group 
did not possess antigen-specific IgG during the pre-
infestation period. In addition, an amnestic response was 
observed in vaccinated animals, following mite challenge, 

with levels of antigen-specific IgG against muGST, Pso o 
1 and Pso o 2 increasing following infestation with P. ovis. 
Serum IgG antibodies which bound recombinant Pso 
o 2 were demonstrated in the infested control animals, 
underpinning its use as a diagnostic antigen for the detec-
tion of sheep scab. In contrast no antigen-specific IgG 
response was observed for the mite antigens, Pso o 3 and 
Pso o 10. A previous study by our group demonstrated a 
similar lack of specific IgG reactivity to Pso o 10 in sheep 
undergoing a primary infestation with sheep scab and as 
such we would not expect to see an IgG response in these 
animals to Pso o 10 [20]. Detection of IgG to a defined 
antigen depends on many factors, including the amount 
of antigen that the host is exposed to and the relative 
immunogenicity of the antigen. It should also be noted 
that the Pso o 3 and Pso o 10 used for the ELISAs in this 
study were bacterial recombinant antigens, which may 
have structural differences to the native antigens and thus 
be poorly recognized by the mite-induced IgG response. 
The magnitude of the experimental challenge in the 
model described here is likely to be much greater than in 
a field outbreak, as the numbers of mites used (~50 mites 
per lamb) are likely to be substantially higher than those 
experienced during a natural infestation where only small 

Figure 2  Mite numbers at the leading edge of the lesion, 6 weeks post-infestation with P. ovis. Data on mite number are presented as 
the logarithm of mite number per log strip length (cm). The plot shows observed mite number on lambs of vaccine (triangles) and control (circles) 
groups accompanied with boxplots presenting summary statistics of the observed data, and estimated mean mite number on the log scale (large 
triangle/circle) and corresponding 95% confidence interval (error bar) for vaccine and control groups during both trials.
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numbers of mites, or even a single ovigerous individual, 
may be sufficient to establish a lesion [30–32]. Addition-
ally, as a result of the potentially limited numbers of mites 
encountered in a natural challenge, field infestations may 
develop more slowly over a longer period of time encom-
passing several months rather than the 6 weeks described 
here [30]. Based on the estimates of slopes in conjunction 
with the line plots of lesion size for both vaccine and con-
trol groups (Figure  1) it may be inferred that the lesion 
size would increase progressively with time, beyond the 
period investigated in the current experiment, and hence, 
the difference in lesion size between control and vaccine 
groups could become more pronounced at later time 
points. Therefore, the ultimate efficacy of this vaccine 
may actually be greater than demonstrated here; how-
ever, further studies under field conditions are required 
to validate this hypothesis.

The subunit vaccine described here represents the 
greatest reduction in lesion size with a recombinant 

sheep scab vaccine to date, providing encouragement 
for future production of a commercially-viable means of 
immunoprophylaxis. Previous attempts have been made 
to produce an effective vaccine for sheep scab. For exam-
ple, Nisbet et  al. [14] produced a multi-protein recom-
binant vaccine based on P. ovis allergens, however the 
efficacy of this vaccine could not be determined due to 
the high degree of variability in the lesion size and mite 
numbers in the controls. Other efforts have focused on 
the use of native extracts of P. ovis to generate protective 
immunity: a vaccine based on P. ovis soluble proteins was 
previously tested in cattle, with 8/14 vaccinated calves 
being free of palpable lesions by 8 wpi compared to 3/14 
in the controls [9]. Unfortunately, native extract based 
vaccines are unlikely to be commercially feasible due to 
the absence of in vitro culture systems for P. ovis to sup-
ply sufficient material for commercial production and 
also the lack of reproducibility with which these extracts 
can be produced. The use of a recombinant cocktail 

Figure 3  Antigen-specific antibody (IgG) levels in serum over a 6 week period post-infestation with P. ovis. Serum IgG responses specific 
for cathepsin L; Pso o 10; muGST; Pso o 1; Pso o 2, Pso o 3 and cyclophilin, respectively over a 6 week period of infestation with P. ovis during Trial 
2 only (2013). Data on IgG levels are presented on the observed scale (OD450nm). The plot shows observed IgG levels of each lamb of the vaccine 
(triangles) and control (circles) groups, estimated mean IgG level of vaccine (solid line) and control (dashed line) groups and corresponding 95% 
confidence interval (CI) envelope (shaded region). Green arrows indicate timing of immunisations.
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vaccine is, therefore, likely to be required for controlling 
complex eukaryotic parasites and may have advantages 
over single protein vaccines [33]. Whereas single point 
mutations in drug targets can lead to drug resistance, 
this is far less likely in a vaccine relying on multiple B cell 
epitopes present in a cocktail vaccine [28, 33].

Mathematical modelling has demonstrated that vac-
cines to control endoparasites may not need to achieve 
the same degree of efficacy as chemotherapeutics to 
achieve economic control of parasites, however, as these 
models were based on gastrointestinal nematode infec-
tions they may not be directly applicable to psoroptic 
mange [34–36]. Sterile immunity against many ectopar-
asites may not be achievable via vaccination and, unlike 
chemotherapeutics, an ectoparasite vaccine may not 
induce a rapid knockdown of parasite population nor 
necessarily protect individuals from being parasitized 
[29, 36]. Vaccination does have the potential to pro-
vide greater protection from re-infestation than achiev-
able with chemotherapeutic control, which currently 
ranges from low levels of protection with a single dose of 
doramectin and up to 60  days for moxidectin in a long 
acting formulation. If used as part of an integrated con-
trol program, vaccines may reduce parasite populations 
over successive generations and, in the short term may 
mitigate the effects of parasitism by controlling popula-
tion growth, limiting clinical pathology and alleviating 
the more extreme welfare symptoms [29]. Furthermore, 
vaccination may also reduce disease impact by blocking 
or reducing the spread of disease within and between 
flocks [29], although this is yet to be formally tested.

Given the likely efficacy achievable through vaccina-
tion, vaccines should not be considered as a single control 
measure for sheep scab but rather as an additional arm 
in a growing arsenal of tools available for coordinated 
control, including diagnostic tests, existing chemothera-
peutics and effective biosecurity. However, to encourage 
producers to begin to switch from their current reliance 
on chemotherapeutics to a more coordinated approach 
involving anti-parasite vaccines, these products will have 
to demonstrate clear benefits, i.e. be efficacious, cost 
effective, environmentally friendly and sustainable [37]. 
One potential disadvantage of the cocktail approach is 
the additional costs involved in commercial production 
of a vaccine based on multiple antigens and, although not 
necessarily a barrier to commercial success, it is impor-
tant to ensure that costs are reflective of the market. This 
may require further distillation of antigens required for 
protection, or formulation of protective antigens and/or 
epitopes within a single fusion protein, as recently dem-
onstrated with an E. coli O157:H7 subunit vaccine [38] 
and also by co-expression of multiple copies of a rabies 
virus glycoprotein using a foot and mouth disease virus 

expression system incorporating the 2A peptide [39]. It 
is also critical at this stage to develop effective strategies 
to use this vaccine in the field. This will require identify-
ing the optimal methods of integrating the vaccine with 
existing controls. For example this may involve combined 
use of diagnostic tests [24, 40] to identify and confirm 
outbreaks of disease, treatment with existing chemo-
therapeutic compounds and administration of vaccine to 
contiguous properties to limit further transmission.
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