
Lee et al. Veterinary Research           (2023) 54:48  
https://doi.org/10.1186/s13567-023-01177-7

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Veterinary Research

Identification of a novel risk factor 
for chronic wasting disease (CWD) in elk: 
S100G single nucleotide polymorphism (SNP) 
of the prion protein gene (PRNP)
Yu‑Ran Lee1†, Yong‑Chan Kim2†, Sae‑Young Won3,4, Min‑Ju Jeong3,4, Kyung‑Je Park1, Hoo‑Chang Park1, 
In‑Soon Roh1, Hae‑Eun Kang1, Hyun‑Joo Sohn1* and Byung‑Hoon Jeong3,4*   

Abstract 

Prion diseases are fatal and malignant infectious encephalopathies induced by the pathogenic form of prion protein 
 (PrPSc) originating from benign prion protein  (PrPC). A previous study reported that the M132L single nucleotide poly‑
morphism (SNP) of the prion protein gene (PRNP) is associated with susceptibility to chronic wasting disease (CWD) in 
elk. However, a recent meta‑analysis integrated previous studies that did not find an association between the M132L 
SNP and susceptibility to CWD. Thus, there is controversy about the effect of M132L SNP on susceptibility to CWD. In 
the present study, we investigated novel risk factors for CWD in elk. We investigated genetic polymorphisms of the 
PRNP gene by amplicon sequencing and compared genotype, allele, and haplotype frequencies between CWD‑posi‑
tive and CWD‑negative elk. In addition, we performed a linkage disequilibrium (LD) analysis by the Haploview version 
4.2 program. Furthermore, we evaluated the 3D structure and electrostatic potential of elk prion protein (PrP) accord‑
ing to the S100G SNP using AlphaFold and the Swiss‑PdbViewer 4.1 program. Finally, we analyzed the free energy 
change of elk PrP according to the S100G SNP using I‑mutant 3.0 and CUPSAT. We identified 23 novel SNP of the elk 
PRNP gene in 248 elk. We found a strong association between PRNP SNP and susceptibility to CWD in elk. Among 
those SNP, S100G is the only non‑synonymous SNP. We identified that S100G is predicted to change the electrostatic 
potential and free energy of elk PrP. To the best of our knowledge, this was the first report of a novel risk factor, the 
S100G SNP, for CWD.
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Introduction
Prion diseases are fatal and infectious neurodegenera-
tive disorders caused by a highly aggregated and protein-
ase K-resistant form of prion protein  (PrPSc) converted 
from normal prion protein  (PrPC) encoded by the prion 
protein gene (PRNP) [1–3]. In the Cervidae family, prion 
disease is called chronic wasting disease (CWD) and 
has been reported in various Cervidae species, includ-
ing elk, mule deer, red deer, and sika deer [4–6]. Nota-
bly, although certain individuals have been infected with 
CWD, certain individuals have shown resistance to CWD 
on the farms where CWD occurred [7]. As the cause of 
this phenomenon, several studies have suggested that 
genetic polymorphisms of the PRNP gene play a pivotal 
role in susceptibility/resistance to CWD [8–10].

According to Monello et  al., there was a correlation 
between the frequency of the 132L allele and CWD 
prevalence in 1018 elk sampled from various populations 
in the USA [11]. In addition, Haley et  al. demonstrated 
that the 132MM genotype was nearly 2 to 3.5 times more 
prevalent in CWD-positive elk compared to the 132ML 
and 132LL genotypes, respectively [12]. White et  al. 
also found that the 132L allele was less observed among 
CWD cases in 559 captive and free-ranging elk from a 
different geographic region in the USA [13]. However, 
other studies did not find that the genotype and allele fre-
quencies of the M132L single nucleotide polymorphism 
(SNP) were associated with susceptibility to CWD in the 
USA and Korea [14, 15]. In addition, a meta-analysis of 
the three previous studies also did not identify a relation-
ship between the M132L SNP and susceptibility to CWD 
in all genetic models [15]. Furthermore, real-time quak-
ing-induced conversion (RT-QuIC) shows that the con-
version efficiency of  PrPSc of a specific genotype was not 
high but that the conversion efficiency of  PrPSc was high 
when the genotype of the codon was identical between 
the template and seed [16]. These discrepancies may be 
linked to the sample size or CWD strains.

In Korea, more than 12 000 elk are bred, and recently, 
intermittent CWD cases have been reported there [17–
19]. The exact cause of CWD is unknown since elk have 
been banned from importation from Canada since 2000. 
Since CWD is an extremely infectious disease, inves-
tigation of the novel risk factor for CWD is needed for 
preemptive control of CWD, a national disaster-type 
disease.

In the present study, to identify novel risk factors for 
CWD in elk, we investigated genetic polymorphisms of 
the PRNP gene and compared genotype, allele, and hap-
lotype frequencies between 52 CWD-positive and 196 
CWD-negative elk. In addition, we performed a link-
age disequilibrium (LD) analysis among PRNP poly-
morphisms to find the LD relationship among PRNP 

polymorphisms. Furthermore, we analyzed the 3D struc-
ture and electrostatic potential of elk prion protein (PrP) 
according to the S100G SNP using AlphaFold and the 
Swiss-PdbViewer 4.1 program [20, 21]. Finally, we inves-
tigated the free energy change of elk PrP according to the 
S100G SNP using I-mutant 3.0 and CUPSAT [22, 23].

Materials and methods
Ethics statements
All experimental procedures were approved by the Insti-
tutional Animal Care and Use Committee of Jeonbuk 
National University (IACUC Number: JBNU-2019-0076). 
All experiments were carried out following the Korea 
Experimental Animal Protection Act.

Subjects
Brain tissues derived from 248 elk were obtained from 6 
animal farms in the Republic of Korea including Chun-
gnam (Geumsan, 61 animals; Hongsung, 19 animals), 
Gyeongnam (Namhae, 50 animals; Jinju, 77 animals), and 
Jeonnam (Hampyeong, 2 animals; Gokseong, 39 animals) 
provinces where CWD has occurred [12]. The breeding 
scale of each farm is as follows, Chungnam (Geumsan), 
61 animals; Gyeongnam (Namhae), 56 animals; Jeonnam 
(Gokseong), 53 animals; Jeonnam (Hampyeong); 221 
animals. The breeding scale of Chungnam (Hongsung) 
and Gyeongnam (Jinju) was not available. The owners 
of the farms in Chungnam (Geumsan) and Gyeongnam 
(Namhae) were the same, however, the epidemiological 
association (route and source of infection) between each 
farm was not observed. CWD tests were conducted on 
all brain samples by the Animal and Plant Quarantine 
Agency (APQA) in the Republic of Korea using the Herd-
Chek BSE-Scrapie Antigen Kit (IDEXX, USA) and West-
ern blot analysis. Out of the 248 elk, 52 elk (Gyeongnam, 
19 animals; Jeonnam, 19 animals (Gokseong, 17 animals; 
Hampyeong, 2 animals); Chungnam, 14 animals) were 
diagnosed with CWD.

Genomic DNA
Genomic DNA was isolated from 20  mg of brain tissue 
using a QIAamp DNA Mini Kit (Qiagen, Hilden, Ger-
many) following the manufacturer’s protocol.

Genetic analysis of the elk PRNP gene
Polymerase chain reaction (PCR) was conducted to 
investigate the variations from amino acid 8 to 235 within 
the open reading frame (ORF) of elk PRNP gene (acces-
sion number: FJ590751.1) from the genomic DNA using 
the forward and reverse gene-specific primers PRNP-F 
(ATG GTG AAA AGC CAC ATA GGC) and PRNP-R (ACA 
CTT GCC CCT CTT TGG TA). PCR was performed using 
DNA Polymerase (Biofact, Daejeon, Republic of Korea) 
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and an S-1000 Thermal Cycler (Bio-Rad, Hercules, Cali-
fornia, USA) according to the manufacturer’s protocol. 
The PCR conditions for the PRNP-F and PRNP-R prim-
ers were as follows: 95  °C for 2  min for denaturation; 
35 cycles of 94 °C for 45 s, 59 °C for 45 s, and 72 °C for 
1 min 30 s; and 1 cycle of 72 °C for 10 min for extension. 
Detailed information on PCR is described in a previous 
study [12]. The amplicons were eluted using a PCR Puri-
fication Kit (Thermo Fisher Scientific, Bridgewater, New 
Jersey, USA) and sequenced by an ABI 3730 automatic 
sequencer (ABI, Foster City, California, USA) on both 
strands. Sequencing results were visualized by Finch TV 
software (Geospiza Inc., Seattle, USA), and genotyping of 
each nucleotide (Q > 40) was performed.

Statistical analysis
Statistical analyses were conducted by SAS version 9.4 
(SAS Institute Inc., USA). The differences in genotype 
and allele distributions of the PRNP gene between CWD-
negative and CWD-positive elk were analyzed using the 
χ2 test and Fisher exact test. The Hardy-Weinberg equi-
librium (HWE), haplotype analyses and LD tests were 
conducted by Haploview version 4.2 (Broad Institute, 
Cambridge, MA, USA) as previously described [8].

3D structure and electrostatic potential analyses of elk PrP
The 3D structure of elk PrP was predicted by AlphaFold 
based on machine learning. The confidence of modeling 
was evaluated by the predicted local distance difference 
test (pLDDT) score on a scale from 0–100. The predicted 
structure was visualized by the Swiss-PdbViewer 4.1 
program.

Prediction of protein stability changes
Protein stability changes according to S100G were pre-
dicted by I-mutant 3.0 and CUPSAT. I-mutant 3.0 esti-
mated protein stability changes based on a support 
vector machine (SVM) and evaluated the free energy 
change (DDG) value with positive (increase) and nega-
tive (decrease) signs. CUPSAT calculated protein stabil-
ity changes based on protein environment-specific mean 
force potentials and evaluated the DDG value with posi-
tive (increase) and negative (decrease) signs.

Results
Identification of 23 novel PRNP polymorphisms in elk
To identify polymorphisms of the elk PRNP gene, we per-
formed amplicon sequencing analysis targeting the ORF 
of the elk PRNP gene. We identified a total of 26 SNP, 
including 10 synonymous SNP and 16 non-synonymous 
SNP. Among 26 SNP, 23 SNP were novel SNP, includ-
ing 8 synonymous SNP and 15 non-synonymous SNP 
(Figures  1 and 2). We also found c.63C > T, G (V21V), 
c.312G > A (K104K) and c.394A > T (M132L) SNP 
reported in elk in previous studies [12].

Identification of a strong association between PRNP SNP 
and susceptibility to CWD in elk
To investigate the relationship of PRNP SNP with sus-
ceptibility to CWD, we compared the genotype, allele 
and haplotype distributions between 196 CWD-neg-
ative and 52 CWD-positive elk. Detailed information 
on the genotype, allele and haplotype distributions 
is described in Tables  1 and 2. Notably, the genotype 
and allele distributions of the c.63C > T, G (V21V), 
c.298A > G (S100G) and c.408C > T (A136A) SNP were 

Figure 1 Schematic map of the prion protein (PrP) with single-nucleotide polymorphisms (SNP) of the prion protein gene (PRNP) in elk. * 
indicates non‑synonymous SNP. # indicates previously reported non‑synonymous SNP. SP: signal peptide; OPR: octapeptide repeat region.
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significantly different between CWD-negative and 
CWD-positive elk. In addition, allele distributions of 
c.312G > A (K104K), c.384C > T (L128L) and c.501G > A 
(R167R) were significantly different between CWD-
negative and CWD-positive elk. As shown in a previ-
ous study, we did not find an association of c.394A > T 
(M132L SNP) with susceptibility to CWD in elk [12].

The most frequently observed haplotype was GGA CAA 
AAA ATA CAGG (CWD-negative elk: 71.5%; CWD-posi-
tive elk: 70.4%), followed by GGA CAA TAA ATA CAGG 
(CWD-negative elk: 16.1%; CWD-positive elk: 13%) and 
GGG CAA AAA ATA CAGC (CWD-negative elk: 4.2%; 
CWD-positive elk: 0%). Notably, the GGG CAA AAA 
ATA CAGC and GGA CAA AAA ATA CAGC haplotype 

Figure 2 Electropherograms of 23 novel SNP of the PRNP gene found in 248 elk. The colors of the peaks designate each base of the DNA 
sequence (green: adenine; red: thymine; blue: cytosine; black: guanine). The red arrows designate the location of the SNP found in the present 
study. *indicates non‑synonymous SNP. M/M: major homozygote; M/m: heterozygote; m/m: minor homozygote.
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Table 1 Comparison of genotype and allele distributions of the prion protein gene (PRNP) between chronic wasting disease 
(CWD)-negative and CWD-positive elks 

Polymorphisms Genotype frequencies, n Allele frequencies, n HWE P-valuea P-valueb

MM Mm mm M m

c.56G > A S19N CWD‑neg 188 8 0 384 8 0.7705 1 1

CWD‑pos 50 2 0 102 2 0.8875

c.63C > T, G V21V CWD‑neg 88 84 24 260 132 0.5701 0.0322 0.0024
CWD‑pos 34 17 1 85 19 0.4945

c.93A > C G31G CWD‑neg 192 3 1 387 5 0 1 0.589

CWD‑pos 52 0 0 104 0 N.A

c.95G > A G32E CWD‑neg 195 1 0 391 1 0.9714 1 1

CWD‑pos 52 0 0 104 0 N.A

c.135A > C G45G CWD‑neg 191 4 1 386 6 0 0.6696 0.3516

CWD‑pos 52 0 0 104 0 N.A

c.292A > G T98A CWD‑neg 177 19 0 373 19 0.4757 0.0851 0.0918

CWD‑pos 51 1 0 103 1 0.9441

c.293C > G T98S CWD‑neg 192 3 1 387 5 0 1 0.589

CWD‑pos 52 0 0 104 0 N.A

c.298A > G S100G CWD‑neg 196 0 0 392 0 N.A  < 0.0001  < 0.0001
CWD‑pos 46 6 0 98 6 0.6588

c.310A > G K104E CWD‑neg 195 0 1 390 2 0 1 1

CWD‑pos 52 0 0 104 0 N.A

c.312G > A K104K CWD‑neg 139 53 4 331 61 0.685 0.0748 0.0199
CWD‑pos 45 7 0 97 7 0.6027

c.384C > T L128L CWD‑neg 183 12 1 378 14 0.1198 0.1585 0.0491
CWD‑pos 52 0 0 104 0 N.A

c.394A > T M132L CWD‑neg 135 50 11 320 72 0.0365 0.8542 0.479

CWD‑pos 38 12 2 88 16 0.4125

c.408C > T A136A CWD‑neg 173 22 1 368 24 0.7416 0.0058 0.0052
CWD‑pos 37 15 0 89 15 0.2242

c.414C > T S138S CWD‑neg 188 7 1 383 9 0.0043 0.4868 0.215

CWD‑pos 52 0 0 104 0 N.A

c.424A > G I142V CWD‑neg 195 1 0 391 1 0.9714 1 1

CWD‑pos 52 0 0 104 0 N.A

c.428A > G H143R CWD‑neg 193 3 0 389 3 0.914 1 1

CWD‑pos 51 1 0 103 1 0.9441

c.436A > T N146Y CWD‑neg 195 1 0 391 1 0.9714 1 1

CWD‑pos 52 0 0 104 0 N.A

c.441C > T D147D CWD‑neg 195 0 1 390 2 0 1 1

CWD‑pos 52 0 0 104 0 N.A

c.478 T > C Y160H CWD‑neg 195 1 0 391 1 0.9714 1 1

CWD‑pos 52 0 0 104 0 N.A

c.501G > A R167R CWD‑neg 183 12 1 378 14 0.1198 0.1585 0.0491
CWD‑pos 52 0 0 104 0 N.A

c.518A > G N173S CWD‑neg 192 3 1 387 5 0 1 0.589

CWD‑pos 52 0 0 104 0 N.A

c.530C > A T177N CWD‑neg 186 9 1 381 11 0.2677 0.3762 0.1312

CWD‑pos 52 0 0 104 0 N.A

c.550A > G N184D CWD‑neg 195 1 0 391 1 0.9714 1 1

CWD‑pos 52 0 0 104 0 N.A

c.624G > A M208I CWD‑neg 190 4 2 384 8 0 0.7389 0.2139
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distributions were significantly different between CWD-
negative and CWD-positive elk (Table 2).

We investigated the LD among the 16 non-synonymous 
SNP of the elk PRNP gene with  r2 values. The detailed 
LD values are described in Table 3. In the CWD-positive 
elk, all of the SNP showed a weak LD  (r2 < 0.333). In the 
CWD-negative elk, 11 strong LD were found among 16 
non-synonymous SNP. LD distributions were signifi-
cantly different between CWD-negative and CWD-pos-
itive elk.

In silico evaluation of the S100G SNP on elk PrP
First, the 3D structures of wild-type (S100) and mutant 
(G100) elk PrP were predicted by AlphaFold. Then, the 
predicted structure was visualized with Swiss-PdbViewer, 
and the electrostatic potential was analyzed (Figure 3A). 
Notably, the positive potential of elk PrP with the G100 
allele was shrank compared to that of wild-type elk PrP.

We estimated the protein stability changes accord-
ing to S100G by I-mutant 3.0 and CUPSAT (Figure 3B). 
Notably, S100G was predicted to induce a decrease in 
the free energy of elk PrP (I-mutant 3.0: − 0.46 kcal/mol; 
CUPSAT: − 0.32 kcal/mol).

Discussion
In the present study, we found 23 novel SNP of the 
elk PRNP gene and a high level of genetic diversity 
(Table 1, Figures 1, 2). However, a previous study using 
microsatellite analysis has reported that elk have low 
genetic diversity [24]. Previous studies have reported 
that genetic diversity of the PRNP gene is correlated 
to prion resistance and susceptibility. A small number 
of SNP have been reported in dogs and horses, which 
are prion-resistant animals [25–27]. In contrast, sheep, 
goats, cattle, deer, and humans, which are prion-sus-
ceptible animals, show high genetic diversity for the 
PRNP gene [8, 28–31]. This phenomenon may provide 

clues to explain the high genetic diversity of the elk 
PRNP gene. Moreover, given that this population was 
originally imported from Canada, it is possible that the 
observed phenomenon is a result of its unique history, 
specific management practices, or animal relocation. 
Therefore, further investigation of this issue would be 
highly valuable in the future.

We also identified a strong association between PRNP 
polymorphisms and susceptibility to CWD in elk (Tables 1 
and 2). Among those SNP, the S100G SNP is the only non-
synonymous SNP. In addition, c.298A > G (S100G) did 
not have strong LD in CWD-positive and CWD-negative 
elk (Table  3). Since the non-synonymous SNP directly 
affects the structural features of the protein, we generated 
the template of elk PrP according to the S100G SNP by 
AlphaFold and analyzed the 3D structure and electrostatic 
potential (Figure 3A). Although the 3D structure of wild-
type elk PrP was not significantly different from that of elk 
PrP with the G100 allele, notably, the positive charge of elk 
PrP with the G100 allele was decreased compared to that 
of wild-type elk PrP. In addition, the free energy of elk PrP 
with the G100 allele was decreased compared to that of 
wild-type PrP (Figure 3B). Previous studies have reported 
that the electrostatic potential of PrP plays an important 
role in PrP oligomerization [32]. In addition, a large free 
energy barrier is a crucial factor affecting protein stability, 
and unstable PrP is related to amyloid propensity [33, 34]. 
Thus, the S100G SNP was predicted to alter the electro-
static structure of elk PrP and provide a susceptible feature 
to CWD. Further validation using prion infection in trans-
genic mice and protein misfolding cyclic amplification 
(PMCA) and RT-QuIC assays with elk PrP carrying S100G 
is needed to evaluate the relationship between the S100G 
SNP and susceptibility to CWD in the future.

CWD is the most potent infectious property among 
prion diseases [35]. CWD is regarded to be transmitted 
through direct animal contact or by indirect exposure 

Table 1 (continued)

Polymorphisms Genotype frequencies, n Allele frequencies, n HWE P-valuea P-valueb

MM Mm mm M m

CWD‑pos 52 0 0 104 0 N.A

c.636 T > G V212V CWD‑neg 187 7 2 381 11 0 0.4741 0.1312

CWD‑pos 52 0 0 104 0 N.A

c.676C > G Q226E CWD‑neg 165 28 3 358 34 0.1689 0.5108 0.7639

CWD‑pos 42 10 0 94 10 0.4429

Bold texts indicate P < 0.05.
a compared genotype distributions between CWD-negative and CWD-positive elks.
b compared allele distributions between CWD-negative and CWD-positive elks.

CWD-neg: CWD-negative elks, CWD-pos: CWD-positive elks, HWE: Hardy–Weinberg equilibrium, M: major allele, m: minor allele, MM: major homozygote, Mm: 
heterozygote, mm: minor homozygote, N.A: not applicable.
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to contaminated environmental factors [36]. In addi-
tion, recent studies have reported that sporadic forms of 
CWD have emerged in Northern European countries [35, 
37]. Furthermore, several cases of transmission by over-
coming the interspecies barrier have been reported, and 
experimental infection of CWD agents caused CWD-
related phenotypes in nonhuman primates [38]. In Korea, 
meat and antlers derived from Cervidae species are fre-
quently consumed for food or oriental medicine. Thus, 
careful preemptive control of CWD is needed. For the 
preemptive control of CWD in elk, culling for individuals 
with CWD-related genotypes is also a good method, and 
the S100G SNP presented in this study is also proposed 
as a potential candidate for the construction of a selective 
breeding system. Since PRNP polymorphisms are related 
to not only susceptibility to CWD but also modulation of 
strain selection [39, 40], it is highly desirable to investi-
gate the characteristics of S100G SNP as a novel CWD 
strain to construct the selective breeding system in the 
future.

In conclusion, we found 23 novel SNP of the elk PRNP 
gene. We identified a strong association between PRNP 
SNP and susceptibility to CWD in elk. S100G SNP is 
predicted to decrease the electrostatic potential and free 
energy of elk PrP. To the best of our knowledge, this is 
the first report of a strong association between the S100G 
SNP and susceptibility to CWD.
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