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Abstract 

CC97 and CC151 are two of the most common Staphylococcus aureus lineages associated with bovine intramammary 
infection. The genotype of the infecting S. aureus strain influences virulence and the progression of intramammary 
disease. Strains from CC97 and CC151 encode a distinct array of virulence factors. Identification of proteins elaborated 
in vivo will provide insights into the molecular mechanism of pathogenesis of these lineages, as well as facilitating 
the development of tailored treatments and pan-lineage vaccines and diagnostics. The repertoire of genes encoding 
cell wall-anchored (CWA) proteins was identified for S. aureus strains MOK023 (CC97) and MOK124 (CC151); MOK023 
encoded more CWA proteins than MOK124. Serum collected during an in vivo challenge trial was used to investigate 
whether the humoral response to cell wall proteins was strain-specific. Immunoproteomic analysis demonstrated 
that the humoral response in MOK023-infected cows predominantly targeted high molecular weight proteins 
while the response in MOK124-infected cows targeted medium or low molecular weight proteins. Antigenic proteins 
were identified by two-dimensional serum blotting followed by mass spectometry-based identification of immunore-
active spots, with putative antigens subsequently validated. The CWA proteins ClfB, SdrE/Bbp and IsdA were identified 
as immunogenic regardless of the infecting strain. In addition, a number of putative strain-specific imunogens were 
identified. The variation in antigens produced by different strains may indicate that these strains have different strate-
gies for exploiting the intramammary niche. Such variation should be considered when developing novel control 
strategies including vaccines, therapeutics and diagnostics.
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Introduction
Staphylococcus aureus is a major pathogen associ-
ated with bovine intramammary infection (IMI) and is 
responsible for substantial economic losses in the dairy 
industry [1, 2]. A wide variety of S. aureus sequence types 
have been associated with IMI, with clonal complex (CC) 
97 and CC151 being two of the most common, globally-
distributed, bovine-adapted lineages [3]. The S. aureus 
genome consists of a core genome, found in all strains of 
the species, and a variable genome, found in only some 
strains, with many virulence genes encoded within the 
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variable genome. Strains within a lineage generally have 
a similar variable genome but this differs from the vari-
able genome of other lineages as the S. aureus restric-
tion-modification system limits horizontal gene transfer 
between lineages [4]. Significant differences in the viru-
lence gene content of CC97 and CC151 strains have been 
demonstrated. CC151 strains encode a large number of 
toxins but few genes encoding cell wall-anchored (CWA) 
proteins involved in host cell adherence, internalisation 
and biofilm formation. In contrast, CC97 strains encode 
few toxins but have an array of genes encoding CWA 
proteins [5–7].

A variety of in  vitro studies have demonstrated sig-
nificant differences between isolates from CC97 and 
CC151 in a selection of virulence traits, including host 
cell adherence and internalisation, biofilm production 
and elicitation of a host immune response [8–11]. In vivo 
studies in which cows were challenged with strain New-
bould 305 (CC97) or RF122 (CC151), demonstrated 
that Newbould 305 generally causes mild or sub-clinical 
mastitis while RF122 gives rise to severe clinical masti-
tis [12–15]. Indeed, a recent in vivo study directly com-
pared the host response to S. aureus strains MOK023 
(CC97) and MOK124 (CC151). Intramammary chal-
lenge with MOK124 resulted in more overt clinical signs, 
higher somatic cell count, higher milk IL-1β, IL-8 and 
anti-S. aureus IgG and a greater drop in milk yield com-
pared to challenge with MOK023 [16]. Milk somatic cell 
transcriptomic analysis demonstrated that each strain 
induced a characteristic host response [17]. This suggests 
that these strains may have developed differing strategies 
for the exploitation of the intramammary niche and may 
differ in their mode of pathogenicity.

Understanding the impact of strain variation on dis-
ease epidemiology, clinical presentation and the host 
response to bovine IMI is crucial for the development 
of novel prevention and control strategies. In particu-
lar, the development of novel vaccines and/or diagnos-
tic tools would limit the negative impact of this disease 
on animal health and welfare and enable a reduc-
tion in the use of antimicrobials in the dairy industry. 
Currently, much S. aureus research has focussed on 
the potential of CWA proteins as protective antigens 
[18–21]. These proteins are common vaccine targets 
due to their location on the surface of the bacterial cell 
and their role in host cell interaction, nutrient utilisa-
tion and immune evasion. However, human S. aureus 
vaccines based on CWA proteins have to-date failed 
to provide protection [22]. One recently elaborated 
explanation for this is that prior exposure to S. aureus 
may induce an “immune imprint” with subsequent 
vaccination resulting in the preferential recall of non-
protective antibodies. These antibodies can compete 

with protective antibodies, reducing opsonophagocy-
tosis and further impairing a protective response [23]. 
Despite this caveat, the identification of immunogenic 
proteins has a number of advantages; it enables epitope 
mapping to identify protective protein domains as well 
as enabling the identification of proteins and virulence 
factors expressed in  vivo, which may be exploitable as 
therapeutic targets or diagnostic markers. However, 
S. aureus IMI control strategies must account for the 
extensive genomic diversity between bovine-adapted 
strains and lineages. For example, strains belonging to 
CC151 lack many genes encoding CWA proteins [5, 6] 
while ST71 strains do not encode the ica operon [5], 
the protein products of which are responsible for poly-
N-acetylglucosamine biosynthesis [24], a major target 
of one of the few licenced vaccines [25].

In this study a genomic and immunoproteomic 
approach was used to identify the repertoire of, and inter-
rogate the humoral immune responses to, CWA proteins 
expressed by CC97 and CC151 strains of S. aureus dur-
ing bovine IMI. Key cell wall proteins expressed by each 
strain that elicited an IgG response in infected cows were 
identified and validated. Comparison of the immuno-
genic molecules elaborated in  vivo by each strain facili-
tates the identification of pan-strain and strain-specific 
antigens.

Materials and methods
S. aureus strains and culture conditions
S. aureus strains MOK023 and MOK124 were recovered 
from milk of cows presenting with mastitis as described 
previously [26]. Strain-typing demonstrated they belong 
to ST3170 (CC97) and ST151 (CC151) respectively 
[5]. S. aureus strains were preserved in Trypticase Soy 
Broth (TSB) (LabM, Heywood, UK) supplemented with 
15% (v/v) glycerol at −80  °C. When required, strains 
were recovered on Trypticase Soy Agar (TSA) (LabM) 
at 37  °C overnight. Strains were single colony purified 
every 7 days onto fresh TSA. For liquid cultures, strains 
were grown in Trypticase Soy Broth (TSB) at 37  °C and 
200 rpm.

Genome assembly and annotation
Whole genome sequence data for MOK023 and MOK124 
are available [5, 16], accession numbers SRS775827 and 
SRS2841713 respectively. Quality control checks were 
carried out on both forward and reverse reads using the 
FastQC software [27]. Draft genomes were assembled 
and annotated as previously described [28]. For each 
putative protein, subcellular location was predicted using 
PSORTb v3.0 [29].
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Identification of putative CWA proteins
In S. aureus 25 CWA proteins have been described [30]. 
Two cell wall-anchoring domains exist, each the target 
of one of two proteolytic enzymes, Sortase A or Sortase 
B, responsible for anchoring the protein in the cell wall. 
Substrates of Sortase A have a tripartite motif, includ-
ing an LPxTG cleavage motif, at the C-terminal while 
substrates of Sortase B have a NPQTN cleavage motif 
[31]. Predicted proteins containing either of the sortase 
cleavage motifs were identified. Subsequently, a hidden 
markov model, designed to directly predict Gram posi-
tive bacterial CWA proteins based on the presence of the 
tripartite motif [32], was used to predict if proteins carry-
ing a sortase cleavage motif were putative CWA proteins. 
BLASTP was used for the identification of putative CWA 
proteins and determining the presence of sequence or 
structural variation. Structural variation in clfA, isdH and 
sasA for MOK124 and sasC for MOK023 was confirmed 
by Sanger sequencing.

Preparation of S. aureus cell wall‑associated proteins
S. aureus strains were grown overnight in 5  mL of TSB 
at 37  °C with 200  rpm orbital shaking. The following 
morning, the overnight cultures were diluted 1:100 into 
250  mL of fresh TSB and incubated at 37  °C, 200  rpm 
until mid-exponential phase (OD600nm ~0.4). Cul-
tures were then centrifuged at 1000 × g for 30  min and 
the supernatant removed. Pelleted cells were resus-
pended in phosphate buffered saline (PBS), adjusted to 
an OD600nm of 10 and centrifuged at 5000 × g for 2 min. 
The supernatant was removed and the cell pellets resus-
pended in Digestion Buffer (30% raffinose in 20  mM 
 MgCl2, 50 mM Tris–HCl, pH7.5) containing 1 X EDTA-
free protease inhibitor cocktail (Sigma Aldrich, St Louis, 
USA). Lysostaphin from Staphylococcus staphylolyticus 
(Sigma Aldrich) was added to a final concentration of 
0.2  mg/mL before incubation at 37  °C for 30  min. Cell 
wall-associated proteins were harvested by supernatant 
collection after centrifugation at 5000 × g for 15  min. 
Nucleic acids were removed by adding 100 X Protease 
Inhibitor Mix (GE Healthcare, Chicago, USA) and 100 
X Nuclease Mix (GE Healthcare) to a final concentration 
of 1 X and allowing digestion for 50  min at room tem-
perature with frequent mixing. Desalting was carried out 
using the PD-10 Desalting Column (GE Healthcare), fol-
lowing the gravity flow protocol, as per the manufactur-
er’s instructions. The elution step was repeated twice. For 
protein concentration and buffer exchange, 15 mL of pre-
pared cell wall-associated proteins was added to a 3 kDa 
molecular weight cutoff filter (Amicon, Millipore, Darm-
stadt, Germany) and centrifuged at 4000 × g until 1  mL 
of supernatant remained in the unit. The flow through 

was discarded, and PBS added to bring sample back to 
15 mL. The filter device was again centrifuged at 4000 × g 
until 1 mL of supernatant remained in the unit and flow 
through discarded. The PBS wash was repeated once and 
Isoelectric Focusing (IEF) Rehydration buffer (10  mM 
Tris, 8 M Urea, 2 M Thiourea, 4% (w/v) CHAPS, 1% (v/v) 
TritonX-100) or Storage buffer (6  M Urea, 2  M Thio-
urea, 0.1 M Tris–HCl pH 8.6, filter sterilized) was added 
to bring the sample back to 15 mL. The filter device was 
centrifuged at 4000 × g until no more flow through passed 
and the concentrated supernatant removed to a fresh 
1.5  mL Eppendorf tube. Protein quantification was per-
formed using the 2-D Quant kit (GE Healthcare), as per 
the manufacturer’s instructions.

Gel electrophoresis
Protein samples were separated by either one-dimen-
sional (1D) or two-dimensional (2D) SDS-PAGE, as 
previously described [28]. Briefly, protein samples were 
prepared for 1D electrophoresis by adding LDS Sample 
Buffer (NuPAGE, Thermo Scientific, Waltham, USA) to a 
final concentration of 1 X, boiled for 10  min and sepa-
rated on 8–12% SDS-PAGE gels using the Mini-PRO-
TEAN Tetra Cell (Bio-Rad, Hercules, USA). Following 
electrophoresis, proteins were either stained by coomas-
sie dye or immobilised onto PVDF membrane at 20 V for 
1.5  h using the Bio-Rad Trans-Blot SD Semi-Dry Elec-
trophoretic Transfer Cell. For 2D electrophoresis, pro-
tein samples were adjusted to a concentration of 60 µg in 
125 µL of IEF Rehydration Buffer containing 0.8% (w/v) 
IPG pH 3–10 NL buffer (GE Healthcare), 15  mg/mL 
DeStreak Reagent (GE Healthcare) and a trace amount 
of bromophenol. Proteins were separated according to 
their isoelectric point (pI) using non-linear gradient 
strips (Immobiline Drystrip pH 3–10 NL; GE Healthcare) 
on the Agilent (Santa Clara, USA) 3100 OFFGEL Frac-
tionator until a kVh of 8 was reached. Strips were then 
reduced for 10 min with agitation in Equilibration buffer 
(30% (v/v) glycerol, 2% (w/v) SDS, 6  M urea, 50  mM 
Tris–HCL pH 8.8) containing 2% (w/v) dithiothreitol 
(DTT) followed by alkylation for 10 min with agitation in 
Equilibration buffer containing 2.5% (w/v) iodoacetamide 
(IAA). Proteins were then electrophoresed on 10% SDS-
PAGE gels using the Mini-PROTEAN Tetra cell (Bio-
Rad). Following electrophoresis, gels were either stained 
by silver nitrate rapid staining, as described by [33], or 
immobilised onto PVDF membrane, as described above 
for 1D SDS-PAGE.

Serum blotting
Bovine sera came from a S. aureus intramammary infec-
tion trial previously described [16] and consisted of sera 
from 5 and 4 cows infected with MOK023 and MOK124 
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respectively. Serum samples were from 5 time-points 
over the course of infection: pre-infection (day 0) and 
7, 14, 21 and 29 days post-infection. Serum from day 29 
post-infection was missing for one cow (582) from the 
MOK124 group.

Membranes were blocked in 10% non-fat, dried milk in 
PBS for 1 h at room temperature followed by 3 × 10 min 
washes in PBS. Membranes were then incubated over-
night at 4 °C with bovine sera diluted 1:2000 in PBS. Sub-
sequently, membranes were washed in PBS as described 
above, before incubating in the dark for 2 h at room tem-
perature with horseradish peroxidase (HRP)-conjugated 
goat anti-cow IgG (Abcam, Cambridge, UK), diluted 
1:5000 in filter-sterilised 5% BSA in PBS. The membranes 
were subsequently washed 4 × 10 min in PBS. The mem-
branes were incubated with SuperSignal West Pico PLUS 
Chemiluminescent Substrate (Thermo Scientific) and 
imaged using the Omega Lum C Imaging System (Aple-
gen, Pleasanton, USA).

Identification of immunogenic proteins
Serum blotted 2D membranes were manually aligned 
to the corresponding stained 2D gel. Spots identified as 
immunogenic were excised from the gel and each spot 
placed in a separate sterile eppendorf tube. Excised spots 
were prepared for mass spectrometry, with overnight 
digestion at 37 °C, as described by [34]. Following diges-
tion, the supernatant was harvested and peptides dried in 
a new sterile tube.

Mass spectrometry analysis
Dried digested samples were resuspended in 0.5% 
(v/v) TFA before desalting using Pierce™ C18 spin tips 
(Thermo Scientific). Desalted peptides were resuspended 
in Loading Solution (0.05% (v/v) TFA, 2% (v/v) acetoni-
trile) and analysed on a Q Exactive™ Hybrid Quadrupole-
Orbitrap™ Mass Spectrometer coupled to an UltiMate™ 
3000 RSLCnano System (Thermo Scientific), according to 
the method of Owens et al. [35]. Mass spectrometry data 
were analysed using Proteome Discoverer software (v1.4; 
Thermo Scientific™), against protein databases created 
for each strain, using the SEQUEST algorithm with the 
following settings (i) trypsin was selected as the cleavage 
enzyme with up to 2 missed cleavages allowed (ii) oxida-
tion of methionine was set as a variable modification and 
(iii) carbamidomethylation of cysteine was set as a fixed 
modification. Results were filtered using the Percolator 
module and only medium confidence peptides (False Dis-
covery Rate (FDR) < 0.05) were retained. Further filtering 
was performed to remove proteins identified by only a 
single unique peptide. Where more than one protein was 
detected in a given excised spot, candidate proteins were 
identified based on (i) predicted location in the cell wall, 

(ii) predicted molecular weight, (iii) predicted pI and (iv) 
the number of unique peptides.

Recombinant protein expression and blotting
The plasmids used for recombinant protein expression 
are listed in Table  1. Plasmids encoding ClfA, ClfB and 
FnbpB were provided by Prof. Joan Geoghegan, Trinity 
College Dublin. Plasmids encoding IsdA and SirA were 
provided by Prof. Michael Murphy, The University of 
British Columbia while the plasmid encoding SdrD was 
provided by Prof. Mona Johannessen, The Arctic Uni-
versity of Norway. All plasmids were transformed into 
BL21 (DE3) competent Escherichia coli (New England 
BioLabs, Ipswich, USA) and the integrity of the plasmid 
insert confirmed by Sanger sequencing. Transformed 
E. coli strains were stored in Luria–Bertani (LB) Broth 
(Sigma Aldrich) supplemented with 15% (v/v) glycerol 
at −80  °C until required. Strains were recovered on LB 
(Sigma Aldrich) plates, containing 100 µg/mL ampicillin 
or 30 µg/mL kanamycin as required, at 37 °C overnight. 
For liquid cultures, strains were grown in LB broth, con-
taining appropriate antibiotics as required, at 37 °C with 
250 rpm orbital shaking.

For recombinant protein expression, E. coli strains were 
inoculated into 5 ml of LB broth, with appropriate antibi-
otics, and grown at 37 °C, 250 rpm for 4 h. Recombinant 
protein production was induced for 3 h with IPTG (final 
concentration given in Table  1). Following induction, 
cultures were centrifuged at 1000 × g for 30 min and the 
supernatant removed. Cell pellets were resuspended in 
PBS and adjusted to the same OD600nm. Cells were then 
centrifuged at 3500 × g for 3 min, resuspended in 1 X LDS 
buffer and boiled for 10 min. The whole cell lysates were 
separated by 1D SDS-PAGE, using 8–12% gels. Gels were 
stained with coomassie dye or proteins immobilised onto 
PVDF membrane. Blots were probed with bovine sera as 
described above. A lysate of untransformed E. coli and 
transformed, uninduced E. coli were included as controls.

Results
Identification of genes encoding putative CWA proteins 
of S. aureus MOK023 and MOK124
MOK023 and MOK124 were predicted to encode 19 and 
10 intact S. aureus CWA proteins, respectively (Addi-
tional file 1). Neither strain encoded cna, bap, sasL, pls or 
sasX while fnbB, sasG, sasK and sdrD were also missing 
from the genome of MOK124. MOK023 encoded sdrE 
while MOK124 encoded bbp, the allelic variant of sdrE. 
Structural variation, predicted to prevent anchoring of 
the cognate protein in the cell wall, was identified in sasC 
for MOK023 and clfA, isdH, sasA, sasC, sdrC and spa for 
MOK124 (Additional file 1).
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Characterisation of the humoral response to S. aureus cell 
wall‑associated proteins from MOK023 and MOK124
Cell wall protein extracts from mid-exponential phase 
cultures of MOK023 and MOK124 were separated by 
1D SDS-PAGE and immobilised onto PVDF membrane. 
The proteins were probed with serum from each cow 
infected with that strain. Figure  1A shows the results 
of the MOK023 proteins probed with serum from cows 
infected with this strain. The humoral response predomi-
nantly targeted high molecular weight proteins, with a 
number of immunoreactive bands > 80  kDa. All cows in 
this group also had a reactive band at ~50 kDa. For two 
cows (506 and 565) an immune response against a num-
ber of low molecular weight proteins was also evident. 
Figure 1B shows the results of the MOK124 cell wall pro-
teins probed with serum from cows infected with this 
strain. For this group, the induced humoral response 
primarily targeted low molecular weight proteins, with 
major immunoreactive bands identified at ~25, ~30 
and ~35  kDa. (Figure  1B). A few high molecular weight 
weakly immunoreactive bands could also be identi-
fied (~120, ~130 and ~200 kDa); however, in many cases 

reactivity did not increase post-infection. Immunore-
active bands could be identified in all cows from both 
groups prior to intramammary challenge.

Identification of immunogenic cell wall‑associated proteins 
from S. aureus MOK023 and MOK124
The cell wall-associated proteins of MOK023 and 
MOK124 were separated by 2D electrophoresis and 
immobilised onto PVDF membrane. Proteins from both 
strains were probed with serum collected pre-infection 
and 14  days post-infection from cows 604 (MOK023 
infected) and 504 (MOK124 infected) to identify 
both strain-specific and common antigens. Spots that 
increased in intensity post-infection were considered 
immunogenic.

The results of the 2D silver nitrate stained gels and 
serum blots of MOK023 proteins probed with sera from 
cow 604 (MOK023 infected) and cow 504 (MOK124 
infected) are shown in Figure 2. As seen in the 1D gels, 
antibodies raised in cow 604 primarily targeted high 
molecular weight (> 100  kDa) proteins (Figure  2C); 
however for cow 504, antibodies reacted against high, 

Table 1 Plasmids used in this study. 

Protein of 
interest

Plasmid 
description

S. aureus strain 
used for gene 
cloning

Protein domain 
or region cloned

Construct name Antibiotic 
resistance 
marker

Final IPTG 
Concentration

References

ClfA pQE30:ClfA 
N1N2N3

Newman Complete 
A domain 
minus signal 
sequence
AA 40-559

pCF40 Ampicillin 100 µM [61]

ClfB pQE30:ClfB 
N1N2N3

DU5966 Complete 
A domain 
minus signal 
sequence
AA 44-542

pN123 Ampicillin 100 µM [62]

FnbpB pQE30:FnBPB 
N1N2N3

8325-4 Complete 
A domain 
minus signal 
sequence
AA 37-480

pQE30::rFnBPB37–480 Ampicillin 100 µM [63]

IsdA pGEX2T TEV:IsdA N315 Complete protein 
minus signal 
sequence 
and anchoring 
domain
AA 48-316

GST-IsdA Ampicillin 300 µM [64]

SdrD pSdrD-pRSETB-
N-His

8325-4 Complete protein 
minus signal 
sequence 
and anchoring 
domain
AA 53-1315

pRSETB-SdrD Ampicillin 40 µM [65]

SirA pET28a:SirAT37 N315 Complete protein 
minus signal 
sequence
AA 37-330

SirAT37 Kanamycin 300 µM [66]
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medium and low molecular weight proteins (Figure 2F). 
Antibodies raised in cow 504 also primarily targeted low 
pI proteins (Figure 2F). Candidate immunogenic antigens 
from MOK023 were identified by mass spectrometry 
analysis of spots which showed an increase in immuno-
reactivity post-infection. Proteins were detected in 27 
excised spots, with more than one protein detected in 
25 spots. However, CWA proteins could be identified in 
only 18 spots; the top two candidate CWA proteins iden-
tified in each spot are listed in Table 2. Additional file 2 
lists all detected proteins in each of the spots.

The results of the 2D silver nitrate stained gels and 
serum blots of the MOK124 proteins probed with 
sera from cow 504 (MOK124 infected) and cow 604 
(MOK023 infected) are shown in Figure  3. Antibodies 

generated by cow 504 primarily targeted low molecular 
weight (< 35 kDa) proteins (Figure 3C) in agreement with 
the 1D analysis; however, antibodies generated by cow 
604 primarily targeted high molecular weight (> 100 kDa) 
proteins (Figure  3F) with few common immunoreac-
tive spots. More immunoreactivity was evident at day 14 
post-infection when the MOK124 proteins were probed 
with serum from the cow infected with the homologous 
strain compared to the heterologous strain. Candidate 
immunogenic proteins from MOK124 were identified 
by mass spectrometry. Of the selected immunoreactive 
spots, proteins were detected in 13 of the excised spots, 
with more than one protein detected in 12 of those spots. 
However, candidate CWA proteins were detected in only 
4 spots; the top candidate CWA protein identified in each 

Figure 1 One‑dimensional serum blots of S. aureus cell wall‑associated proteins. A MOK023 cell wall-associated proteins probed 
with sera from MOK023 infected cows and B MOK124 cell wall-associated proteins probed with sera from MOK124 infected cows. Lane 1 = Day 0 
pre-infection, Lane 2 = Day 7 post-infection, Lane 3 = Day 14 post-infection, Lane 4 = Day 21 post-infection and Lane 5 = Day 29 post-infection. Equal 
loading is shown by coomassie-stained gels of cell-wall extracts.
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spot is listed in Table 3. Additional file 3 lists all detected 
proteins in each of the spots. While reactive antigens 
were evident when MOK124 cell wall-associated proteins 
were probed with serum from cow 604, there was insuf-
ficient protein in many corresponding spots for candi-
date identification and no candidate CWA proteins were 
identified.

Immunoreactivity of candidate antigens
The 2D serum blotting identified a number of candi-
date immunogenic S. aureus CWA proteins. However, 
peptides matching up to 4 different CWA proteins were 
found in some spots and identification of specific candi-
dates was complicated by the fact that many CWA pro-
teins have similar molecular weight and pI and include 
repeat regions. Therefore, validation of candidate CWA 
proteins was performed. Whole cell lysates of E. coli 
expressing recombinant ClfA, ClfB, FnbpB, IsdA or SdrD 
were separated by 1D electrophoresis, immobilised onto 
PVDF membrane and probed with serum collected pre 
and post-infection from cows 604 and 504. The results 
of the serum blots of lysates of untransformed E. coli as 
well as E. coli expressing recombinant ClfA, are shown 
in Figure  4A and Additional file  4. ClfA was highly 
expressed, even in the absence of induction. Sera from 
both cows demonstrated minimal reactivity with rClfA 
pre-infection; however, a strong anti-ClfA response was 

induced post-infection in both cows. Cow 604 induced 
a weak antibody response to ClfB post-infection that 
was most evident 21 days post-infection (Figure 4B and 
Additional file  5). In contrast, cow 504 had antibodies 
to ClfB pre-challenge indicating prior exposure to ClfB-
expressing S. aureus; reactivity increased post-infection, 
most notably at day 29 (Additional file 5). Both cows had 
minimal immunoreactivity against FnbpB pre-infection 
but induced a strong antibody response post-infection 
(Figure 4C and Additional file 6). For IsdA, strong immu-
noreactivity was evident for both cows pre-infection and 
reactivity increased post-infection (Figure 4D and Addi-
tional file  7). Both cows also generated anti-SdrD anti-
bodies post-infection, with cow 504 showing evidence of 
prior exposure to SdrD (Figure 4E and Additional file 8).

Discussion
In this study, a proteomic approach was taken to charac-
terise the immunogenicity of CWA proteins of S. aureus 
strains MOK023 (CC97) and MOK124 (CC151). Genome 
sequence analysis demonstrated that MOK023 encoded 
more CWA proteins than MOK124 due to extensive 
decay in genes encoding CWA proteins in MOK124. This 
is in agreement with previous studies of strains belong-
ing to CC151 [6, 7, 36]. Allelic variation in a number of 
genes encoding CWA proteins was also identified. Such 
variation may affect their antigenicity, as has been shown 

Figure 2 Two‑dimensional silver nitrate stained gels and serum blots of MOK023 cell wall‑associated proteins. A and D Silver nitrate 
stained gel of MOK023 cell wall-associated protein extract. Numbers in red indicate the spots where proteins were detected by mass spectrometry. 
Membranes were probed using day 0 (B & E) and day 14 C and F serum from cow 604 (MOK023 infected) B and C and cow 504 (MOK124 infected) 
E and F.
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Table 2 List of MOK023 (CC97) candidate immunogenic CWA proteins detected by mass spectrometry. 

*  Theoretical Mr/pI = theoretical molecular weight/isoelectric point, calculated from the amino acid sequence.
+  Observed Mr/pI = observed molecular weight/isoelectric point, based on location following 2D electrophoresis.

Serum source Spot number Protein name # Unique 
peptides

Predicted 
localisation

Theoretical 
Mr (kDa)/pI *

Observed Mr (kDa)/pI +

Cow 604 (MOK023 infected) 1 Serine-aspartate repeat-containing 
protein E (SdrE)

50 Cell wall 126/4.46  ~180/3.5–3.9

Fibronectin binding protein B (FnbpB) 7 Cell wall 103/4.64

2 Serine-aspartate repeat-containing 
protein E (SdrE)

52 Cell wall 126/4.46  ~180/4.1–4.5

Fibronectin binding protein B (FnbpB) 11 Cell wall 103/4.64

3 Serine-aspartate repeat-containing 
protein E (SdrE)

59 Cell wall 126/4.46  ~180/4.8–5.0

Serine-aspartate repeat-containing 
protein D (SdrD)

14 Cell wall 148/4.39

4 Serine-aspartate repeat-containing 
protein E (SdrE)

34 Cell wall 126/4.46  ~130/3.5–3.9

Clumping factor B (ClfB) 19 Cell wall 95/4.2

5 Serine-aspartate repeat-containing 
protein E (SdrE)

53 Cell wall 126/4.46  ~130/4.1–4.5

Clumping factor B (ClfB) 26 Cell wall 95/4.2

6 Serine-aspartate repeat-containing 
protein E (SdrE)

50 Cell wall 126/4.46  ~130/4.8–5.0

Clumping factor B (ClfB) 28 Cell wall 95/4.2

7 Serine-aspartate repeat-containing 
protein E (SdrE)

18 Cell wall 126/4.46  ~120/3.5–3.9

Clumping factor B (ClfB) 15 Cell wall 95/4.2

8 Serine-aspartate repeat-containing 
protein E (SdrE)

31 Cell wall 126/4.46  ~120/4.5–4.7

Clumping factor B (ClfB) 13 Cell wall 95/4.2

9 Serine-aspartate repeat-containing 
protein E (SdrE)

26 Cell wall 126/4.46  ~120/4.8–5.0

Clumping factor B (ClfB) 22 Cell wall 95/4.2

10 Serine-aspartate repeat-containing 
protein E (SdrE)

8 Cell wall 126/4.46  ~100/4.5–5.0

Clumping factor B (ClfB) 3 Cell wall 95/4.2

Cow 504 (MOK124 infected) 1 Serine-aspartate repeat-containing 
protein E (SdrE)

46 Cell wall 126/4.46  ~180/3.9–3.98

Serine-aspartate repeat-containing 
protein D (SdrD)

8 Cell wall 148/4.39

2 Serine-aspartate repeat-containing 
protein E (SdrE)

46 Cell wall 126/4.46  ~180/5.1–5.3

3 Serine-aspartate repeat-containing 
protein E (SdrE)

18 Cell wall 126/4.46  ~180/5.4–5.5

4 Serine-aspartate repeat-containing 
protein E (SdrE)

47 Cell wall 126/4.46  ~130/3.9–3.98

Clumping factor B (ClfB) 23 Cell wall 95/4.2

5 Serine-aspartate repeat-containing 
protein E (SdrE)

21 Cell wall 126/4.46  ~130/5.1–5.3

Clumping factor B (ClfB) 11 Cell wall 95/4.2

6 Clumping factor B (ClfB) 12 Cell wall 95/4.2  ~125/3.9–3.98

Serine-aspartate repeat-containing 
protein E (SdrE)

8 Cell wall 126/4.46

8 Staphylococcal protein A (SpA) 3 Cell wall 41/5.53  ~37/4.5–4.98

9 Iron regulated surface determinant 
protein A (IsdA)

4 Cell wall 39/9.64  ~35/3.4–3.6
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for FnbpA and FnbpB [37, 38]. The humoral immune 
response to cell wall proteins of these contrasting strains 
was characterised using pre and post-infection serum 
from a bovine intramammary challenge trial [16]. The 
results from 1D serum blots showed that the strains 
induced, to some extent, a strain-specific response. 
Cows infected with MOK023 produced antibodies that 
mainly reacted against high molecular weight proteins 
while cows infected with MOK124 produced antibodies 
that mainly reacted against low molecular weight pro-
teins. The serum blots also indicated the cows had prior 

exposure to S. aureus; however, this was expected as the 
cows used in this study were colonised by S. aureus at 
extramammary sites at the time of infection (unpublished 
observation). Despite this, there was a distinct increase in 
serum reactivity against a number of CWA proteins after 
intramammary challenge. Interestingly, it was also noted 
in the serum blots that there was a decline in immunore-
activity to some proteins on or before day 29 post-infec-
tion, despite the fact that the cows were still infected. S. 
aureus is known to cause chronic, persistent infections 
[39, 40]. Strategies used by S. aureus for evasion of the 

Figure 3 Two‑dimensional silver nitrate stained gel and serum blots of MOK124 cell wall‑associated proteins. A and D Silver nitrate 
stained gel of MOK124 cell wall-associated protein extract. Numbers in red indicate the spots where proteins were detected by mass spectrometry. 
Membranes were probed using day 0 B and E and day 14 C and F serum from cow 504 (MOK124 infected) B and C and cow 604 (MOK023 infected) 
E and F.

Table 3 List of MOK124 (CC151) candidate immunogenic cell wall‑anchored proteins detected by mass spectrometry. 

*  Theoretical Mr/pI = theoretical molecular weight/isoelectric point, calculated from the amino acid sequence.

 + Observed Mr/pI = observed molecular weight/isoelectric point, based on location following 2D electrophoresis.

Serum source Spot number Protein name # Unique 
peptides

Predicted 
localisation

Theoretical 
Mr (kDa)/
pI *

Observed Mr (kDa)/pI +

Cow 504 (MOK124 infected) 1 Clumping factor B (ClfB) 9 Cell wall 92/4.2  ~120/4.8–5

2 Bone sialoprotein-binding protein 
(Bbp)

6 Cell wall 121/4.55  ~80/4.2–4.5

10 Iron regulated surface determinant 
protein A (IsdA)

2 Cell wall 39/9.6  ~35/8.1–8.6

11 Iron regulated surface determinant 
protein A (IsdA)

2 Cell wall 39/9.6  ~35/10.1–10.3
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Figure 4 One‑dimensional serum blots of lysates of E. coli BL21 overexpressing recombinant proteins. Lysates of E. coli BL21 overexpressing 
recombinant ClfA (A), ClfB (B), FnbpB (C), IsdA (D) and SdrD (E) were probed using sera from cow 604 (MOK023 infected) and cow 504 (MOK124 
infected). Lane 1 = No plasmid control, Lane 2 = Uninduced control and Lane 3 = Induced with 100 μM IPTG for 3 h. Equal loading is shown 
by coomassie-stained gels of the whole cell lysates.
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host immune system include internalisation within host 
cells and biofilm formation [30, 41–44]. Thereby, S. 
aureus can evade intracellular killing by the phagosome, 
effector molecules and cells of the immune system as well 
as avoid killing by antibiotics. While S. aureus are inter-
nalised or biofilm-associated, limited antigens may be 
available for recognition by the immune system and this 
could be responsible for the reduced serum reactivity. 
Alternatively, within-host adaptation may have resulted 
in a change in the phenotypic traits expressed in  vivo 
over the course of such a chronic, persistent infection 
[45].

In order to identify specific immunogenic proteins 
expressed in  vivo by MOK124 and MOK023, 2D elec-
trophoresis followed by serum blotting was used for cell 
wall protein separation and protein identification. Serum 
from cows 504 and 604 only were used to probe the cell 
wall-associated proteins as these 2 cows typified the IgG 
response within each group. Serum from a single cow 
from each group was used for the immunoblot analysis 
rather than a pooled serum sample as the genotype of S. 
aureus to which each cow had been previously exposed 
was unknown. Serum from a single cow was therefore 
considered preferable to identify spots that increased in 
intensity post-infection. However, the use of serum from 
a single individual may have resulted in the identifica-
tion of cow-specific antigens compared to pooled serum, 
which may have identified a greater diversity of antigens 
more representative of the response in all cows. Agree-
ment between 1 and 2D serum blotting techniques was 
seen. In both instances serum from cow 504 reacted with 
many low molecular weight proteins while serum from 
cow 604 reacted predominantly with high molecular 
weight proteins. Notably, antibodies produced by cow 
604 could cross react with cell wall-associated proteins 
produced by MOK124 and  vice versa, indicating some 
common immunoreactive proteins.  Common immuno-
genic CWA proteins identified included ClfB, SdrE/Bbp 
and IsdA. In addition ClfA, FnbpB and SdrD were identi-
fied when MOK023 proteins were probed. Some consid-
erations should be taken into account when interpreting 
these results. Firstly, CWA proteins were harvested from 
early to mid exponential phase cultures grown in tryptic 
soy broth with aeration. These growth conditions were 
selected as they are conducive to the in vitro expression 
of a number of important CWA proteins, including the 
FnBPs and ClfB [46, 47]. However, they do not mimic 
in  vivo growth conditions in the mammary gland. The 
repertoire of S. aureus CWA proteins expressed in  vivo 
during IMI may differ from those expressed, and hence 
available for detection, in the present study. Growth of 
the S. aureus strains in milk or under conditions more 
similar to those in the mammary gland, such as iron and 

oxygen restriction, may have revealed additional immu-
nogenic antigens [48]. Secondly, low intensity spots 
were not excised for mass spectrometry analysis due to 
the likelihood they would contain insufficient protein 
for identification. Silver nitrate staining is a sensitive 
method for protein detection; however, it limits protein 
identification to spots with medium to high intensity 
staining. For example, no immunogenic proteins were 
detected when MOK124 cell wall-associated proteins 
were probed with serum from cow 604. An alternative, 
sensitive staining method, with better compatibility with 
mass spectrometry, may have allowed identification of 
additional proteins. Thirdly, more than one protein was 
detected by mass spectromtry in the majority of excised 
spots. CWA proteins were selected as the most likely 
immunogenic proteins due to their cell surface expres-
sion. However, CWA proteins were not the only type of 
proteins detected, with many cytoplasmic membrane 
and cytosolic proteins also identified. This is a common 
finding; other studies that used enzymatic-dependent cell 
surface shaving methods also reported cytoplasmic con-
tamination, which may be at least partly attributable to 
autolysis of S. aureus cells and the subsequent reattach-
ment of cytoplasmic proteins to the cell surface [49–52]. 
However, serum blotting of E. coli lysates overexpressing 
SirA, a cytoplasmic membrane protein commonly found 
in immunoreactive spots with IsdA, found no immunore-
activity to this protein (data not shown) providing some 
support for the selection of CWA proteins as candidate 
immunogens. Future work, including the construction of 
isogenic S. aureus deletion mutants for each of the can-
didate immunogens, would facilitate confirmation of the 
identity of the immunoreactive protein in each of the 
identified spots.

In order to validate a number of the candidate immu-
nogens, plasmids expressing the CWA proteins ClfA, 
ClfB, FnbpB, SdrD and IsdA were transformed into E. 
coli for recombinant protein expression. Lysates contain-
ing the recombinant proteins were probed with sera from 
cows 504 and 604. Both cows had antibodies that reacted 
against all recombinant proteins. Serum from cow 504 
could react with SdrD and FnbpB which was unexpected 
as MOK124 does not encode sdrD or fnbB. One likely 
explanation is that antibodies raised against Bbp can 
cross react with SdrD; these allelic variants are 87.4% 
identical between the two strains. Similarly, MOK124 
encodes fnbA, and antibodies raised against the protein 
likely cross-reacted with the closely related FnbpB [53]. 
Non-specific interactions were also seen with some E. 
coli proteins, which has been reported previously [54, 55]. 
Purification of the recombinant proteins prior to serum 
blotting would likely have eliminated the detection of 
such bands, while also enabling downstream functional 
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characterisation of the candidate immunogens as well 
as investigation of their interactions. It was notable that 
expression of some recombinant proteins was seen in the 
absence of inducer, in particular proteins expressed from 
pQE30. This was likely caused by promoter leakage due 
to insufficent copies of the lacI repressor, which is not 
encoded by pQE30 and is not highly expressed by E. coli 
BL21 DE3 cells [56].

Infection with MOK023 or MOK124 has been demon-
strated to result in contrasting host response and infec-
tion signs [16]. The infecting S. aureus strain has also 
been demonstrated to influence the severity and outcome 
of bovine IMI in a variety of other studies [40, 45, 57]. 
These studies suggest that particular strains or genotypes 
express distinctive phenotypic traits during the course 
of infection. Therefore, different strains may have dif-
ferent mechanisms by which they infect or colonise the 
mammary gland and cause disease. In a previous study 
we demonstrated that MOK124 produced more toxins 
in  vitro than MOK023 and the secreted proteins from 
MOK124 against which a serum IgG response was tar-
geted during bovine IMI included a number of toxins 
[28]. The results from this study suggest that the serum 
IgG response to MOK023 targets many high molecular 
weight proteins, most likely CWA proteins, further sup-
porting the hypothesis that these strains have contrasting 
modes of pathogenicity.

A number of the immunogens identified in this study 
have been previously tested as vaccine candidates 
designed to prevent S. aureus IMI. The ability of recom-
binant ClfA + IsdA and ClfA + FnBPA to induce a serum 
and milk IgG response in  vivo has been demonstrated 
and the functional capacity of the antibodies demon-
strated [20, 58]. Vaccine efficacy trials have also indicated 
the ability of these proteins to provide at least partial pro-
tection against S. aureus IMI [21, 59]. The results from 
the present study indicate that strains from both major 
bovine-adapted lineages CC97 and CC151 produce these 
immunogenic antigens in  vivo, supporting their inves-
tigation as pan-lineage protective antigens. A number 
of methods, such as peptide arrays or yeast, bacterial or 
phage display systems, are currently available to deter-
mine the epitopes recognised by antibodies. Future work 
should include the application of such technologies for 
the identification of immunodominant regions of the 
candidate CWA proteins, as well as the identification of 
novel immunogens. However, the extensive sequence 
variation between strains and lineages will need to be 
considered with this approach.

The development of novel mastitis management and 
control strategies requires knowledge of the prevalent 
pathogens and an understanding of the mechanism by 
which they cause disease. New strategies must target all 

major strains or genotypes to maintain cow health and 
welfare and milk quality as dairy producers rarely have 
information on the genotype of the infecting strain. 
Therefore, this study, which may have implications for 
the development of vaccines against different S. aureus 
strains and lineages, offers a starting point for further 
research into the mode of pathogenicity of prevalent 
bovine-adapted strains as well as the utility of CWA pro-
teins as vaccine or diagnostic candidates. However, some 
considerations should be made for future work. Quanti-
tative analysis could help to determine if commonly iden-
tified proteins between different S. aureus strains share 
similar immunoreactivity or not. In addition, the ability 
of the antibodies generated to provide protection from 
infection must be further explored. Moreover, antibodies 
produced in response to one strain may cross-react with, 
but not cross-protect against, other S. aureus strains and 
this remains to be determined. The role of other antibody 
classes, particularly locally produced IgA and IgM should 
be considered as important mammary gland defense and 
natural antibody classes [60]. Furthermore, additional 
CC97 and CC151 S. aureus strains, along with strains 
from other important bovine-adapted lineages, should 
be investigated to identify common and strain-specific 
immunogenic proteins.
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