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Abstract 

The outcome of an udder infection (mastitis) largely depends on the species of the invading pathogen. Gram‑neg‑
ative pathogens, such as Escherichia coli often elicit acute clinical mastitis while Gram‑positive pathogens, such as 
Staphylococcus aureus tend to cause milder subclinical inflammations. It is unclear which type of the immune compe‑
tent cells residing in the udder governs the pathogen species‑specific physiology of mastitis and which established 
cell lines might provide suitable models. We therefore profiled the pathogen species‑specific immune response of 
different cell types derived from udder and blood. Primary cultures of bovine mammary epithelial cells (pbMEC), 
mammary derived fibroblasts (pbMFC), and bovine monocyte‑derived macrophages (boMdM) were challenged 
with heat‑killed E. coli, S. aureus and S. uberis mastitis pathogens and their immune response was scaled against the 
response of established models for MEC (bovine MAC‑T) and macrophages (murine RAW 264.7). Only E. coli provoked 
a full scale immune reaction in pbMEC, fibroblasts and MAC‑T cells, as indicated by induced cytokine and chemokine 
expression and NF‑κB activation. Weak reactions were induced by S. aureus and none by S. uberis challenges. In 
contrast, both models for macrophages (boMdM and RAW 264.7) reacted strongly against all the three pathogens 
accompanied by strong activation of NF‑κB factors. Hence, the established cell models MAC‑T and RAW 264.7 properly 
reflected key aspects of the pathogen species‑specific immune response of the respective parental cell type. Our data 
imply that the pathogen species‑specific physiology of mastitis likely relates to the respective response of MEC rather 
to that of professional immune cells.

© 2016 Günther et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
The outcome of a bacterial udder infection largely 
depends on the species of the invading pathogen. Gram 
negative bacteria, such as Escherichia coli elicit in most 
cases an acute severe inflammation with clinical signs 
which however may be self-healing by eventually eradi-
cating the invader [1, 2]. Gram-positive bacteria, such 
as Staphylococcus aureus or Streptococcus uberis fre-
quently cause only mild subclinical inflammations often 
allowing for persistent infections [3–6]. The molecular 
causes underpinning these quite substantial differences 
in pathogen species-specific mastitis are still unclear 
albeit those considerable experimental efforts that have 

been made during the last decade to decipher them. Sev-
eral studies used transcriptome profiling of udder tis-
sue retrieved from of cows having experimentally been 
infected with different pathogens. These studies revealed 
that E. coli infections elicit a strong cytokine storm [7, 
8] while infections with S. aureus [9, 10] or S. uberis [11, 
12] elicit a much weaker induction of proinflammatory 
cytokines.

Pathogens are perceived by pathogen recognition 
receptors (PRRs) from among which the toll-like-recep-
tors (TLRs) form the best-characterized family. The ubiq-
uitously expressed TLRs are activated through binding 
specific pathogen-derived molecular patterns (PAMPs) 
as ligands [13–15]. This event sets in train a signaling 
cascade ultimately leading to the activation of the NF-κB 
transcription factor complex. This serves as a master 
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switch to regulate the expression of more than 200 differ-
ent immune genes [16, 17].

Dissecting the molecular causes behind the pathogen 
species-specific immune physiology of mastitis requires 
appropriate model cells. In this regard it was established 
that the mammary epithelial cells (MEC) are highly rel-
evant for both sentinel as well as effector functions of 
immune defense in the udder [18–20]. This cell type con-
tributes to more than 70% of all cells from the lactating 
udder [21] and therefore might dominate the immune 
alert within-and emanating from-the udder early on after 
infection. Moreover, the pathogen species-specific acti-
vation profile of key immune genes in primary cultures 
of such cells (pbMEC) apparently reflects many aspects 
similar as recorded from in vivo infected udders [20, 22–
26]. The SV-40 T transformed bovine MAC-T cell line 
[27] has frequently been used as an easy-to-handle MEC 
model for both, studying aspects of lactation and milk 
formation [27, 28] as well as for the analysis of immune 
functions of MEC [29–32].

Mammary epithelial cells line the alveoli in the milk 
parenchyma as a layer on top of myoepithelial cells, 
which are structurally supported by other cell types. 
These additional cells are initially also co-isolated dur-
ing the procedure of purifying primary cultures of bovine 
MEC (pbMEC). In culture dishes they acquire an approx-
imately spindle shaped cell morphology which is typical 
for fibroblasts. We will be referring to primary cultures 
hereof as primary bovine mammary derived fibroblast 
cultures (pbMFC). Skin derived fibroblasts from cows 
have recently been proven to featuring a considerable 
diagnostic potential for the immune competence of the 
cow [33, 34].

Professional immune cells, such as dendritic cells and 
macrophages also reside in the udder tissue [35] and 
these cells are known for their formidable capacity to 
synthesizing key cytokines [36]. Their quantitative contri-
bution to calibrate the pathogen species-specific immune 
response in the udder early on after infection has not 
systematically been analyzed. Experimentally amenable 
models for macrophages may be established by differen-
tiating bovine blood derived monocytes for several days 
in vitro (boMdM) [35]. Global transcriptome profiling of 
S. aureus infected boMdM suggested [37] that this infec-
tion triggered their alternative activation into a M2 phe-
notype associated with tissue remodeling rather than the 
M1 phenotype associated with acute inflammation (see 
[38] for a review on macrophage polarization).

Established murine macrophage model cell lines such 
as RAW 264.7 [39] or J774 [40] are more easily handled 
than boMdM. However, the fact that they are trans-
formed through tumor viruses and that they stem from 
mouse rather than cattle sheds some doubts on the 

relevance of their use for modeling facets of immune 
regulation in the udder from cows. Interspecies compari-
sons of pathogen recognition may be of arguable value. 
Host species specific differentiated recognition of TLR4 
ligands was proven by showing, for example that the lipid 
IVa variant of the LPS sub-fraction lipid A may act as 
TLR4 agonist in horse but as antagonist in human TLR4 
signaling [41]. More examples have been documented 
[42] and X-ray crystallography revealed the structural 
basis for the host-species dependent PAMP recognition 
by TLR4 [42, 43]. Host-species dependent PAMP recog-
nition was also shown for TLR2 and Dectin 1 [44].

We wanted to compare in pbMEC, primary fibroblast 
and macrophage model cells side-by-side the profile of 
the pathogen species-specific immune response, as elic-
ited by challenges with E. coli, S. aureus and S. uberis. 
The direct comparison should validate and scale for the 
pbMEC the expected greatly different responses depend-
ing on the species of the challenging pathogen. Contrast-
ing this profile with the response of the other cell types 
should allow to clearly identifying the very cell type gov-
erning the pathogen species-specific immune response in 
the udder early on after infection. Moreover, we wanted 
to scrutinize the usefulness of the easily handled MAC-T 
and RAW 264.7 cells to modeling key aspects of the MEC 
and macrophage specific and pathogen species-depend-
ent immune functions.

We choose as a read out for immune functions the 
mRNA expression levels of a variety of key cytokine- 
and chemokine-encoding genes as parameters. These 
included TNF [45] and IL1A and IL1B [46] as well 
known key activators of inflammation and the pro- and 
anti-inflammatory IL6 as a master cytokine governing 
also the activation of the acute phase reaction [47–49]. 
We included a variety of chemokines since they are key 
players for the recruitment of immune cells [50]. CXCL2 
and CXCL8 recruit PMNs to the site of infection [50, 51] 
while CCL5 attracts blood monocytes, memory T helper 
cells and eosinophils [52]. CCL20 was included, because 
this chemokine is not only attracting dendritic cells, as 
well as T- and B-cells [53] but has also some bactericidal 
properties against E. coli and S. aureus pathogens [54]. 
NOS2A [55] and the β-defensin LAP [56, 57] served as 
more classical biomarkers for bactericidal functions. 
Expression of IL10 and the gene encoding the single-
immunoglobulin interleukin-1 receptor-related (SIGIRR) 
served monitoring the modulation of anti-inflammatory 
pathways [58–60].

We found that the pbMEC reflects best key aspects 
of the pathogen species-specific mastitis and that both 
established model cell lines quite accurately mirror image 
key features of the pathogen species-specific characteris-
tics of their respective parental cell type.
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Materials and methods
Tissues, cells, cell line culturing and stimulation 
with mastitis pathogens
Tissues for the establishment of primary cultures of 
mammary epithelial cells (pbMEC) were retrieved from 
healthy first lactating Holstein Friesian heifers having 
been slaughtered at mid lactation in our local abattoir, 
complying with all pertinent ethical and legal require-
ments. The abattoir is an EU licensed (ES1635) core 
facility of the research affiliation and serves to routinely 
supply samples to different laboratories. Special ethical 
approval was unnecessary since the cows had been culled 
in the normal culling regime without conducting any ani-
mal experimentation.

Establishment of these cultures was essentially as 
described [61]. This reference describes also cultivation 
of the cells on collagen type I coated tissue plates (CELL-
COAT, Greiner bio-one) in RPMI 1640 (Biochrom; Cat 
No F1215), having been supplemented with prolactin, 
dexamethasone, insulin and 10% FCS (PAN Biotech). The 
purification procedure of these cultures involves removal 
of fibroblasts by selective trypsinization. Such detached 
primary bovine fibroblast (pbMFC) cells were spun 
down (400 × g, 15 min) washed twice in PBS and subse-
quently cultivated on collagen coated tissue culture plates 
in the same medium as the pbMEC. MAC-T cells were 
cultivated in DMEM (Lonza) supplemented with 10% 
FCS on polystyrene tissue culture plates (CELLSTAR, 
Greiner bio-one). The mouse monocyte macrophage cell 
line RAW 264.7 (from ATCC) were cultivated in DMEM 
(Biochrom) supplemented with 2  mM  l-glutamine and 
10% FCS.

Establishment of the in  vitro differentiated bovine 
monocyte-derived macrophages (boMDM) from the 
blood of lactating cows was previously described in 
detail [35]. Briefly, blood from healthy cows was drawn 
into heparinized vacutainer tubes from the vena jugu-
laris externa. Mononuclear cells (MNC) were separated 
by density gradient centrifugation [35], suspended in 
MACS (magnetic-activated cell sorting) buffer (PBS, 
2  mM EDTA) and labeled with paramagnetic MicroBe-
ads™ coated with a CD14-specific monoclonal antibody 
(15 min, 4 °C; 20 µL beads and 80 µL MACS buffer per 
1 ×  107 cells). MNC were washed in MACS buffer and 
subjected to MAC sorting. Positively selected CD14+ 
monocytes were suspended in RPMI 1640 culture 
medium (10% FCS) and labeled with PE-conjugated 
mouse anti-bovine CD14 antibody (1:50 in MACS buffer; 
ABD Serotec, Oxford, UK). Viability (≥98%) and purity 
(≥95%) of monocytes was flow cytometrically analyzed 
after addition of propidium iodide (2 µg/mL final). Cells 
were suspended in Iscové Medium (PAA, Pasching, 
Austria) supplemented with 10% (v/v) FCS and 1% (v/v) 

penicillin/streptomycin and cultured in 24 well plates 
(1 × 105 cells/well) for 4 days at 37 °C and 5% CO2.

For challenge experiments, the cells were stimulated 
with 30 µg/mL of heat-killed E. coli strain 1303, S. aureus 
strain 1027, or S. uberis strain 233 particles for 1, 3, or 
24  h. Unstimulated cultures served as controls. Heat-
killed particles of E. coli strain 1303 and S. aureus strain 
1027 were prepared as described [24]. S. uberis strain 233 
[62] was grown in Todd Hewitt Broth (THB, Carl Roth 
GmbH) at 37 °C without agitation to the logarithmic 
phase of culture growth (0.5, OD600 nm). S. uberis patho-
gens were inactivated by heat treatment exactly as the E. 
coli or S. aureus mastitis pathogens (60 min, 80 °C). Based 
on three independent growth experiments, we found 
from exponentially multiplying cultures (OD600nm, 0.5) as 
protein content approximately 16.8 ± 4.1, 8.8 ± 1.2 and 
5.7 ±  0.9  µg/107 bacteria for of E. coli1303, S. aureus1027 
and S. uberis233, respectively. Hence, application of 30 µg/
mL of bacterial protein was approximately equivalent to 
MOIs of 10, 20 and 30 for E. coli, S. aureus and S. uberis, 
respectively.

RNA extraction and mRNA quantification
RNA from pbMEC, MAC-T, pbMFC and RAW 264.7 was 
extracted with TRIZOL-reagent (Invitrogen). RNA from 
boMdM was extracted using the RNeasy Plus Micro Kit 
(Qiagen) according to instructions as provided in the 
manual. cDNA preparation (Superscript II, Invitrogen) 
and real time quantification of the mRNA concentrations 
with the Fast-Start Sybr Green I kit and the LightCycler II 
instrument (Roche) were done as detailed in [18], except 
that per assay 75 ng of total RNA was used as input. Rela-
tive copy numbers were titrated against external stand-
ards prepared from dilution series (106–10 copies) of the 
cloned amplicons. They were also normalized across the 
different cell types against the amount the input of total 
RNA used for cDNA generation. Values from the MEC 
models pbMEC and MAC-T have in addition been sep-
arately normalized against copies of the not regulated 
CLIC1-encoding gene [63], with similar results as based 
on RNA input normalization. The RNA yield of from 
boMdMs was very limited. Hence, these data were nor-
malized against copies from the GAPDH housekeeping 
reference gene. Sequences of oligo nucleotide primers are 
listed in Additional file 2.

Determination of NF‑κB activation
NF-κB activity was measured using a reporter gene 
expressing the Renilla-luciferase under the control of the 
NF-κB activated ELAM promoter (Invivogen; [61]). The 
reporter gene construct was transfected into pbMEC, 
MAC-T, and pbMFC with Lipofectamine 2000 (Invitro-
gen) as described [23]. RAW 264.7 cells are notorious for 
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being difficult to transfect. Therefore we used the Neon® 
Transfection System (Life Technologies) following the 
instructions of the manufacturer for this specific cell 
type. Briefly, 106 cells were transfected with 5 µg reporter 
plasmid with one pulse of 1580 V for 20 ms. After trans-
fection the cells were seeded in a 24-well plate and were 
allowed to recover overnight. Then they were challenged 
with the E. coli, S. aureus or S. uberis for 16 h, lysed and 
the luciferase activity was determined using the dual 
luciferase assay reporter system (Promega) as described 
[61]. The enzyme activity was calibrated against the pro-
tein content of the lysate rather than relative to the activ-
ity of a co-transfected thymidine kinase (TK) promoter 
driven luciferase expressing control plasmid. We have 
noted in earlier studies that activating the NF-κBp65 fac-
tor (as is the cases during induced TLR-signaling) may 
strongly quench the TK-promoter activity [64].

Statistical analysis and data display
The data were analysed with GraphPad Prism Version 5 
(GraphPad Software, Inc., La Jolla, CA, USA). Differences 
were evaluated through an analysis of variance (ANOVA) 
including Bonferroni’s correction for multiple pairwise 
comparisons. The criteria for statistical significance were 
fold change >2 and P < 0.05. Heat maps of gene expres-
sion were established with the Expander (EXPression 
ANalyzer and DisplayER) software [65].

Results
Comparison of the immune competence and reactiv-
ity of different cell types has to address different levels. 
On the one hand, one needs to consider the basal gene 
expression levels in resting (unstimulated) cells. These 
contribute to shape the chemical environment in the 
surroundings. This might influence their neighboring 
cells or, in the case of MEC the concentration of bac-
tericidal factors in the alveolar fluid, for example and 
thereby modulating the probability of manifestation 
of an infection. On the other hand, pathogen mediated 
modulation of gene expression represents a different 
key level of immune competence reflecting the capacity 
of the cell to respond to a given species of the attacking 
pathogen.

Profile of basal expression level in RAW 264.7 differed 
grossly from the other model cells
We profiled the expression levels of 12 immune genes 
in 4 of our 5 model cells (Figure  1A; Additional file  3 
shows all data). For most genes they were quite similar 
between pbMEC, MAC-T and also pbMFC, with some 
exceptions. Key differences between pbMEC and MAC-T 
were that the latter cells did not express NOS2A and LAP, 
two of our parameters for bactericidal factors; and the 

level of the SIGIRR-encoding mRNA was almost tenfold 
enhanced in MAC-T compared to pbMEC. The primary 
cultures of fibroblasts (pbMFC) expressed both bac-
tericidal genes similar as pbMEC, but a highly elevated 
(approximately 100-fold) basal concentration of IL1B-
encoding mRNA distinguished their basal expression 
profile from pbMEC and MAC-T.

RAW 264.7 cells revealed a greatly deviating profile 
of basal gene expression. These cells uniquely expressed 
IL10, featured an almost 1000-fold increased concentra-
tion of the TNF-encoding mRNA and an approximately 
40-fold higher concentration of the NOS2A-encoding 
mRNA than found in any of the other cells.

Primary bovine MEC dominantly upregulated bactericidal 
effector genes after E. coli challenge
We challenged all our model cells with a strong stimu-
lus of E. coli for recording the almost full extent of the 
cell type specific immune response. Therefore, primary 
cultures of bovine mammary epithelial cells (pbMEC) 
and mammary gland derived fibroblasts (pbMFC) were 
stimulated with 30  µg/mL of heat-killed particles from 
the mastitis causing E. coli strain 1303 for up to 24 h. The 
resulting modulation of the mRNA concentration of our 
candidate genes was measured. We compared these data 
with results from parallel challenge experiments using 
the established bovine MEC model cells MAC-T and the 
murine cell line RAW 264.7, as a widely used model for 
murine macrophages. The E. coli challenge increased in 
RAW 264.7 cells the already very high basal concentra-
tion of the TNF mRNA within 3 h by 80-fold (Figure 1B; 
Additional file 3) to eventually reaching >12 × 106 cop-
ies per unit amount of RNA. The extent of increasing 
the TNF mRNA concentration was highest in pbMEC 
(>200-fold), but coming from a much lower basal level 
(148 ± 17 copies) of the control at t 0 h. It only reached 
approximately 3 × 104 copies per unit amount of RNA as 
maximal concentration. Induction of the TNF levels was 
also significant in MAC-T and pbMFCs cells. However, 
the maximum levels reached by either of these cells were 
only 25 or 10% (MAC-T and pbMFC, respectively) of that 
as it was reached in pbMEC. RAW 264.7 cells synthe-
sized also the highest mRNA concentrations of CXCL2 
exceeding by fivefold the maximum concentration found 
in pbMEC.

The pbMFC turned out to be the dominant source for 
IL6 and CXCL8 messages (Figure  1; Additional file  3). 
The challenge increased the IL6 mRNA concentration in 
these cells initially with the same kinetic as in the epithe-
lial cells. However, it was never downregulated in pbM-
FCs at later times during the challenge unlike as found 
in pbMEC. Rather, the IL6 mRNA concentration kept 
increasing in pbMFC with the duration of the challenge.
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Distinguishing key features of the pbMEC were their 
ability to express highest levels of IL1A, CCL5 and of the 
bactericidal genes after the E. coli challenge (Figure 1B). 
This was not only very clear for the well-known antimi-
crobial products from the β-defensin LAP and NOS2A-
encoding genes but also for the bactericidal chemokine 
CCL20. Its expression increased by >1700-fold, 3 h after 
the E. coli stimulus (Additional file  3). These cells also 
revealed the highest induction (>1100-fold) for NOS2A 
expression, leading to a maximum mRNA concentration 

of more than 0.8 ×  106 copies per RNA equivalent. For 
comparison, RAW 264.7 reached less than 50% of that 
concentration and pbMFC only approximately 3% hereof.

Only RAW 264.7 cells regulated the expression  
of the immune dampening factors IL10 and SIGIRR
Only RAW 264.7 cells significantly expressed IL10 and 
the challenge increased this level by >tenfold during the 
first 3  h (Additional file  3). The increased expression of 
this dampening factor of inflammation was contrasted 

10

102

103

104

105

106

pbMEC
MAC-T
pbMFC
RAW 264.7

TNF
IL1A

IL1B
IL6 IL10

CXCL2
CXCL8

CCL5
CCL20

NOS2A
LAP SIGIRR

m
R

N
A

[re
l. 

co
py

nu
m

be
r/

 R
N

A
]

A

B

Figure 1 Basal expression level of immune genes and its modulation after challenging with heat-killed E. coli. A mRNA copy num‑
bers relative to similar RNA inputs of TNF, IL6 and CCL20 as measured from the different cell types, as indicated. cDNA copy numbers were titrated 
against external standards and normalized according to the amount of RNA input. Note the broken ordinate in the graph of TNF. B Visualization of 
the data from several genes using the EXPANDER software. Each line displays the relative copy number of the respective gene as indicated over the 
time [h] of the challenge (0, 1, 3, 24), normalized across all cell types to the average of 0 and variance 1. Data are taken from Additional file 3. Data 
are mean values (error bars, ±SEM) from two replica experiments, each assayed in duplicate.
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by the observed challenge mediated downregulation of 
the high basal levels of the SIGIRR mRNA concentration 
in the same cells (Figure 1B; Additional file 3). The basal 
level of the SIGIRR mRNA concentration in MAC-T cells 
was at similar high levels as found in RAW 264.7 cells but 
was not downregulated during the E. coli challenge.

Gram‑positive pathogens elicited a widespread immune 
alert only in professional immune cells
We compared the pathogen species-specific immune 
response of the different cell types by challenging them 
with heat-inactivated preparations of S. aureus strain 
1027 and S. uberis strain 233 in parallel to the E. coli chal-
lenges. We added, as another cell model the response 
of monocyte-derived macrophages from cattle having 
been differentiated in  vitro for 4  days (boMdM). This 
should allow to cross-checking the validity of conclusions 
drawn from the murine RAW 264.7 cells. We profiled 
the response of boMdM cultures established from three 
different cows (Additional files 1  and 5). Two of them 
responded quantitatively quite similar (#434, #561), while 
the cultures from the 3rd cow responded stronger and 
with faster induction of several genes. We included into 
the main comparison only the data from those similarly 
reacting cultures.

The E. coli challenge maximally induced all the can-
didate genes, as expected (Figure  2; Additional file  4). 
The response against S. aureus was always stronger in 
the three cell types pbMEC, MAC-T and pbMFC than 
against S. uberis. Indeed, this pathogen did not induce 
any of the candidate genes to a significant extent in these 
cells. Maximum S. uberis caused gene inductions were 
recorded in pbMFC for TNF and NOS2A (3.1- and 4.5-
fold; Additional file  4). All other S. uberis related gene 
inductions were well below twofold and statistically 
insignificant. In stark contrast, challenges with any of 
the three pathogens elicited in boMdM and RAW 264.7 
a robust response characterized by a strong induction 
of immune gene expression. Again, induction of gene 
expression for most genes was strongest by E. coli and 
weakest by S. uberis, but the extent of inductions were all 
in the same order of magnitude for all genes (Figure 2).

S. aureus and S. uberis activated NF‑κB factors only in RAW 
264.7 cells
Pathogen challenge induced activation of NF-κB factors 
serves as a master switch for the regulation of immune 
gene expression. It is also an integrating marker for any 
TLR-signaling. We monitored levels of active NF-κB 
by transfecting a NF-κB driven luciferase expressing 
reporter gene into those cells and subsequently chal-
lenging them with the respective pathogens. BoMdMs 
could not be included into these experiments due to their 

limited availability and their notorious poor transfec-
tion efficiency. E. coli strongly (4.5- to 14-fold) activated 
NF-κB factors in all 4 different cell types (Figure  3). In 
contrast, S. aureus and S. uberis activated NF-κB only in 
RAW 264.7 cells, but not in the models for epithelial cells 
(pbMEC, MAC-T) and supporting cells (pbMFC). Of 
note, S. uberis induced the level of active NF-κB factors 
in the RAW 264.7 cells at least as strongly as E. coli.

Discussion
The udder is composed of a variety of different cell types 
each featuring a developmentally determined distinct 
immune competence. Their interplay governs the patho-
gen species-specific immune physiology of the udder 
early on after a bacterial infection. A central goal of our 
study was therefore to identify the very cell type of the 
udder whose pathogen species-specific immune response 
profile conforms best with the in vivo well documented 
divergent physiology of the pathogen species-specific of 
mastitis [4, 5]. This should validate the relevance of the 
respective cell type for modelling molecular aspects of 
mastitis physiology. Our second, more technical goal 
was to evaluate the relevance of the established cell lines 
MAC-T and RAW 264.7 for modeling mastitis relevant 
key immune functions in MEC and macrophages from 
cows. Using established cell lines has the advantage of 
reproducibly providing a homogenous cell population 
ensuring good technical repeatability of experiments. 
Primary cell isolates inherently reflect the individual 
variability between donors and variance eventually intro-
duced during the purification and differentiation pro-
cedure. This is exemplified by our data regarding the 
quantitative (not qualitative) differences in the extent of 
immune stimulation of boMdMs through the challenges 
with the three pathogen species.

We have used heat-killed pathogens throughout. This 
allows monitoring under standardized conditions the 
passive—PAMP related—stimulation property trigger-
ing the initial immune response of the host cell. Our 
previous work has shown that challenging MEC with 
heat-killed E. coli very quickly (<1 h) activates NF-κB fac-
tors and cytokine gene expression [63]. This approach 
ignores the eventually crucial effects of virulence factors 
secreted by live pathogens. The influence of adherence 
and invasion upon the host cell response could also not 
be monitored in this experimental setting, since these 
properties are also intimately associated with functions 
of the live pathogens. However, using live pathogens in 
challenge experiments is technically demanding. Differ-
ent pathogen species have quite different growth proper-
ties regarding both generation time as well as lag periods 
after re-inoculating cultures. Hence, experiments stimu-
lating five different host cells with living cultures of three 
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different pathogens are very difficult standardize. We 
have previously found no substantial difference in NF-κB 
and cytokine gene activation between short time (1 h) co-
culture of MEC with live E. coli and S. aureus pathogens 
as compared to challenges using heat-killed preparations 
of the same pathogens [63]; the same was found compar-
ing challenges with live vs. heat killed S. uberis [66]. This 
supports the value of using heat-killed pathogens in chal-
lenge experiments.

Profiles of the cell type specific immune capacities
We have used a strong E. coli challenge [67] to reveal-
ing the full cell type specific immune response capacity 
of the various cell types. As distinguishing features of 
the MEC emerged their high capacity to expressing the 
bactericidal factors β-defensins and CCL20 together with 
their pivotal capacity to express the cell recruiting factors 
CXCL2, CXCL8 and CCL5. Their sustained capacity to 
express and secrete bactericidal factors obviously serves 

Figure 2 Pathogen species-specific immune response of different cell types. Upper panel: Changes in the level of TNF expression (ordinate) 
over time (abscissa) after challenging with heat‑killed particles of the indicated pathogens. Lower panel: visualization of the data from several genes 
using the EXPANDER software. Each line displays the relative copy number of the respective gene as indicated over the time [h] of the challenge 
(1, 3, 24), normalized across all cell types to the average of 0 and variance 1. Data are taken from Additional file 4. Data are mean values (error 
bars, ±SEM) from two replica experiments, each assayed in duplicate.

Figure 3 Pathogen species-specific induction of NF-κB activity 
in different cells. Cells were transiently transfected with the NF‑κB 
reporter plasmid and stimulated with 30 µg/mL of protein from 
preparations of the heat‑killed pathogens, as indicated. The increase 
in NF‑κB activity was measured from cell lysates sampled 24 h after 
the challenge. Mean values from two independent experiments, each 
assayed in triplicate. *, P < 0.05; ***, P < 0.001.
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to directly fighting off bacteria and preventing coloniza-
tion of the alveolus. The pathogen mediated induction 
of the PMN recruiting chemokines CXCL2 and CXCL8 
was transient, while it was sustained for the monocyte 
recruiting factor CCL5. The only transient induction of 
PMN recruitment through MEC conceivably helps con-
fining the danger of inducing immune pathology through 
overshooting secretion of aggressive factors from PMNs. 
This is particularly relevant considering the shear mass 
of MEC in the udder. In contrast, the cell types recruited 
by CCL5 are not known to secrete these very aggressive 
factors. The strong induction of IL1A gene expression in 
the MEC conceivably indicates that, upon injury related 
death of the MEC this factor is released into the sur-
rounding as an inflammation mediator. It was shown that 
IL-1 may serve as a necrosis (but not apoptosis) related 
“damage-associated-molecular-pattern” capable of induc-
ing sterile inflammation, for example during hypoxia 
[46].

The fibroblast pbMFC uniquely revealed after induc-
tion the sustained high level expression of IL6 and 
CXCL8. Hence, these cells maintain secreting their 
danger induced signals and sustain their calling for 
help through cellular factors of innate immunity, since 
the invaded pathogens will not go away but rather keep 
multiplying at that specific location. However, they will 
contact only few cells in their immediate surrounding. 
This situation differs from that of epithelial cells lin-
ing the alveoli. Here, the pathogens are rapidly moving 
around conceivably contacting many cells and hence 
the risk of inducing an overshooting alarm must be 
avoided.

Most obvious features of the RAW 264.7 macrophage 
model cells was their extraordinary high capacity for 
expressing TNF and the neutrophil attracting factor 
CXCL2. Hence, activation and recruitment of mac-
rophages to the site of infection multiplies by orders 
of magnitude the initial danger signals (TNF, CXCL2) 
emitted by the epithelial cells. The macrophage model 
cells were the only to modulate the expression of two, 
yet unrelated dampening factors of inflammation. Only 
RAW 264.7 and boMdM cells expressed IL10 and stimu-
lated its expression after pathogen stimulation. A promi-
nent function of secreted IL10 is to confine the extent 
of inflammation by downregulating cytokine expression 
(among them IL1, IL6, TNF) in relevant target cells, such 
as TH1 cells [58, 68].

RAW 264.7 cells downregulated the expression of 
SIGIRR after pathogen stimulation. This factor is thought 
to interfere with TLR-signaling through preventing 
TLR-receptor dimerization. This prohibits formation of 

productive MyD88 dependent TLR-signaling [60]. Hence, 
downregulating the synthesis of this factor increases the 
sensitivity of the TLR-signaling cascade. SIGIRR expres-
sion serves also as a marker for differentiation since this 
factor is substantially expressed in monocytes, but only 
very weakly in fully differentiated macrophages [69].

Similarities and differences between the parental cell types 
and their established models
Comparison of the pathogen species-specific pro-
file of gene induction shows for all genes that MAC-T 
responded weaker than pbMEC, however with the same 
kinetic. Importantly, it reflected the same gradation of 
the response as pbMEC (E. coli  >  S. aureus  >  S. uberis) 
including the almost complete absence of an immune 
reaction against the S. uberis challenge. We have previ-
ously reported that the pbMEC response pattern against 
S. aureus strain 1027 is typical for several S. aureus 
strains [63] and show in a companion paper that their 
response against S. uberis strain 233 is typical for 20 
different S. uberis strains, all having been isolated from 
udders of cows [66]. E. coli strain 1303 is representative 
for 21 other E. coli isolates from cases of both acute as 
well as persistent mastitis by the parameter of strong 
NF-κB activation in MAC-T cells (data not shown).

Moreover, we encountered in control experiments 
(unpublished) that different concentrations of FCS mod-
ulate the response of MAC-T cells similarly as reported 
from pbMEC [63]. Absence of NF-κB induction through 
an S. aureus challenge in pbMEC was identified as key 
determinant for their low level immune response against 
S. aureus [23, 24] and S. uberis [66]. This indicates that 
the challenge did not activate any TLR-mediated sign-
aling. MAC-T cells reflect also this highly important 
key feature of the pathogen species-specific immune 
response of pbMEC. Hence, our data together validate 
that MAC-T cells reflect some of the most crucial fea-
tures distinguishing the immune reaction of MEC from 
professional immune cells.

However, we note two key differences between both 
MEC models. First, MAC-T cells do not express the piv-
otal bactericidal β-defensin factors (LAP as an example) 
and NOS2A. We have previously observed that the capac-
ity of MEC for expressing β-defensins is lost within 2 or 3 
passages of pbMEC [19]. Hence, it represents a very sen-
sitive marker for maintenance of the MEC phenotype and 
its loss in MAC-T cells indicates some degree of dediffer-
entiation. Second, the SIGIRR mRNA concentration was 
approximately tenfold higher in MAC-T than in pbMEC. 
This may attenuate TLR-signaling in MAC-T cells com-
pared to pbMEC. SIGIRR expression was not modulated 
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through pathogen stimulation, in neither of both MEC 
model cells.

The comparison of the reaction profile of boMdM and 
RAW 264.7 reveals that strong induction of the immune 
gene expression by all three pathogen species is the com-
mon and significant similarity between these two cell 
models. This is enabled by the strong activation of the 
NF-κB factor complex in these cells by all three patho-
gens. This suggests that they all triggered TLR-signaling 
in these cells. The approximately equal immune respon-
siveness against Gram-negative as well as Gram-positive 
pathogens appears to be an evolutionary conserved phe-
notype common to cells of the macrophage lineage. We 
concluded in our previous studies that MEC are obvi-
ously unable to unpack the relevant ligands of Gram-pos-
itive cells (hence lipoproteins) for activating productive 
TLR2 signaling, for example [63]. Macrophages, on the 
other hand are known as professional antigen presenting 
cells. They do have the capacity to internalize bacteria, 
kill them (as indicated by high basal NOS2A expression, 
for example) and processing them for immune recogni-
tion. Hence, diverse TLR-receptors and intra-cellular 
PRRs are likely to become activated by epitopes of Gram-
positive bacteria which may not be recognizable by the 
trans-membrane TLR receptors [70].

However, we note three possibly significant differences 
between boMdM and RAW 264.7 cells. First, the extent 
of TNF induction was much stronger in boMdM than in 
RAW 264.7 cells. Second, IL1A and IL6 expression was 
only transiently induced in boMdM while the increase 
in mRNA concentration was sustained in RAW 264.7 
cells. Last, SIGIRR expression was absent in boMdM, 
while being high in RAW 264.7 cells. This validates that 
the boMdM had indeed been differentiated into mac-
rophages [69].

Our study shows in summary that the models for mam-
mary epithelial cells and fibroblasts, but not macrophages 
respond with distinctly graded immune reactions against 
each of the three pathogens. E. coli but neither of the 
Gram-positive bacteria elicits in them synthesis of a 
strong and transient cytokine storm. This distinction 
is in part caused by the failure of MEC to activate TLR-
mediated signaling upon challenges with S. aureus or  
S. uberis. Hence, the pathogen species-specific norm 
of the immune response of MEC appears to dictate the 
immune response of the udder early on after infection. 
Our direct comparison also reveals that S. uberis elicits 
in MEC an even weaker induction of immune functions 
than S. aureus. Both established model cell lines, MAC-T 
and RAW 264.7 properly reflect most of these key fea-
tures of pathogen species-specific immune response of 
the respective parental cell type.
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