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Abstract

investigations.

Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the
pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the
events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a
comprehensive genome wide gene expression study was conducted at different time points of the disease on
mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis
of the information generated by microarray technique was the key point to assess the biological relevance of the
data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray
technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that
verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals
changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of
the disease previous to the detection of the pathological prion protein, that might have a role in neuronal
degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System
homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease
should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool
development. Genes non-previously related to prion diseases should be taken into consideration for further

Introduction
Transmissible Spongiform Encephalopathies (TSE) are a
group of neurodegenerative diseases characterized by a
long incubation period followed by a fatal outcome [1].
Bovine Spongiform Encephalopathy (BSE), a disease first
reported by Gerald Wells in 1987 [2] is one of those TSE
affecting animals with an important social and economic
impact. BSE is closely related to the variant of Creutzfeldt-
Jakob disease that affects humans [3]. The prevalent
hypothesis claims an abnormal isoform of the cellular
prion protein (PrPc) as the only etiological agent [4].

The pathogeny of TSE in the nervous tissue is character-
ized by the accumulation of the pathological isoform of
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the prion protein (PrPres), glial cell activation, neurode-
generation and neuronal loss. Pathogenic mechanisms of
the nervous degeneration are not completely defined even
though many studies have been performed. These studies
include clinical examinations, histopathological evaluation
of tissues, identification of the pathological prion protein
by western blot and immunohistochemical techniques
[5-7]. In recent years gene expression analysis has been
applied to this group of diseases using DNA array techni-
ques [8-15] with the aim of identifying groups of genes
related to the TSE pathogenesis.

The main objective of this study was to improve the
knowledge on the pathogenic mechanisms of BSE using
gene expression analysis. A transgenic murine model of
BSE was used for the study. This model has been charac-
terized in previous studies [16,17] and its distinctive fea-
ture is the overexpression of the bovine PrPc (8 times
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more PrPc than that expressed in cattle) instead of the
murine protein. This results in a greater susceptibility to
develop BSE upon intracerebral inoculation in comparison
with wild type mice, i.e. a reduced incubation period
(287 + 12 days for homozygous animals/311 + 17 days for
heterozygous animals) [16].

Several studies have been published on gene expression
analysis concerning scrapie [12,18,19] but this kind of
information about BSE has only been recently available
[10,13-15,20]. In this paper a dynamical study of the evo-
lution of the disease was performed by an oligonucleotide
microarray genome wide gene expression analysis done
on a well characterized transgenic mouse model of BSE
on different time points of the disease. The results were
further verified by RT-PCR and immunohistochemistry
techniques.

Materials and methods
Animals, inoculation, sacrifice and sample preparation
Transgenic mice (BoTgl110 line with B6CBAfIx129/0Ola
background) generated by Castilla et al. were used [16].
This model is characterized by the over expression of the
bovine cellular prion protein (PrPc) instead of the murine
PrPc under the regulation of the prpn murine promoter.
A pool of BSE material (TSE/08/59, from now on BSE1),
originating from the brainstem of 49 BSE infected cattle,
supplied by the Veterinary Laboratories Agency (Addles-
tone, UK), was used for the infected group of animals.
Brain homogenates (10% wt/vol) in sterile phosphate buf-
fered saline (PBS) without Ca®* or Mg?" were prepared
using a homogenizer (OMNI International, Warrenton,
USA). Healthy cow brain homogenate was used for the
negative control group. To minimize the risk of bacterial
infection, all inocula were preheated for 10 min at 70°C
before inoculation in mice. For the gene expression analy-
sis, the animals were divided into two groups of 21 ani-
mals each (BSE inoculated mice and the control group)
and were inoculated intracerebrally at 6-7 weeks of age.
Inoculum was injected at the temporal lobe using a 25
gauge disposable hypodermic needle with 20 pL of 10%
brain homogenate. Mice were sacrificed by cervical dislo-
cation in accordance with the recommendations of the
ethics committee on post inoculation days 1, 60, 120 (5
BSE inoculated animals + 5 controls per time point) i 270
(6 BSE inoculated animals + 6 controls). Brain removal
was done rapidly under RNAse free conditions. Brains
were divided into two pieces by a longitudinal axis section
and frozen immediately in liquid nitrogen and stored at
-80°C. One half of the brain was used to confirm the pre-
sence of PrPres by western blot techniques and one half
was used for microarray gene expression analysis.

For immunohistochemical and histochemical analysis,
eleven BoTgl10 transgenic mice were inoculated with
the same infective material following the protocol
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described above. Animals were sacrificed by an anaes-
thetic overdose (intraperitoneal administration of sodium
pentobarbital) at different time points: 3 animals were
culled at an earlier time of infection (150 days post
inoculation (dpi)) and 8 animals were sacrificed at term-
inal stages (250-350 dpi). Age matched non-inoculated
animals were used as controls. Brains were removed and
fixed in 10% formalin solution. Coronal sections done at
different levels (optic chiasm, piriform cortex and
medulla oblongata) were dehydrated and paraffin
embedded for its histopathological, immunohistochem-
ical and histochemical analysis.

RNA preparation

Total RNA was obtained from each hemiencephalon using
the Qiagen RNeasy® Midi kit and following the manufac-
turer’s instructions. RNA concentration and absence of
protein was determined by spectrophotometry (ND-1000
Spectrophotometer, Nanodrop Technologies, Wilminton,
USA) and RNA integrity was analysed by capillary electro-
phoresis (Bioanalyzer 2100, Agilent Technologies, Santa
Clara, USA).

DNA labeling and hybridization

cRNA synthesis, fragmentation and hybridization were
done for each of the samples for all time points and condi-
tions (21 controls + 21 BSE inoculated mice) according
tothe manufacturer’s instructions and the labeling and
washing were done using theprotocol EukGE-WS2-v5 in
the Fluidics Station 450 (Affymetrix, Inc., Santa Clara,
USA). The Mouse Genome 430 2.0 arrays were used along
the assay. The procedure described in this section was per-
formed at the Affymetrix core facility of the Iustitut de
Recerca de I’Hospital Universitari Vall d’Hebron (Barce-
lona, Spain).

Verification, normalization and statistical analysis of
microarray data

The analysis was performed following the usual “pipeline”
for microarray data. The quality control included visual
inspection of array image, data preprocess (summarization,
filtering and normalization), selection of genes differen-
tially expressed for each set of conditions, search for gene
expression patterns and grouping of samples and annota-
tion of results and analysis of biological significance.

The quality of the data was verified by visual inspection
of array images and diagnostic plots such as histograms,
box plots and degradation plots, according to Microarray
Analysis Suite 5.0 (Affymetrix) recommendations.

The data obtained from the Affymetrix chips were
normalized in order to eliminate systematic biases using
the RMA method [21]. This method performs three
pre-processing steps: a) probe specific correction of the
PM probes using a model based on measured intensity
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being the sum of signal and noise, b) normalization of
corrected PM probes using quantile normalization and
¢) calculation of an absolute measure for each probe set
using the robust method known as median polish.

In order to reduce noise a non-specific two step filter-
ing process was performed. First, those genes whose sig-
nals did not reach a minimum threshold in all groups
were discarded and, from the rest, only the genes whose
standard deviation was greater than the median of all
standard deviation were selected for the statistical
analysis.

The goal of the analysis was to detect changes in gene
expression along time and/or between healthy and
infected groups. This two-factor setting (time and treat-
ment) was analyzed with an ANOVA-like analysis that
was done following the linear model methodology devel-
oped by G. Smyth [22]. In order to account for multiple
testing problems, p-values were adjusted, following the
Benjamini and Hochberg method [23].

At the different time points, we combined the ratio for

those probesets that corresponded to the same gene (dif-
ferentially expressed probes and genes between the BSE
inoculated mice group and control mice group for each
time point have been provided (see Additional file 1 and
Additional file 2)). Genes whose fold-change value was
higher than 1.7 or lower than 0.6 at any of the four stated
time points with a p-value < 0.0012 were considered for
further evaluation and were functionally classified using
the Babelomics 3.2 tool [24] (see Table 1).
This set of genes was used as the input for an unsuper-
vised hierarchical cluster. For this, we fixed the order of
the time points (columns) and left the software to cluster
genes based on different metrics to measure both the dis-
tance between genes (Canberra, Euclidean, Manhattan
and Maximum) and between clusters (Average, Com-
plete, Single and Ward). This was tested using the R
packages cluster, Heatplus and stats. Among the 12 hier-
archical clusters generated (data not shown), we selected
the one that displayed the highest averaged distance
across genes.

RT-PCR

GFAP, Cxcl13 and C4b genes were selected for verifying
the microarray technique by RT-PCR, based on the dif-
ferences observed in their expression between the
infected and the control group. DNA amplification from
10 ng of total RNA from animals sacrificed at 120 and
270 dpi was done using commercial primers (QuantiTec
Primer Assay) following the QuantiTect SYBR Green
RT-PCR kit manufacturer instructions (Qiagen, Hilden,
Germany). The amplification was performed on a Smart
Cycler thermocycler (Cepheid, Sunnyvale, USA) with the
following protocol: 30 min at 50°C, 14 min at 95°C and
45 cycles of 15 s at 94°C, 30 s at 55°C and 30 s at 72°C.
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Fold-changes were calculated using the method

[25].

Immunohistochemical and histochemical analysis
Heat-induced epitope retrieval with citrate buffer (pH
6.0) was applied to the tissue slides. The astrocyte specific
rabbit polyclonal antibody against glial fibrillary acidic
protein (1:500, Dakocytomation Z0334, GFAP) (Dako,
Glostrup, Denmark) and the mouse monoclonal antibody
against metallothioneins 1+2 (1:200, Dakocytomation
MO00639, MT1+2) were used. The antibody binding was
visualized with anti-rabbit Dako EnVision Plus System
and 3,3’diaminobenzidine as the chromogen substrate.
Omission of the primary antibody was used as a negative
control.

Lycopersicum esculentum agglutinin (1:100, Sigma,
L0651) (Sigma, St Louis, USA) histochemistry was also
performed on the brain tissue to stain microglial cells. The
washing buffer was supplemented with CaCl,, MgCl, and
MnCl, 1 mM. The binding was visualized with the avidin
biotin peroxidase (ABC) complex (Pierce, Rockford, USA)
and 3,3'diaminobenzidine as the chromogen substrate.

Results

Presence of prion protein after inoculation

The presence of the pathological isoform of the prion pro-
tein (PrPres) was confirmed by western blot in the brain
of all animals inoculated with infectious homogenate
(BSE1) sacrificed at 270 dpi. PrPres protein was not
detected in the inoculated animals sacrificed at 1, 60 and
120 dpi. PrPres was not detected in any of the control
(mock -inoculated) animals at any sacrifice time points.

Microarray analysis
Microarray data was obtained from animals sacrificed
after 1, 60, 120 and/or 270 dpi. Virtually no changes in
the gene expression were observed at 1 dpi. However,
major gene expression changes were observed from 60
dpi onwards as shown in the hierarchical cluster (see
Figure 1). Those changes were related to different biolo-
gical processes such as neuronal metabolism, inflamma-
tory response and signal transduction, among others.
Table 1 summarizes the fold-change in the expression
(either down regulated or up regulated) of the 87 genes
that had statistically significant expression changes at
least at one time point. The genes are listed according
to their biological functions [8-10,12,15,18,19,26-38].
Changes in two main biological processes can be high-
lighted in the group of animals inoculated with BSE
homogenate: neural cell metabolism and defense
mechanisms. In the early and intermediate phases of
prion infection, prior to PrPres detection in the nervous
tissue (60 and 120 dpi), the gene expression pattern
resulting from the inoculation of the prion protein shows



Table 1 Functional classification of differentially expressed genes at different time points of the disease (1, 60, 120 and 270 dpi) with a fold-change higher
than 1.7 (up regulated genes) or lower than 0.6 (down regulated genes) at any of the four time points

Fold changes and p-values

Functional group Gene symbol Gene description 1 60 120 270 p-value Previous prion gene expression studies on the
dpi dpi dpi dpi Central Nervous System
Immune, inflammatory  Cxcl13 chemokine (C-X-C motif) ligand 13 159 091 090 3048 < 1.00E-04 [18] (9), 1371 (S), [38] (5)
and stress response
Clec7a C-type lectin domain family 7, member a 100 102 090 356 < 1.00E-04 [18] (S), [32] (), [371 (S)
Cybb cytochrome b-245, beta polypeptide 114 133 084 287 < 1.00E-04 [371 (S)
4 complement component 4 (within H-25) 095 1.17 088 277 < 100E-04 [18] (S), [28] (5), [32] (9), [34] (S,CID), [38] (S)
Serpina3n serine (or cysteine) peptidase inhibitor, clade A, member 082 085 056 250 < 1.00E-04 8] (S), [32] (S), [34] (S,CID), [371 (S), [36] (S)
3N
Rrm2b ribonucleotide reductase M2 B (TP53 inducible) 097 052 134 237  400E-04
c3 complement component 3 090 1.12 093 235 2.00E-04 [18] (S), [28] (S), [32] (S), [38] (5)
Clgb complement component 1, g subcomponent, beta 102 091 094 220 < 1.00E-04 [27] (S), [18] (S), [28] (S), [19] (S), [9] (S), [12] (S),
polypeptide [32,34] (S/CJD)
Clga complement component 1, g subcomponent, alpha 1.04 101 098 214 < 1.00E-04 [18] (S), [28] (S), [19] (S), [12] (S), [32,34] (S/CJD)
polypeptide
Clag complement component 1, g subcomponent, gamma 107 088 088 214 < 1.00E-04 [18] (), [32] (S)
polypeptide
Osmr oncostatin M receptor 082 108 097 213 < 1.00E-04 [18] (5), [28] (S), [32] (S), [371 (S)
C3arl complement component 3a receptor 1 072 102 099 203 < 1.00E-04 [18] (S), [28] (5), [32] (5)
Cd14 CD14 antigen 088 096 095 193 < 1.00E-04 [18] (5), 321 (S), [37] (S), [38] (5)
Mpeg1 macrophage expressed gene 1 087 109 094 190 1.00E-04 [18] (S), [34] (S/CID), [371 (S)
Lilrb4 leukocyte immunoglobulin-like receptor, subfamily B, 067 092 110 190  5.00E-04
member 4
Ly86 lymphocyte antigen 86 111 094 088 188 < 1.00E-04 [18] (S), [8] (S), [34] (S/CID), [35] (S), 371 (S)
TIr2 toll-like receptor 2 097 112 093 184 < 1.00E-04 [18] (S), [32] (), [34] (S/CID), [37] (5)
Hspb6 heat shock protein, alpha-crystallin-related, B6 098 103 1.0 182 < 1.00E-04
Cd48 CD48 antigen 082 089 088 181 < 1.00E-04 [18] (5)
Icsbp1 interferon consensus sequence binding protein 1 091 102 095 176 < 1.00E-04 [18] (5), [28] (5)
Ifi27 interferon, alpha-inducible protein 27 097 096 089 175  6.00E-04
Usp18 ubiquitin specific peptidase 18 087 104 080 172  3.00E-04 [371 (S)
Socs3 suppressor of cytokine signaling 3 078 086 090 172  7.00E-04 [18] (S)
Dusp1 dual specificity phosphatase 1 138 065 073 050  1.00E-04 [38] (S)
Map4k2 mitogen activated protein kinase kinase kinase kinase 2 098 1.25 090 044  1.00E-04
Mamdc1 (Mdga2 MAM domain containing 1 (MAM domain containing 044 221 040 025 0.001
VALIDATED)) glycosylphosphatidylinositol anchor 2 (VALIDATED))
Glial response Gfap glial fibrillary acidic protein 089 106 099 337 < 1.00E-04 [85] (S), [86] (S/AD) [18] (S), [19] (S), [28] (S), [30]
(@ID), [12] (S), [31] (S), [34] (S/CID), [35] (S), [37] (S)
Cst7 cystatin F (leukocystatin) 099 108 097 324 < 1.00E-04 [18] (5), 28] (S), [32] (5), 371 (S)
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Table 1 Functional classification of differentially expressed genes at different time points of the disease (1, 60, 120 and 270 dpi) with a fold-change higher
than 1.7 (up regulated genes) or lower than 0.6 (down regulated genes) at any of the four time points (Continued)

Cell death

Cell adhesion

Intracellular transport

Transmission of nerve
impulse

Signal transduction

Lgals3
Cd68
Tyrobp
Mt2

Rrm2b
Ctsc
Bcl2ala

1110006115Rik
(tmem109
(PROVISIONAL))

AA536749 (mprip
VALIDATED))

Nrdal

Cd44
[tgax
Gpnmb
Ptprd

Snx6
Ndel1
Snx14
Vps37c¢
Scfd1
Rtn3

Tyrobp
Slc6a4

Arc
Pmch
Egr2
Scn2b

S100a6
Hpgd

lectin, galactose binding, soluble 3
CDe68 antigen
TYRO protein tyrosine kinase binding protein
metallothionein 2

ribonucleotide reductase M2 B (TP53 inducible)
cathepsin C
B-cell leukemia/lymphoma 2 related protein Ala

RIKEN cDNA 1110006115 gene (transmembrane protein
109 (PROVISIONAL))

expressed sequence AA536749 (myosin phosphatase Rho
interacting protein (VALIDATED))

nuclear receptor subfamily 4, group A, member 1

CD44 antigen
integrin alpha X
glycoprotein (transmembrane) nmb
protein tyrosine phosphatase, receptor type, D

sorting nexin 6
nuclear distribution gene E-like homolog 1 (A. nidulans)
sorting nexin 14
vacuolar protein sorting 37C (yeast)
secl family domain containing 1
reticulon 3

TYRO protein tyrosine kinase binding protein

solute carrier family 6 (neurotransmitter transporter,
serotonin), member 4

activity regulated cytoskeletal-associated protein
pro-melanin-concentrating hormone
early growth response 2
sodium channel, voltage-gated, type II, beta

S100 calcium binding protein A6 (calcyclin)
hydroxyprostaglandin dehydrogenase 15 (NAD)

0.57
0.80
1.02
0.84

0.97
0.96
1.01
0.80

0.85

0.87
0.95
071
0.93

161
1.06
0.83
0.82
0.62
0.85

1.12

2.20
0.98
1.58
0.96

0.92
0.86

1.10
0.99
1.04
1.14

0.52
0.81
097
1.29

0.65

0.92
1.06
1.08
267

0.69
0.56
0.78
1.03
1.51
1.66

1.04

1.62

0.66
1.27
049
157

093
0.98

0.78
0.82
0.84
143

1.34
1.05
1.01
140

1.02

0.68

0.82
0.89
1.01
0.75

1.32
0.96
1.16
1.21
0.67
0.96

0.84

0.99

0.96
0.83
0.56
097

0.89
0.95

2.65
204
1.99
1.86

2.37
1.81
1.70
0.56

049

213
1.79
1.74
0.39

2.24
2.1
1.84
0.55
0.52
0.34

1.99

0.60

045
044
0.36
0.09

1.93
193

< 1.00E-04
< 1.00E-04
< 1.00E-04
< 1.00E-04

4.00E-04
< 1.00E-04

6.00E-04

5.00E-04

3.00E-04

< 1.00E-04

1.00E-04
< 1.00E-04

9.00E-04

1.00E-04

4.00E-04
1.00E-04
< 1.00E-04
< 1.00E-04
4.00E-04
< 1.00E-04

< 1.00E-04

0.0012

< 1.00E-04
< 1.00E-04
1.00E-04
< 1.00E-04

< 1.00E-04
< 1.00E-04

(18] (5), [28] (5), 371 (9)
(18] (9), [28] (S), [32] (5), [371 (S), [38] (S)
(18] (5), 191 (5), [341 (S/CID), [371 (5), 381 (5)
[27] (S), [30] (CJD), [10] (BSE), [38] (5)

(18] (5), [28] (5), 371 (9), [36] (9)

(91 (5), [15] (BSE)

[18] (S), [9] (9), [34] (S/CID), [371 (S), [38] (S)

(181 (5), (291 ()
371 ()
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Table 1 Functional classification of differentially expressed genes at different time points of the disease (1, 60, 120 and 270 dpi) with a fold-change higher
than 1.7 (up regulated genes) or lower than 0.6 (down regulated genes) at any of the four time points (Continued)

Transcription

Biosynthetic process

Others

Adamts4

Nr4al
Ptprd

Npas3
Tle4

Cbx7
Smad4
KIf2
Tle1

Junb
Cnot4
Fos
Mysm1

Rrm2b
Rpl17
Pbx1

2310043N10Rik
(Neat1
(PROVISIONAL))

4933439C20Rik (pisd-
ps3 PROVISIONAL)

MGI:1929709

170004711 7Rik
(fam177a
(PREDICTED))

Cd52

4930511A21Rik

(ppp2r3c
(VALIDATED))

AU020206
A2m
Ifi44

Al467657 (Zbtb16
(PROVISIONAL)

Mapk4

a disintegrin-like and metallopeptidase (reprolysin type)
with thrombospondin type 1 motif, 4

nuclear receptor subfamily 4, group A, member 1
protein tyrosine phosphatase, receptor type, D

neuronal PAS domain protein 3
transducin-like enhancer of split 4, homolog of Drosophila
E(spl)
chromobox homolog 7
MAD homolog 4 (Drosophila)

Kruppel-like factor 2 (lung)
transducin-like enhancer of split 1, homolog of Drosophila
E(spl)

Jun-B oncogene
CCR4-NOT transcription complex, subunit 4
FBJ osteosarcoma oncogene
myb-like, SWIRM and MPN domains 1

ribonucleotide reductase M2 B (TP53 inducible)
ribosomal protein L17
pre B-cell leukemia transcription factor 1

RIKEN ¢cDNA 2310043N10 gene (nuclear paraspeckle
assembly transcript 1 (non-protein coding) (PROVISIONAL))

RIKEN cDNA 4933439C20 gene (phosphatidylserine
decarboxylase, pseudogene 3 (PROVISIONAL)

plasma membrane associated protein, S3-12

RIKEN cDNA 1700047117 gene (family with sequence
similarity 177, member A (PREDICTED))

CD52 antigen

RIKEN cDNA 4930511A21 gene (protein phosphatase 2,
regulatory subunit B”, gamma (VALIDATED))

expressed sequence AU020206
alpha-2-macroglobulin
interferon-induced protein 44

expressed sequence Al467657 (zinc finger and BTB
domain containing 16 (PROVISIONAL))

mitogen-activated protein kinase 4

0.55

1.53
093

1.80
0.97

093
0.67
1.28
0.87

141
0.71
147
148

0.97
1.32
046
0.90

0.79

0.87
1.77

1.16
1.36

1.01
0.88
0.82
0.76

0.87

1.25

0.65
267

057
091

0.87
0.73
0.82
1.88

0.51
1.39
0.57
242

0.52
1.38
1.51
1.64

267

1.54
0.52

091
0.64

0.94
091
097
1.53

093

0.81

0.68
0.75

1.64
0.79

1.19
202
0.78
0.77

0.65
0.66
0.54
0.84

1.34
0.34
0.79
0.71

0.99

0.88
1.33

0.99
1.02
0.87
209

0.60

049
0.39

242
1.99

1.96
133
0.57
0.56

0.53
046
0.39
033

237
0.66
0.54
0.38

273
257

254
1.83

1.83
1.76
1.74
1.61

1.32

4.00E-04

< 1.00E-04
1.00E-04

4.00E-04
< 1.00E-04

4.00E-04

2.00E-04

1.00E-04
0.0012

< 1.00E-04
4.00E-04
1.00E-04

< 1.00E-04

4.00E-04

4.00E-04
< 1.00E-04
< 1.00E-04

5.00E-04

< 1.00E-04
1.00E-04

< 1.00E-04
7.00E-04

3.00E-04
1.00E-04
0.0011
< 1.00E-04

< 1.00E-04

(o1 )

[10] (BSE), [38] (S)

(18] (5), [28] (9), [34] (S/CID), [37] (9)

[18] (5)
(18] (5), [28] (5), 371 (9), [38] (9)
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Table 1 Functional classification of differentially expressed genes at different time points of the disease (1, 60, 120 and 270 dpi) with a fold-change higher
than 1.7 (up regulated genes) or lower than 0.6 (down regulated genes) at any of the four time points (Continued)

Atxn714 ataxin 7-like 4 0.55
Cdcal cell division cycle associated 1 0.59
1700063D05Rik RIKEN cDNA 1700063D05 gene 1.01
2700081015Rik RIKEN cDNA 2700081015 gene 0.98
Btg2 B-cell translocation gene 2, anti-proliferative 1.20
Lrfn5 leucine rich repeat and fibronectin type Ill domain 0.54
containing 5
Gm1075 gene model 1075, (NCBI) 1.31
Prp19 PRP19/PSO4 homolog (S. cerevisiae) 0.95
R75368 (palm2 expressed sequence R75368 (paralemmin 2 (VALIDATED)) 1.06
(VALIDATED))

1.24
1.25
0.90
1.13
0.83
1.67

0.74
142
249

0.87
0.89
0.95
0.98
0.86
0.81

0.56
1.25
0.62

0.74
061
0.60
0.59
0.58
0.57

0.56
048
047

8.00E-04
< 1.00E-04
< 1.00E-04
< 1.00E-04
2.00E-04 (38] (S)
5.00E-04 331 (9

< 1.00E-04
< 1.00E-04 [10] (BSE)
5.00E-04

Assignation of the gene function was made according to the Babelomics 3.2 tool [24] and subsequently manually curated. (S = scrapie, BSE = Bovine Spongiform Encephalopathy, CJD = Creutzfeldt-Jakob disease).
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Figure 1 Hierarchical cluster of differentially expressed genes across time points. This is a graphical representation of the ratio between
animals inoculated and non-inoculated for those 87 genes differentially expressed with a fold-change higher than 1.7 or lower than 0.6 in at
least one time point. Among the methods tested, we selected the “Manhattan” method to measure the distance between genes and the “Ward”
algorithm to cluster genes. Rows are genes and columns time points. At the top, the color log2 scale indicates the expression level of treated
animals compared with the control ones. Genes colored in red are more expressed in BSE inoculated animals than in control ones, whereas
genes colored in green are more expressed in control animals. Genes that are more up regulated are highlighted in the figure.
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a mild but evident alteration of the normal neuronal and
glial metabolism, neuronal plasticity and signal transduc-
tion, which are processes that can influence neuronal via-
bility. Examples are the downregulation of Npas3 (a
transcription factor involved in the neuronal signaling
[39]) and Rrm2b (a gene related to DNA replication and
reparation, whose absence results in apoptotic cell death
[40]). Those patterns taken into consideration together
with other gene expression changes like the sustained
down-regulation, from the day 60 after inoculation
onwards of inducible transcription factors like Fos and
Jun-B (a group of neuronal apoptosis inducers [41-43]),
could be depicting a search for a balance between neuro-
nal survival and neuronal degeneration.

The number of genes that varied their expression pat-
terns was higher in the late phases of the disease (270
dpi, see Table 1). At this moment, a manifest activation
of gene expression was observed in those genes related
to the Central Nervous System defense mechanisms
such as glial activation and neuroinflammatory response

(see Figure 2), which presumably led to neurodegenera-
tion and cell death.

Some of the genes involved in immune and inflammatory
pathways identified in the present study are complement
activation factors (Clqa, Clgb, Clqg, C3, C4, C3arl), che-
motactic molecules (CXCL13, Lgals3, C3ar1), neuroinflam-
mation markers (GFAP, Clec7a, Lgals3), genes codifying
for receptors involved in innate immune response (CD14,
TLR2), inflammatory cell types (CD44, CD68, Ly86) and
genes that can be related to microglial activation (Tyrobp,
HSPs, TLR2, Lgals3, OSMR, Map4k2) and astrocyte activa-
tion (GFAP, HSPs, OSMR...). The release of reactive oxy-
gen species (ROS) resulting from the aforementioned
neuroinflammatory condition, might have contributed to
an over expression of metallothioneins. Cell death and cell
survival related mechanisms were also activated in the BSE
inoculated group (Ctsc, CD68, Rtn3, Tyrobp, Tmem109,
Egr2, Fos and Jun-B).

Another group of genes with altered expression levels
are those involved in cellular trafficking (Pmch, Tyrobp,
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Figure 2 Graphical representation of the expression of genes related to immune and inflammatory response (A) and glial response
(B). Fold change values at 1, 60, 120 and 270 dpi (see pattern legend for time points).
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Rtn3, Ndell, Snx6, Snx14, Arc) (see Table 1) and this
might have a role in intracellular and axonal transport
and even synaptic impairment.

Validation of microarray results

Specific gene expression data was further validated by a
combination of RT-PCR and immunohistochemical and
histochemical techniques. For RT-PCR experiments
GFAP, Cxcl13 and C4b were selected and RNA obtained
at 120 and 270 dpi were examined. As shown in Table 2

Table 2 Quantification by RT-PCR of selected genes.

RT-PCR data are, in most cases, in reasonably good
agreement with microarray data.

To further validate at the protein level the observed
changes in expression, the GFAP and MT proteins were
examined in situ by immunohistochemistry on formalin-
fixed paraffin embedded brain tissue using antibodies
against GFAP and MT1+2. Using GFAP antibody, animals
inoculated with BSE homogenate and culled at advanced
stages of the disease (250-350 dpi) showed an increased
immunolabeling of stellate shaped glial cells (astrocytes)

Fold-change Cxcl13

Fold-change GFAP Fold-change C4b

Time point (dpi) RT-PCR microarray RT-PCR microarray RT-PCR microarray
120 1.95 0.90 354 0.99 1.28 0.88
270 5192 3048 359 337 213 277

Fold-change expression values of GFAP, Cxcl13 and C4b genes at 120 and 270 dpi comparing control and BSE inoculated groups. Data are mean from five
inoculated vs. control animals at 120 dpi and from six inoculated vs control animals at 270 dpi.
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which were increased in number and hypertrophic when
compared to controls. This increase was particularly
intense in the medulla oblongata (see Figure 3) as well as
in the thalamus, mesencephalon and deep cerebellar
nuclei (data not shown).

Immunostaining with MT1+2 antibody revealed an
increased labeling in terminal stage BSE- inoculated ani-
mals, particularly in the medulla oblongata region, when
compared to the control mice (see Figure 3).

In order to visualize the microglial cells and corroborate
the microglial activation supported by the microarray
results, tomato lectin histochemistry was performed on
paraffin embedded brain tissue. Histochemistry revealed
proliferation of microglial cells in different areas of the
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brain, (particularly in the grey matter of the medulla
oblongata (see Figure 3), thalamus, mesencephalon, and
deep cerebellar nuclei) of mice inoculated with BSE homo-
genate from the 150 dpi group onwards.

Discussion

Changes in gene expression in the brain were detected
between the BSE inoculated group and the control
group throughout all the time points after inoculation.

Early and intermediate changes

A mild alteration of the gene expression was detected at
1 dpi in the group dosed with infectious homogenate in
comparison with the control group (see Table 1),

Contro

MT1+2

LECTIN

BSE

Figure 3 Brain sections of boTg110 terminal stage mice (275 dpi) and mock inoculated matched controls. Upper panel: GFAP
immunostaining in the medulla oblongata. Note the astrocyte activation in the BSE-inoculated mice at terminal stages (B) in comparison with
the control group (A). Middle panel: MT1+2 immunostaining in the cerebellum. Note the increased presence of stellate shaped cells in the BSE-
inoculated group (D) at a terminal stage. Lower panel: Lectin staining in the medulla oblongata. Note the proliferation of microglia in BSE-
inoculated mice (F).
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probably related to the introduction of molecules such
as cytokines, free radicals, peroxides, etc, present in the
infectious homogenate. The pathological prion protein,
whose neurotoxic properties have been demonstrated in
vitro [44-46], could also have a role in the observed
early alteration.

The alteration of neuronal and microglial activity is
evident in BSE infected animals beginning at the early
stages of the disease (see Table 1). The observed expres-
sion pattern in the early stages (see Table 1) could be
indicating a search for a balance between the mechan-
isms leading to cell death and the survival efforts of the
neuronal populations. A hypothetical example is the pos-
sible effect of the observed expression pattern of genes
like Rrmb2, Npas3, Ptprd, Mapk4, Fos, and Jun-B over
the hippocampus. Since Rrm2b is involved in DNA repair
[40], its downregulation at 60dpi may result in an
increased cell death. Furthermore, the downregulation of
Npas3 may block an essential route for the hippocampal
neurogenesis by its role in neuronal signaling [39]. The
effect of both genes taken together would result in a fatal
outcome in the hippocampal region. On the contrary, the
upregulation of Ptprd [47] at 60 dpi and Mapk4 gene
[48] at 120 dpi, together with the downregulation of
inducible transcription factors like Fos and Jun-B [41-43]
could be understood as a compensation process against
the damage caused by the inoculated agent by attempting
to avoid the apoptosis mechanisms.

Late changes
Changes in physiological processes like signal transduc-
tion, metabolism, cell transport and the neuroinflamma-
tory response, as a consequence of the alterations caused
by the PrPres inoculation have been described previously
in TSE [5,10,13,18,28,30,49-51]. Our results provide addi-
tional evidence of expression changes in genes included in
functional categories such as synaptic functionality, neu-
roinflammation and cell death, among others at later
stages of the disease (270 dpi) (see Table 1).
Neuroinflammation is the most evident process at the
later stages of the disease. Induction of C1 subunits (Clqa,
Clgb and Clqg, from the classical pathway of comple-
ment activation), C4 (classical and lectin pathways) and
C3 factor (a common factor in the three complement acti-
vation paths) suggest that the classical complement activa-
tion pathway has an important role in the CNS
pathogenesis of BSE. Complement activation has been
described previously in prion diseases like scrapie [18],
Creutzfeldt-Jakob disease [30] and also in BSE inoculated
mice [52] as an indicator of the innate immune response.
The upregulation of genes coding for receptors
involved in innate response (CD14, TLR2) similar to
what has been described for scrapie models at terminal
stages [18] is an interesting issue since these molecules
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and its cofactor Ly86 (also up regulated) have been asso-
ciated to the innate response against other pathogens
[53-58]. The role of TLR in TSE pathogenesis has been
previously questioned [59] yet its up-regulation in the
present model could be related to PrPres deposition. On
the contrary, researchers questioning the “protein only”
hypothesis suggest that classical infectious agents such as
viruses [51,60-63] or bacteria [64,65] could be involved in
TSE pathogenesis, in which case an innate response, such
as the one suggested by the present results would also
certainly fit.

As previously shown in the same model [66,67] and in
a wild type murine model [10] cellular and oxidative
stress seem to play a significant role in the outcome of
BSE. Additional evidence of this is provided by the results
of the present experiment, namely by an upregulation of
HSPB6 (HSP20) and Mt2 at 270 dpi (see Table 1). The
over expression of Mt2 in the BoTg110 transgenic mouse
model is in accordance with the BSE gene expression
analysis performed by Sawiris and coworkers on wild
type mice [10] and other TSE studies [5,27,28,49,68] con-
firming glial activation as one of the key processes taking
place in these diseases.

Neuronal degeneration and neuronal death are charac-
teristic processes of prionic diseases [69]. Lysosomal
activity has been pointed out as one of the first steps in
neurodegeneration [19,70] and lysosomal liberation to
the extracellular space has been described in many neu-
rodegenerative diseases [18,71-73]. The gene expression
analysis of our mice model of BSE reflects an increase in
lysosomal activity at 270 dpi, as Ctsc and CD68 are over
expressed (see Table 1). If Ctsc were over expressed in
neurons this could be related to the programmed cell
death type since lisosomal proteases are capable of acti-
vating cell death programs [18,74-77]. CD68 induction,
indicating microglial activation [78], has been previously
described in a scrapie mice model and in sporadic CJD
natural cases [18,30].

The upregulation of Cst7 in the present BSE model,
described in other TSE [18,19,61], can be a consequence
of the induction of lysosomal proteases [18] or could
have a compensatory role against the accumulation of
abnormal protein in some neurodegenerative diseases
[8,18,79,80]. The downregulation of the Rtn3 gene
observed at 270 dpi may lead to a decrease in the Bcl-2
antiapoptotic function, leading to neuronal death. Its
inhibition could also affect neuronal plasticity and func-
tionality, since the axonal transport would be affected.
Despite the evidence of neuronal degeneration and death
at later stages of the disease, the neuroprotective effect of
Scn2b downregulation and the antiapoptotic effect of
Tmem109 and Egr2 inhibition at 270 dpi, among other
changes in the expression pattern, could be understood
as unsuccessful neuronal survival efforts.
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Synaptic functionality and cellular trafficking are also
affected cell functions. The downregulation of Pmch,
Tyrobp and Arc genes and the upregulation of the Ndell
gene in the BSE inoculated mice supports that synaptic
impairment is part of the BSE pathogenic process, since
these genes are related to synaptic plasticity and func-
tionality [81,82].

Upregulation of sortin nexins (Snx6, Snx14) (see Table 1)
could affect the normal intracellular trafficking of receptors
[83] since they are involved in endocytosis processes and
vesicular transport of membrane compounds. These results
were in agreement with previous studies suggesting altera-
tions of the synaptic machinery and the neuronal protein
transport in advanced stages of the prionic diseases
[30,50,84].

In summary, we present a gene expression analysis on
BSE using a transgenic mouse model. The results obtained
show a considerable parallelism with the results obtained
in previous studies on animal and human TSE. The
observed changes in gene expression are strongly indica-
tive of a neuroinflammatory reaction occurring in the
brain in advanced stages of the disease with an important
participation of inflammatory cells, resident macrophages
(microglia) and activated astroglia. Our results also point
out an alteration of neuronal metabolism and functionality
previous to the inflammation, which remains present until
the later stages of the disease. Processes like neuronal
degeneration and cell survival mechanisms were activated.
From the earlier stages of the disease throughout the
entire infection period, changes in the expression of genes
involved in the neuronal metabolism show the search for
balance between neurodegeneration and cell survival.

The results of the present study establish a base for
further specific investigations of the different mechan-
isms involved in the BSE pathogenesis. Particularly
important genes are those associated for the first time to
the course of prion diseases and the early changes
detected previous to the onset of neuroinflammation,
which require further investigations in order to explain
the mechanisms involved in the PrPres accumulation.
These are also interesting therapeutic targets and poten-
tial disease markers to be considered in preclinical diag-
nostic tool development. Further investigations are
needed in order to assign the appropiate biological rele-
vance in the course of the prion diseases to those genes
associated for the first time to prion diseases. It is evident
that the neuroinflammation phenomenon is a pillar of
BSE pathogenesis and that the therapeutic approach
towards its prevention could be a way of stopping the
neurodegeneration process. The results presented are
also important for the characterization of the boTg110
transgenic model, a murine model for BSE which is
nowadays being used in other experiments.
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Interpretation of the microarray data is subjective to
statistical selection criteria and to the criterion of the
investigator and for this reason, genes discarded for not
entering the established acceptation limits should not be
excluded from further investigations about TSE patho-
genesis. Another issue that needs to be considered when
interpreting the results is that, obviously, post transcrip-
tional regulatory mechanisms might modify the biologi-
cal effects of the expressed genes and therefore their
biological impact.

Additional material

Additional file 1: Selected probesets. List of differentially expressed
probesets between the BSE inoculated mice group and control mice
group for each timepoint (1, 60, 120 and 270 dpi) and their associated p-
values adjusted by the Benjamini and Hochberg method.

Additional file 2: Selected genes. List of differentially expressed genes
between the BSE inoculated mice group and control mice group for
each timepoint (1, 60, 120 and 270 dpi) and their associated p-values
adjusted by the Benjamini and Hochberg method.
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